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SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Project #1 is due Friday Feb 28th.

Project #2 proposals are due Monday Mar 10th.
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SPECIAL TOPICS (SPRING 2025)

LAST CLASS

We discussed the data structures that DBMSs 
maintain to summarize the contents of tables.
→ Most Common: Equi-Depth, End-Bias Histograms (Heavy 

Hitters), HyperLogLog

Today's class is about how the optimizer's cost 
model uses these data structures…
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CARDINALITY ESTIMATION

Cardinality estimation is the process of predicting 
the number of rows that will be returned by a query 
operation, such as a filter or join, to help the 
optimizer choose the most efficient execution plan.

The number of tuples that will be generated per 
operator is computed from its selectivity multiplied 
by the number of tuples in its input.
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TODAY’S AGENDA

Cardinality Estimation Basics

The Germans' Survey

Implementations
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CARDINALITY ESTIMATION

There are three cardinality estimations on logical 
expressions an optimizer must support as the core 
of its cost model:
→ Selection Conditions (filters)
→ Join Size Estimation
→ Distinct Value Estimation

These will serve as building blocks for more 
complex expressions:
→ Multiple Joins
→ Group By
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DERIVABLE STATISTICS

For each relation R, the DBMS maintains statistics 
to approximate the following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.

The selection cardinality SC(A,R) is the average 
number of records with a value for an attribute A 
given NR  /   V(A,R)
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SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences /  | R |
→ Example: sel(age=9)
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SC(age=9)=4

SELECT * FROM people 
 WHERE age = 9

= 4 /45 = 0.088
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Equi-Depth Histogram

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences /  | R |
→ Example: sel(age=9)
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SELECT * FROM people 
 WHERE age = 9

= 4 /45 = 0.088
≈ (9/5) /45 ≈  1.8 /45 ≈ 0.04
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ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same within a histogram bucket.
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SINGLE SELECTION CONDITION

Range Predicate:
→ sel(A >= a) = (#RANGE-ROWS + #EQ-ROWS) / | R |
→ Example: sel(age >= 7) ≈ ((9+12)

SELECT * FROM people 
 WHERE age >= 7
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SINGLE SELECTION CONDITION

Range Predicate:
→ sel(A >= a) = (#RANGE-ROWS + #EQ-ROWS) / | R |
→ Example: sel(age >= 7) ≈ ((9+12)

SELECT * FROM people 
 WHERE age >= 7

10

+ (2 × (12/3))) / 45
≈ 29 / 45 ≈  0.6444
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SINGLE SELECTION CONDITION

Range Predicate:
→ sel(A >= a) = (#RANGE-ROWS + #EQ-ROWS) / | R |
→ Example: sel(age >= 7) ≈ ((9+12)

SELECT * FROM people 
 WHERE age >= 7

10

+ (2 × (12/3))) / 45
≈ 29 / 45 ≈  0.6444

This assumes continuous distribution of values.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

12 12

9

12

0

5

10

15

1-5 6-8 9-13 14-15

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

SELECT * FROM people 
 WHERE age != 2
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≈  1 - ((12/5) /45)
≈  1 - (2.4 /45) ≈  1 - 0.05 ≈ 0.95

Observation: Selectivity ≈  Probability
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OBSERVATION

We now can compute selectivities for 
individual predicates, but what 
happens if there are multiple 
predicates in a query?
→ Even though the predicates are on the 

same table, the attributes may have 
different distributions.

          
              
                          

SELECT * FROM people 
 WHERE age = 2
   AND name LIKE 'A%'
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OBSERVATION

We now can compute selectivities for 
individual predicates, but what 
happens if there are multiple 
predicates in a query?
→ Even though the predicates are on the 

same table, the attributes may have 
different distributions.

Example: 
→ sel(age = 2) ≈ 0.053
→ sel(name LIKE 'A%') ≈ 0.1

SELECT * FROM people 
 WHERE age = 2
   AND name LIKE 'A%'

P1 P2
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ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same within a histogram bucket.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent. The 

selectivity of the conjunction of two or more predicates is 
estimated as the product of their individual selectivities.
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MULTIPLE SELECTION CONDITION

Conjunction: 
→ sel(P1 ⋀ P2) = sel(P1) × sel(P2)
→ Example: sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are 
independent.

SELECT * FROM people 
 WHERE age = 2
   AND name LIKE 'A%'
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≈ sel(age=2) × sel(name LIKE 'A%') 
≈ 0.053 × 0.1 ≈ 0.0053

P1 P2
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MULTIPLE SELECTION CONDITION

Disjunction: 
→ sel(P1 ⋁ P2)

 ≈ sel(P1) + sel(P2) – sel(P1 ⋀ P2)
 ≈ sel(P1) + sel(P2) – sel(P1) × sel(P2)

          

                            
                  

SELECT * FROM people 
 WHERE age = 2
    OR name LIKE 'A%'
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P1 P2
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MULTIPLE SELECTION CONDITION

Disjunction: 
→ sel(P1 ⋁ P2)

 ≈ sel(P1) + sel(P2) – sel(P1 ⋀ P2)
 ≈ sel(P1) + sel(P2) – sel(P1) × sel(P2)

→ Example: sel(age=2 ⋁ name LIKE 'A%')

This again assumes that the
selectivities are independent.

SELECT * FROM people 
 WHERE age = 2
    OR name LIKE 'A%'
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≈ 0.053 + 0.1 – (0.053 × 0.1)
≈ 0.1477 P1 P2
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CORRELATED ATTRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

Then the following query shows up:
→  (make="Honda" AND model="Accord")

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1

/10 × 1/100 ≈  0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01
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JOIN SIZE ESTIMATION

Given a join of R and S, what is the range of 
possible result sizes in # of tuples?
→ In other words, for a given tuple of R,  how many tuples of 

S will it match?

Assume each key in the inner relation will exist in 
the outer table.
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ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same within a histogram bucket.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent. The 

selectivity of the conjunction of two or more predicates is 
estimated as the product of their individual selectivities.

Assumption #3: Containment Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.
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JOIN SIZE ESTIMATION

Align the buckets of the histograms so 
that their boundaries agree. 

Compute a per bucket estimation of 
join size.
→ Containment assumes that for each group 

gR of tuples in R, it has a corresponding 
group gS in S.

→ Each tuple in gR will match with tuples in gS

Aggregate partial frequencies from 
joining each pair of buckets to get 
cardinality of the whole join.
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ERROR PROPAGATION

21

SELECT A.id
  FROM A, B, C
 WHERE A.id = B.id
   AND A.id = C.id
   AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables
A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|
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π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

A⨝B ≈  (|A| × |B|) /
max(sel(A.id=B.id), sel(B.id>100))
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ESTIMATOR QUALITY

Evaluate the correctness of cardinality estimates 
generated by DBMS optimizers as the number of 
joins increases.
→ Let each DBMS perform its stats collection.
→ Extract measurements from query plan.

Compared five DBMSs using 100k queries from the 
JOB workload based on IMDB data.
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How Good are Query Optimizers, Really?VLDB 2015

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.14778/2850583.2850594
https://dl.acm.org/doi/10.14778/2850583.2850594


SPECIAL TOPICS (SPRING 2025)

ESTIMATOR QUALITY
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EXECUTION SLOWDOWN

24

Viktor Leis Slowdown compared to using true cardinalities

PostgreSQL v9.4 – JOB Workload

Default Planner

60.6%

No NL Join Dynamic Rehashing
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LESSONS FROM THE GERMANS

Query opt is more important than a fast engine
→ Cost-based join ordering is necessary

Cardinality estimates are routinely wrong
→ Try to use operators that do not rely on estimates

Hash joins + seq scans are a robust exec model
→ The more indexes that are available, the more brittle the 

plans become (but also faster on average)

Working on accurate models is a waste of time
→ Better to improve cardinality estimation instead
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IMPLEMENTATIONS

Postgres

Microsoft SQL Server
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POSTGRES COST MODEL

Cost of an operator is a weighted sum 
of the # of accessed disk pages and the 
amount of data processed in memory.
→ Distinguishes between sequential and 

random I/O.
→ Requires manual tuning the weights based 

on hardware characteristics.

The Germans replaced Postgres' cost 
model with simple cost model to see 
what happens with query plans…

27

Viktor Leis

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://db.in.tum.de/~leis/


SPECIAL TOPICS (SPRING 2025)

POSTGRES COST MODEL

Cost of an operator is a weighted sum 
of the # of accessed disk pages and the 
amount of data processed in memory.
→ Distinguishes between sequential and 

random I/O.
→ Requires manual tuning the weights based 

on hardware characteristics.

The Germans replaced Postgres' cost 
model with simple cost model to see 
what happens with query plans…

27

Viktor Leis

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://db.in.tum.de/~leis/
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/path/costsize.c


SPECIAL TOPICS (SPRING 2025)

POSTGRES COST MODEL

Cost of an operator is a weighted sum 
of the # of accessed disk pages and the 
amount of data processed in memory.
→ Distinguishes between sequential and 

random I/O.
→ Requires manual tuning the weights based 

on hardware characteristics.

The Germans replaced Postgres' cost 
model with simple cost model to see 
what happens with query plans…

27

Viktor Leis

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://db.in.tum.de/~leis/
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/path/costsize.c


SPECIAL TOPICS (SPRING 2025)

SQL SERVER

Each operator's cost is based on producing all its 
output and the cost producing the first output.
→ Example: Nested-Loop Join vs. Index Nested-Loop Join

Maintains "row goals" to track the number of tuples 
are needed above in the query plan.
→ Example: Top-K / LIMIT clause

Combine predicates using an exponential backoff. 
Given a table R and predicate selectivities S1, S2, S3, 

… Sn, where S1 is the most selective and Sn the least:
→ E

Estimate = |R| × S1 × √(S2) × √(√(S3)) × √(√(√(S4))) …
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EQOP Book
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PARTING THOUGHTS

Cardinality estimation is the hardest part of building 
a query optimizer.
→ Lots of simplifying assumptions to make the problem more 

tractable.
→ But developers often don't revisit those assumptions…

Research suggests that accurate cardinality 
estimation is more important than sophisticated 
cost models.

All of this seems like it is the perfect usecase for 
machine learning…

29
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NEXT CLASS

Project #2 Proposals

30
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