
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Project #1 is due Friday Feb 28th.

We will assign Project #2 topics later today.
→ I am available during Spring Break to discuss your project

plans and proposal presentation.

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025/project1.html
https://15799.courses.cs.cmu.edu/spring2025/project2.html

SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom

GoogleSQL Pipes (DB Seminar)
→ Monday Mar 10th @ 4:30pm ET
→ Zoom

Malloy (DB Seminar)
→ Monday Mar 17th @ 4:30pm ET
→ Zoom

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/events/sql-death-apache-pinot-query-optimizer/
https://db.cs.cmu.edu/events/sql-death-pipe-syntax-in-sql/
https://db.cs.cmu.edu/events/sql-death-malloy-a-modern-open-source-language-for-analyzing-transforming-and-modeling-data/

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

How to use transformation rules to rewrite
dependent joins in correlated subqueries to become
inner joins.

This is one of the important advancements in query
optimization from the last decade.

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COST ESTIMATION

An optimizer uses a cost model to estimate the
physical execution cost of a query plan given a
database state.
→ This is an internal cost that allows the DBMS to compare

one plan with another.
→ Estimating the expected runtime (or completion time) of a

query is a similarly difficult problem.

The cost of a plan is estimated by combining the
costs of individual operators in a plan.

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ CPU cycles, disk I/O, network I/O, buffer pool misses,

memory consumption…
→ Specific to physical implementation of an operator.
→ Depends heavily on hardware characteristics and requires

calibration to ensure accurate estimates.

Choice #2: Logical Costs
→ Input/output size of intermediate results per operator.
→ Independent of the operator algorithm.
→ Can include width estimations of resulting tuples.

6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ CPU cycles, disk I/O, network I/O, buffer pool misses,

memory consumption…
→ Specific to physical implementation of an operator.
→ Depends heavily on hardware characteristics and requires

calibration to ensure accurate estimates.

Choice #2: Logical Costs
→ Input/output size of intermediate results per operator.
→ Independent of the operator algorithm.
→ Can include width estimations of resulting tuples.

6

Cardinality
Estimation

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

We already saw the use of logical costs to guide top-
down optimization searches.
→ Predicted-cost Bounding
→ Promises

Computing an operator's logical cost is not
magically faster than computing its physical cost.

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Background

Histograms

Sketches

Sampling

Implementations

8

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

STATISTICAL SUMMARIES

Auxiliary data structures that the DBMS populates
from scanning the database to allow the optimizer
to approximate data contents for different scenarios.

Trade-offs to consider:
→ Accuracy
→ Efficiency
→ Memory Consumption
→ Coverage / Applicability
→ Creation + Maintenance Costs

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

STATISTICS STORAGE

Most DBMSs store a database's statistics in its
internal catalog.

The DBMS will periodically update statistics
according to one or more triggering mechanisms:
→ Periodic Background Tasks (e.g., Postgres Autovacuum)
→ Maintenance Schedules (e.g., Oracle)
→ Modification Thresholds
→ Manual Invocation (e.g., ANALYZE, UPDATE STATISTICS)

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-automated-database-maintenance-tasks.html
https://www.postgresql.org/docs/current/sql-analyze.html
https://learn.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver16

SPECIAL TOPICS (SPRING 2025)

COLUMN STATISTICS

Most DBMSs create single-column statistics for
each column in a table.

The DBMS can also track statistics for groups of
attributes together rather than just treating them all
as independent variables.
→ Some systems automatically build multi-column statistics if

they are already used in an index together (MSSQL).
→ Otherwise, a human manually specifies target columns.
→ Also called Column Group Statistics (Db2) or Extended

Statistics (Oracle).

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16#query-predicate-contains-multiple-correlated-columns
https://www.ibm.com/docs/en/db2/11.5?topic=plans-column-group-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics

SPECIAL TOPICS (SPRING 2025)

SUMMARIZATION APPROACHES

Choice #1: Histograms
→ Maintain an occurrence count per value (or range of

values) in a column.

Choice #2: Sketches
→ Probabilistic data structure that gives an approximate

count for a given value.

Choice #3: Sampling
→ DBMS maintains a small subset of each table that it then

uses to evaluate expressions to compute selectivity.

Choice #4: ML Model
→ Train an ML model that learns the selectivity of predicates

and correlations between multiple tables.

12

Most Common

Rare

Increasing Usage

Experimental / Very Rare

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

HISTOGRAMS

Approximate the distribution of values in a column
for cardinality estimation.
→ Maintain an occurrence count per value (or range of

values) in a column.

13

Distinct values of attribute

of occurrences

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

14

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

14

0

5

10

15

1-3 4-6 7-9 10-12 13-15

Equi-Width Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.
→ Equi-depth histograms are shown to have better worst-

case and average error than equi-width histograms.

15

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.
→ Equi-depth histograms are shown to have better worst-

case and average error than equi-width histograms.

15

0

5

10

15

1-5 6-8 9-13 14-15

Histogram (Quantiles)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the
most frequent keys. The last bucket (R) stores the
average frequency of all remaining values.

16

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HistogramMost Frequent Keys

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the
most frequent keys. The last bucket (R) stores the
average frequency of all remaining values.

16

1.7

0

5

10

8 15 3 9 14 R

End-Biased Histogram (N=6)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SKETCHES

Count-min Sketch

HyperLogLog

t-digest

Apache DataSketches

Apache DataSketches Google ZetaSketch

Maintaining exact statistics about the database is
expensive and slow.

Use probabilistic data structures called sketches to
generate error-bounded estimates.
→ Frequent Items (Count-min Sketch)
→ Count Distinct (HyperLogLog)
→ Quantiles (t-digest)

Open-source implementations are available (Apache
DataSketches, Google ZetaSketch)

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog
https://github.com/tdunning/t-digest
https://datasketches.apache.org/
https://datasketches.apache.org/
https://github.com/google/zetasketch

SPECIAL TOPICS (SPRING 2025)

SKETCHES

Count-min Sketch

HyperLogLog

t-digest

Apache DataSketches

Apache DataSketches Google ZetaSketch

Maintaining exact statistics about the database is
expensive and slow.

Use probabilistic data structures called sketches to
generate error-bounded estimates.
→ Frequent Items (Count-min Sketch)
→ Count Distinct (HyperLogLog)
→ Quantiles (t-digest)

Open-source implementations are available (Apache
DataSketches, Google ZetaSketch)

17

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog
https://github.com/tdunning/t-digest
https://datasketches.apache.org/
https://datasketches.apache.org/
https://github.com/google/zetasketch
https://datasketches.apache.org/

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

23

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB' Min(2,3,6,3) = 2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

Max(0, 3)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

Max(0, 3)3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

24

HyperLogLog

0

0

0

0

0

1

2

3

35

6

8

4

Harmonic
Mean = ~5.39

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Harmonic_mean

SPECIAL TOPICS (SPRING 2025)

MERGING SKETCHES

Combine sketches from partitioned data sources
while preserving accuracy constraints.

Count-Min Sketch:
→ Merge by summing corresponding counters in arrays.
→ Requires same parameters and hash functions for all

sketches

HyperLogLog:
→ Merge by taking register-wise maximum values
→ Preserves estimation properties of individual sketches
→ Enables union of distinct values from multiple sets.

20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

SAMPLING

Execute a predicate on a random sample of the
target data set. The number of tuples to examine
depends on the size of the original table.

Approach #1: Maintain Read-Only Copy
→ Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables
→ Use READ UNCOMMITTED isolation.
→ May read multiple versions of same logical tuple.

21

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

⋮
1 billion tuples

SELECT AVG(age)
 FROM people
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Biden 82 Old

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Sickly

1006 TigerKing 61 Jailed1001 Obama 63 Rested

1003 Tupac 25 Dead

1005 Andy 43 Sickly

Table Sample

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
 FROM people
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Biden 82 Old

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Sickly

1006 TigerKing 61 Jailed1001 Obama 63 Rested

1003 Tupac 25 Dead

1005 Andy 43 Sickly

Table Sample

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

COST MODEL IMPLEMENTATIONS

PostgreSQL

IBM Db2

Smallbase (TimesTen)

DuckDB

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRESQL COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRESQL COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

24
5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.postgresql.org/docs/current/static/runtime-config-query.html

SPECIAL TOPICS (SPRING 2025)

COST MODEL CALIBRATION

The physical cost of an operator in a query plan is
the amount of resources it will consume for the
number of tuples it ingests/emits.

Enterprise DBMSs automatically determine the
relative weights of hardware resources.
→ Hand-crafted Synthetic Queries (System R)
→ Micro-benchmarks (IBM DB2)
→ Machine Learning

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks

26

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

SPECIAL TOPICS (SPRING 2025)

SMALLBASE COST MODEL

Two-phase model that automatically generates
hardware costs from a logical model.

Phase #1: Identify Execution Primitives
→ List of ops that the DBMS does when executing a query
→ Example: evaluating predicate, index probe, sorting.

Phase #2: Microbenchmark
→ On start-up, profile ops to compute CPU/memory costs
→ These measurements are used in formulas that compute

operator cost based on table size.

27

Modelling Costs for a MM-DBMSReal-Time Databases 1996

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://gram.eng.uci.edu/faculty/klin/rtdb/LM.ps
http://gram.eng.uci.edu/faculty/klin/rtdb/LM.ps

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

We discussed how query optimizers rely on cost
models derived from statistics extracted from data.

But how can the DBMS optimize a query if there
are no statistics?
→ Data files the DBMS has never seen before.
→ Query APIs from other DBMSs (connectors).

28

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

IN-SITU DATA PROCESSING

Execute queries on data files residing in shared
storage (e.g., object store) without first ingesting
them into the DBMS (i.e., managed storage).
→ This is what people usually mean when they say data lake.
→ A data lakehouse is the DBMS that sits above all this.

The goal is to reduce the amount of prep time
needed to start analyzing data.
→ Users are willing to sacrifice query performance to avoid

having to re-encode / load data files.

29

Dremel: A Decade of Interactive SQL Analysis at Web ScaleVLDB 2020

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

SPECIAL TOPICS (SPRING 2025)

DUCKDB COST MODEL

Cannot assume there are statistics because the
DBMS may be seeing a data file for the first.

When there are no statistics, the DBMS uses
number of distinct values to determine worst-case
cardinality estimation for joins.
→ Assumes primary-foreign key joins.
→ Assume independence and uniformity of data.
→ If HyperLogLog is available, use that when possible (e.g.,

value=10). Otherwise, assume 20% selectivity.

30

Join Order Optimization with (Almost) No StatisticsTom Ebergen - Vrije Universiteit MS Thesis (2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://blobs.duckdb.org/papers/tom-ebergen-msc-thesis-join-order-optimization-with-almost-no-statistics.pdf
https://blobs.duckdb.org/papers/tom-ebergen-msc-thesis-join-order-optimization-with-almost-no-statistics.pdf

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Statistics allow the optimizer to summarize the
contents of the database.
→ These data structures are only approximations of real data.

Then the optimizer guesses how many tuples it will
examine or emit at each operator in a query plan.
→ These guesses are also going to be approximations of what

a real predicate will do.

We're generating approximations on top of
approximations…

31

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

How to use the data structures from today's lecture
to estimate the cardinality of operators + predicates.

32

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Query Cost Models: Statistics
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: COST ESTIMATION
	Slide 6: COST MODEL COMPONENTS
	Slide 7: COST MODEL COMPONENTS
	Slide 8: OBSERVATION
	Slide 9: TODAY’S AGENDA

	Background
	Slide 10: STATISTICAL SUMMARIES
	Slide 11: STATISTICS STORAGE
	Slide 12: COLUMN STATISTICS
	Slide 13: SUMMARIZATION APPROACHES

	Histograms
	Slide 14: HISTOGRAMS
	Slide 15: EQUI-WIDTH HISTOGRAM
	Slide 16: EQUI-WIDTH HISTOGRAM
	Slide 17: EQUI-DEPTH HISTOGRAMS
	Slide 18: EQUI-DEPTH HISTOGRAMS
	Slide 19: END-BIASED HISTOGRAMS
	Slide 20: END-BIASED HISTOGRAMS

	Sketches
	Slide 21: SKETCHES
	Slide 22: SKETCHES
	Slide 23: COUNT-MIN SKETCH
	Slide 24: COUNT-MIN SKETCH
	Slide 25: COUNT-MIN SKETCH
	Slide 26: COUNT-MIN SKETCH
	Slide 27: COUNT-MIN SKETCH
	Slide 28: COUNT-MIN SKETCH
	Slide 29: COUNT-MIN SKETCH
	Slide 30: HYPERLOGLOG
	Slide 31: HYPERLOGLOG
	Slide 32: HYPERLOGLOG
	Slide 33: HYPERLOGLOG
	Slide 34: HYPERLOGLOG
	Slide 35: HYPERLOGLOG
	Slide 36: MERGING SKETCHES

	Sampling
	Slide 37: SAMPLING
	Slide 38: SAMPLING
	Slide 39: SAMPLING

	Implementations
	Slide 40: COST MODEL IMPLEMENTATIONS
	Slide 41: POSTGRESQL COST MODEL
	Slide 42: POSTGRESQL COST MODEL
	Slide 43: COST MODEL CALIBRATION
	Slide 44: IBM DB2 COST MODEL
	Slide 45: SMALLBASE COST MODEL
	Slide 46: OBSERVATION
	Slide 47: IN-SITU DATA PROCESSING
	Slide 48: DUCKDB COST MODEL

	Conclusion
	Slide 49: PARTING THOUGHTS
	Slide 50: NEXT CLASS

