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SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Project #1 is due Friday Feb 28th.

We will assign Project #2 topics later today.
→ I am available during Spring Break to discuss your project 

plans and proposal presentation.
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SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom

GoogleSQL Pipes (DB Seminar)
→ Monday Mar 10th @ 4:30pm ET
→ Zoom

Malloy (DB Seminar)
→ Monday Mar 17th @ 4:30pm ET
→ Zoom

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/events/sql-death-apache-pinot-query-optimizer/
https://db.cs.cmu.edu/events/sql-death-pipe-syntax-in-sql/
https://db.cs.cmu.edu/events/sql-death-malloy-a-modern-open-source-language-for-analyzing-transforming-and-modeling-data/


SPECIAL TOPICS (SPRING 2025)

LAST CLASS

How to use transformation rules to rewrite 
dependent joins in correlated subqueries to become 
inner joins.

This is one of the important advancements in query 
optimization from the last decade.
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SPECIAL TOPICS (SPRING 2025)

COST ESTIMATION

An optimizer uses a cost model to estimate the 
physical execution cost of a query plan given a 
database state.
→ This is an internal cost that allows the DBMS to compare 

one plan with another.
→ Estimating the expected runtime (or completion time) of a 

query is a similarly difficult problem.

The cost of a plan is estimated by combining the 
costs of individual operators in a plan.
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SPECIAL TOPICS (SPRING 2025)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ CPU cycles, disk I/O, network I/O, buffer pool misses, 

memory consumption…
→ Specific to physical implementation of an operator.
→ Depends heavily on hardware characteristics and requires 

calibration to ensure accurate estimates.

Choice #2: Logical Costs
→ Input/output size of intermediate results per operator.
→ Independent of the operator algorithm.
→ Can include width estimations of resulting tuples.
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

We already saw the use of logical costs to guide top-
down optimization searches.
→ Predicted-cost Bounding
→ Promises

Computing an operator's logical cost is not 
magically faster than computing its physical cost.
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TODAY’S AGENDA

Background

Histograms

Sketches

Sampling

Implementations
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SPECIAL TOPICS (SPRING 2025)

STATISTICAL SUMMARIES

Auxiliary data structures that the DBMS populates 
from scanning the database to allow the optimizer 
to approximate data contents for different scenarios.

Trade-offs to consider:
→ Accuracy
→ Efficiency
→ Memory Consumption
→ Coverage / Applicability
→ Creation + Maintenance Costs
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SPECIAL TOPICS (SPRING 2025)

STATISTICS STORAGE

Most DBMSs store a database's statistics in its 
internal catalog.

The DBMS will periodically update statistics 
according to one or more triggering mechanisms:
→ Periodic Background Tasks (e.g., Postgres Autovacuum)
→ Maintenance Schedules (e.g., Oracle)
→ Modification Thresholds
→ Manual Invocation (e.g., ANALYZE, UPDATE STATISTICS)
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SPECIAL TOPICS (SPRING 2025)

COLUMN STATISTICS

Most DBMSs create single-column statistics for 
each column in a table.

The DBMS can also track statistics for groups of 
attributes together rather than just treating them all 
as independent variables.
→ Some systems automatically build multi-column statistics if 

they are already used in an index together (MSSQL).
→ Otherwise, a human manually specifies target columns.
→ Also called Column Group Statistics (Db2) or Extended 

Statistics (Oracle).

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16#query-predicate-contains-multiple-correlated-columns
https://www.ibm.com/docs/en/db2/11.5?topic=plans-column-group-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics


SPECIAL TOPICS (SPRING 2025)

SUMMARIZATION APPROACHES

Choice #1: Histograms
→ Maintain an occurrence count per value (or range of 

values) in a column.

Choice #2: Sketches
→ Probabilistic data structure that gives an approximate 

count for a given value.

Choice #3: Sampling
→ DBMS maintains a small subset of each table that it then 

uses to evaluate expressions to compute selectivity.

Choice #4: ML Model
→ Train an ML model that learns the selectivity of predicates 

and correlations between multiple tables.
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HISTOGRAMS

Approximate the distribution of values in a column 
for cardinality estimation.
→ Maintain an occurrence count per value (or range of 

values) in a column.
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SPECIAL TOPICS (SPRING 2025)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of 
each unique key. All buckets have the same width 
(i.e., same # of value).
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SPECIAL TOPICS (SPRING 2025)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
→ Equi-depth histograms are shown to have better worst-

case and average error than equi-width histograms.
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SPECIAL TOPICS (SPRING 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the 
most frequent keys. The last bucket (R) stores the 
average frequency of all remaining values.
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SPECIAL TOPICS (SPRING 2025)

SKETCHES

Count-min Sketch

HyperLogLog

t-digest

Apache DataSketches

Apache DataSketches Google ZetaSketch

Maintaining exact statistics about the database is 
expensive and slow.

Use probabilistic data structures called sketches to 
generate error-bounded estimates.
→ Frequent Items (Count-min Sketch)
→ Count Distinct (HyperLogLog)
→ Quantiles (t-digest)

Open-source implementations are available (Apache 
DataSketches, Google ZetaSketch)
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SPECIAL TOPICS (SPRING 2025)

COUNT-MIN SKETCH

Probabilistic data structure that 
approximates frequency counts of 
elements in a data stream using hash 
functions and a multi-dimensional 
array of counters.

Approximates answers with tunable 
accuracy and space trade-offs.
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HYPERLOGLOG

Harmonic mean

Probabilistic data structure to 
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine 

which counter to update.
→ Calculate the position of the leftmost 1-bit 

in remaining bits.

Estimate:
→ Compute the Harmonic mean across 

counters and correct with a corrective 
fudge factor.
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MERGING SKETCHES

Combine sketches from partitioned data sources 
while preserving accuracy constraints.

Count-Min Sketch:
→ Merge by summing corresponding counters in arrays.
→ Requires same parameters and hash functions for all 

sketches

HyperLogLog:
→ Merge by taking register-wise maximum values
→ Preserves estimation properties of individual sketches
→ Enables union of distinct values from multiple sets.
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SAMPLING

Execute a predicate on a random sample of the 
target data set. The number of tuples to examine 
depends on the size of the original table.

Approach #1: Maintain Read-Only Copy
→ Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables
→ Use READ UNCOMMITTED isolation.
→ May read multiple versions of same logical tuple.
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SPECIAL TOPICS (SPRING 2025)

SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

⋮
1 billion tuples

SELECT AVG(age)
  FROM people 
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Biden 82 Old

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Sickly

1006 TigerKing 61 Jailed1001 Obama 63 Rested

1003 Tupac 25 Dead

1005 Andy 43 Sickly

Table Sample
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SPECIAL TOPICS (SPRING 2025)

COST MODEL IMPLEMENTATIONS

PostgreSQL

IBM Db2

Smallbase (TimesTen)

DuckDB
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POSTGRESQL COST MODEL

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident 
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a 

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

24
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→ Processing a tuple in memory is 400x faster than reading a 

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.
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COST MODEL CALIBRATION

The physical cost of an operator in a query plan is 
the amount of resources it will consume for the 
number of tuples it ingests/emits.

Enterprise DBMSs automatically determine the 
relative weights of hardware resources.
→ Hand-crafted Synthetic Queries (System R)
→ Micro-benchmarks (IBM DB2)
→ Machine Learning
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IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks
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SMALLBASE COST MODEL

Two-phase model that automatically generates 
hardware costs from a logical model.

Phase #1: Identify Execution Primitives
→ List of ops that the DBMS does when executing a query
→ Example: evaluating predicate, index probe, sorting.

Phase #2: Microbenchmark
→ On start-up, profile ops to compute CPU/memory costs
→ These measurements are used in formulas that compute 

operator cost based on table size.
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OBSERVATION

We discussed how query optimizers rely on cost 
models derived from statistics extracted from data.

But how can the DBMS optimize a query if there 
are no statistics?
→ Data files the DBMS has never seen before.
→ Query APIs from other DBMSs (connectors).
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IN-SITU DATA PROCESSING

Execute queries on data files residing in shared 
storage (e.g., object store) without first ingesting 
them into the DBMS (i.e., managed storage).
→ This is what people usually mean when they say data lake.
→ A data lakehouse is the DBMS that sits above all this.

The goal is to reduce the amount of prep time 
needed to start analyzing data.
→ Users are willing to sacrifice query performance to avoid 

having to re-encode / load data files.
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DUCKDB COST MODEL

Cannot assume there are statistics because the 
DBMS may be seeing a data file for the first.

When there are no statistics, the DBMS uses 
number of distinct values to determine worst-case 
cardinality estimation for joins.
→ Assumes primary-foreign key joins.
→ Assume independence and uniformity of data.
→ If HyperLogLog is available, use that when possible (e.g., 

value=10). Otherwise, assume 20% selectivity.

30

Join Order Optimization with (Almost) No StatisticsTom Ebergen - Vrije Universiteit MS Thesis (2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://blobs.duckdb.org/papers/tom-ebergen-msc-thesis-join-order-optimization-with-almost-no-statistics.pdf
https://blobs.duckdb.org/papers/tom-ebergen-msc-thesis-join-order-optimization-with-almost-no-statistics.pdf


SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Statistics allow the optimizer to summarize the 
contents of the database.
→ These data structures are only approximations of real data.

Then the optimizer guesses how many tuples it will 
examine or emit at each operator in a query plan.
→ These guesses are also going to be approximations of what 

a real predicate will do.

We're generating approximations on top of 
approximations…
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NEXT CLASS

How to use the data structures from today's lecture 
to estimate the cardinality of operators + predicates.
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