
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

Parallelization of independent transformations in a
top-down optimizer.
→ Another example of the need to track dependencies

between parts of the query plan and optimization process.

This concludes the distinction between bottom-up
and top-down methods.

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SUBQUERIES

SQL allows a nested SELECT subquery to exist
(almost?) anywhere in another query.
→ Projection, FROM, WHERE, LIMIT, HAVING
→ Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries
without having to use separate queries to prepare
intermediate results.

Key Distinction: Uncorrelated vs. Correlated

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

UNCORRELATED SUBQUERY

An uncorrelated subquery does not
reference any attributes from the
(calling) outer query.

The DBMS only needs to logically
execute the subquery once and reuse
its result for all tuples in outer query.
→ Most DBMSs will do this.

5

SELECT name
 FROM students
 WHERE score =
 (SELECT MAX(score) FROM students);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci' MAX(s2.score)=90

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci' MAX(s2.score)=90

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='Streets'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='Streets'

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

6

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
ODB Streets

name major

s1.major='Streets' MAX(s2.score)=100

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CORRELATED SUBQUERY

The goal is for the optimizer to pull a
correlated subquery up from an inner
nesting level so that the DBMS can
execute it as a join.

The optimizer needs to handle any
amount of subquery nesting in any
part of the query where it is allowed.

7

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT s1.name, s1.major
 FROM students AS s1
 JOIN (SELECT major,
 MAX(score) AS max_score
 FROM students
 GROUP BY major) AS s2
 ON s1.major = s2.major
 AND s1.score = s2.max_score

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Binding

Heuristic Rewriting

German-style Unnesting (2015)

German-style Unnesting (2025)

8

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SUBQUERY BINDING

If you think of a subquery like a
function call, then any column that
can be passed to a function should be
available to the subquery.

This can be challenging if the
referenced columns are ambiguous.

9

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT name, major
 FROM students AS s1
 WHERE score = subquery(s1.major);

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

SUBQUERY BINDING

SELECT:
→ Normal columns
→ AGGREGATE/GROUP columns

WHERE / GROUP BY:
→ Any normal column available

HAVING:
→ AGGREGATE/GROUP columns

ORDER BY:
→ Anything that can go in the root of SELECT.

LIMIT:
→ No correlated columns allowed.

10

Mark Raasveldt

SELECT (SELECT SUM(i1.i))
 FROM integers AS i1;

SELECT subquery(SUM(i1.i))
 FROM integers AS i1;

SELECT subquery(i1.i)
 FROM integers AS i1;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

SUBQUERY BINDING

SELECT:
→ Normal columns
→ AGGREGATE/GROUP columns

WHERE / GROUP BY:
→ Any normal column available

HAVING:
→ AGGREGATE/GROUP columns

ORDER BY:
→ Anything that can go in the root of SELECT.

LIMIT:
→ No correlated columns allowed.

10

Mark Raasveldt

SELECT (SELECT SUM(i1.i))
 FROM integers AS i1;

SELECT subquery(SUM(i1.i))
 FROM integers AS i1;

SELECT subquery(i1.i)
 FROM integers AS i1;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

HEURISTIC REWRITING

Since the early 1980s, optimizers
relied on heuristics to identify specific
query plan patterns to decorrelate
nested subqueries.

The optimizer developer human
codifies the patterns to look for when
and how to decorrelate subqueries.

11

On optimizing an SQL-like nested queryACM TDS 1982

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.sqlite.org/optoverview.html#subquery_flattening
https://doi.org/10.1145/319732.319745
https://doi.org/10.1145/319732.319745

SPECIAL TOPICS (SPRING 2025)

MAGIC SETS

Early technique for rewriting queries
to include auxiliary "magic" tables that
act as filters to reduce the amount of
data processed during query
execution.

Move correlated subqueries out of
WHERE clause and into FROM clause.

12

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT s1.name, s1.major
 FROM students AS s1
 JOIN (SELECT major,
 MAX(score) AS max_score
 FROM students
 GROUP BY major) AS magic
 ON s1.major = magic.major
 AND s1.score = magic.max_score

Complex Query DecorrelationICDE 1996

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/abs/10.5555/645481.653275
https://dl.acm.org/doi/abs/10.5555/645481.653275

SPECIAL TOPICS (SPRING 2025)

MSSQL HEURISTICS

Use a set of small, independent, and
orthogonal optimizations that
collectively remove correlated
subqueries.

Remove correlations by rewriting
APPLY operators into standard
relational algebra operators like outer
joins.

13

ORTHOGONAL OPTIMIZATION OF SUBQUERIES aND AGGREGATIONSIGMOD 2001

A screenshot of a computer

Description automatically generated with
medium confidence

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf

SPECIAL TOPICS (SPRING 2025)

HEURISTIC REWRITING

Advantages:
→ Transformed queries are more efficient.
→ Decision to decorrelate can be a cost-based decision.
→ Easy to control decorrelation by enabling/disabling rules.

Disadvantages:
→ Hard to write rules for all possible correlations scenarios.
→ Changing a small part of a query can make rules ineffective
→ Maintaining transformation rules is a difficult.
→ Handling all edge cases is exceedingly difficult.

14

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.linkedin.com/in/mayank--baranwal/

SPECIAL TOPICS (SPRING 2025)

GERMAN-STYLE UNNESTING (2015)

Bottom-up method to eliminate dependent joins
one-at-a-time by manipulating the query plan at the
algebra level until the join's RHS no longer depends
on the LHS.

The optimizer then converts dependent joins to
regular joins.
→ Some queries switch from a O(n2) nested-loop join to a

O(n) hash join.

15

Unnesting Arbitrary Queries BTW 2015

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
logical operator to execute RHS
once for every tuple in LHS.

16

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
logical operator to execute RHS
once for every tuple in LHS.

16

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

SCAN
students s2

DEPENDENT_JOIN

FILTER
s2.major=s1.major

AGGREGATE
MAX(score)

SCAN
students s1

FILTER
#0.0 = #1.0

Mark Raasveldt

LHS

RHS

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
logical operator to execute RHS
once for every tuple in LHS.

16

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

SCAN
students s2

DEPENDENT_JOIN

FILTER
s2.major=s1.major

AGGREGATE
MAX(score)

SCAN
students s1

FILTER
#0.0 = #1.0

Mark Raasveldt

LHS

RHS

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

DEPENDENT JOIN

New dependent join relational algebra operator
that denotes a correlated subquery.
→ Evaluate RHS of the join for every tuple on the LHS.
→ The operator combine results from every execution and

return them as its output.

17

DEPENDENT_JOIN

SCAN
RHS

SCAN
LHS

Mayank Baranwal

L1
L2
L3

id
R1
R2
R3

id

L1
L1
L2

id
R1
R2
R2

id

⋮ ⋮

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.linkedin.com/in/mayank--baranwal/

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Push dependent join down into
the RHS of the plan.

Only need to execute RHS once
for every unique combination
of correlated columns.
→ Duplicate Elimination Scan

18

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

SCAN
students s2

DEPENDENT_JOIN

FILTER
s2.major=s1.major

AGGREGATE
MAX(score)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Push dependent join down into
the RHS of the plan.

Only need to execute RHS once
for every unique combination
of correlated columns.
→ Duplicate Elimination Scan

18

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

DEPENDENT_JOIN

DUP_ELIM_SCAN
students d

SCAN
students s2

FILTER
s2.major=d.major

AGGREGATE
MAX(score)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

19

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

DEPENDENT_JOIN

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

AGGREGATE
MAX(score)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

19

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

19

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

19

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

19

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross join.

20

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

DEPENDENT_JOIN

SCAN
students s2

DUP_ELIM_SCAN
students d

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross join.

20

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

CROSS_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross join.

Then convert the cross join
into an inner join.

20

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

CROSS_JOIN

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross join.

Then convert the cross join
into an inner join.

20

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

DUP_ELIM_SCAN
students d

JOIN
d.major=s2.major

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

21

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

JOIN
d.major=s2.major

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

21

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(major)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

21

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(major)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

21

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

JOIN
s1.major=s2.major AND
s1.score=MAX(score)

AGGREGATE
MAX(score) GROUP BY(major)

Mark Raasveldt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=ajpg_pMX620

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The 2015 unnesting approach handles most queries.
→ Known implementations in HyPer, Umbra, DuckDB, and

DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The 2015 unnesting approach handles most queries.
→ Known implementations in HyPer, Umbra, DuckDB, and

DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The 2015 unnesting approach handles most queries.
→ Known implementations in HyPer, Umbra, DuckDB, and

DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The 2015 unnesting approach handles most queries.
→ Known implementations in HyPer, Umbra, DuckDB, and

DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The 2015 unnesting approach handles most queries.
→ Known implementations in HyPer, Umbra, DuckDB, and

DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CRASH.SQL

23

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

CRASH.SQL

23

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

CRASH.SQL

23

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

CRASH.SQL

23

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC UNNESTING (2025)

Remove all dependent joins at the same time
starting at the top of the query plan.
→ Keep track of where they are in the plan and then rewrite

all operators in a top-down pass until each join is
unnecessary or it can be safely added.

→ Avoids pushing dependency sets across joins.

The optimizer needs an efficient way to identify the
flow of attributes through the plan…

24

Improving Unnesting of Complex QueriesBTW 2025

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

INDEXED ALGEBRA

Asymptotically Better Query Optimization Using Indexed AlgebraVLDB 2023

Unnesting subqueries requires the
optimizer to reason about the
dependencies and flow of attributes in
a query plan's operators.

Maintain an auxiliary index of
operator meta-data to facilitate faster
examination of plans and to identify
rewrite opportunities.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.14778/3611479.3611505
https://doi.org/10.14778/3611479.3611505

SPECIAL TOPICS (SPRING 2025)

HOLISTIC UNNESTING: IDENTIFICATION

Identify dependent joins where the
RHS accesses attributes provided by
the LHS.

For each column accessed, compute
the lowest common ancestor of
operator o1 that accesses a column and
operator o2 that provides the column.
→ If o1 ≠ o2, then it is a dependent join.

26

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC UNNESTING: IDENTIFICATION

Identify dependent joins where the
RHS accesses attributes provided by
the LHS.

For each column accessed, compute
the lowest common ancestor of
operator o1 that accesses a column and
operator o2 that provides the column.
→ If o1 ≠ o2, then it is a dependent join.

26

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC UNNESTING: IDENTIFICATION

Identify dependent joins where the
RHS accesses attributes provided by
the LHS.

For each column accessed, compute
the lowest common ancestor of
operator o1 that accesses a column and
operator o2 that provides the column.
→ If o1 ≠ o2, then it is a dependent join.

26

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC UNNESTING: IDENTIFICATION

Identify dependent joins where the
RHS accesses attributes provided by
the LHS.

For each column accessed, compute
the lowest common ancestor of
operator o1 that accesses a column and
operator o2 that provides the column.
→ If o1 ≠ o2, then it is a dependent join.

26

Thomas Neumann

LHS

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

SIMPLE ELIMINATION

Inspect all operators that access the
LHS of a dependent join.

Then use the "simple" dependent join
elimination discussed earlier.
→ Move operators up towards the join.

Otherwise, use the full unnesting
algorithm…

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

Rewrite RHS of dependent join such
that no references from the "outer"
side occur anymore.
→ Columns from the LHS that are accessed

from the RHS.

Maintain state about the algorithm's
progress to keep track of where
columns are coming from in plan.

28

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

29

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

29

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

29

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

29

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

HOLISTIC ELIMINATION

30

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Holistic unnesting is the definitive way to
decorrelate subqueries.
→ Relies on DBMS supporting DAG query plans.
→ Build indexes to speed up query plan analysis during

optimization phases.

We will see correlated subqueries again when
discussing UDF inlining.

31

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Cost Models! Statistics!
→ aka when everything falls apart…

32

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Unnesting Queries
	Slide 3: LAST CLASS
	Slide 4: SUBQUERIES
	Slide 5: UNCORRELATED SUBQUERY
	Slide 6: CORRELATED SUBQUERY
	Slide 7: CORRELATED SUBQUERY
	Slide 8: CORRELATED SUBQUERY
	Slide 9: CORRELATED SUBQUERY
	Slide 10: CORRELATED SUBQUERY
	Slide 11: CORRELATED SUBQUERY
	Slide 12: CORRELATED SUBQUERY
	Slide 13: CORRELATED SUBQUERY
	Slide 14: CORRELATED SUBQUERY
	Slide 15: CORRELATED SUBQUERY
	Slide 16: CORRELATED SUBQUERY
	Slide 17: TODAY’S AGENDA

	Binding
	Slide 18: SUBQUERY BINDING
	Slide 19: SUBQUERY BINDING
	Slide 20: SUBQUERY BINDING

	Heuristics
	Slide 21: HEURISTIC REWRITING
	Slide 22: MAGIC SETS
	Slide 23: MSSQL HEURISTICS
	Slide 24: HEURISTIC REWRITING

	Unnesting (2015)
	Slide 25: GERMAN-STYLE UNNESTING (2015)
	Slide 26: FLATTENING CORRELATED QUERIES
	Slide 27: FLATTENING CORRELATED QUERIES
	Slide 28: FLATTENING CORRELATED QUERIES
	Slide 29: DEPENDENT JOIN
	Slide 30: FLATTENING CORRELATED QUERIES
	Slide 31: FLATTENING CORRELATED QUERIES
	Slide 32: FLATTENING CORRELATED QUERIES
	Slide 33: FLATTENING CORRELATED QUERIES
	Slide 34: FLATTENING CORRELATED QUERIES
	Slide 35: FLATTENING CORRELATED QUERIES
	Slide 36: FLATTENING CORRELATED QUERIES
	Slide 37: FLATTENING CORRELATED QUERIES
	Slide 38: FLATTENING CORRELATED QUERIES
	Slide 39: FLATTENING CORRELATED QUERIES
	Slide 40: FLATTENING CORRELATED QUERIES
	Slide 41: FLATTENING CORRELATED QUERIES
	Slide 42: FLATTENING CORRELATED QUERIES
	Slide 43: FLATTENING CORRELATED QUERIES
	Slide 44: FLATTENING CORRELATED QUERIES
	Slide 45: OBSERVATION
	Slide 46: OBSERVATION
	Slide 47: OBSERVATION
	Slide 48: OBSERVATION
	Slide 49: OBSERVATION
	Slide 50: CRASH.SQL
	Slide 51: CRASH.SQL
	Slide 52: CRASH.SQL
	Slide 53: CRASH.SQL

	Unnesting (2025)
	Slide 54: HOLISTIC UNNESTING (2025)
	Slide 55: INDEXED ALGEBRA
	Slide 56: HOLISTIC UNNESTING: IDENTIFICATION
	Slide 57: HOLISTIC UNNESTING: IDENTIFICATION
	Slide 58: HOLISTIC UNNESTING: IDENTIFICATION
	Slide 59: HOLISTIC UNNESTING: IDENTIFICATION
	Slide 60: SIMPLE ELIMINATION
	Slide 61: HOLISTIC ELIMINATION
	Slide 62: HOLISTIC ELIMINATION
	Slide 63: HOLISTIC ELIMINATION
	Slide 64: HOLISTIC ELIMINATION
	Slide 65: HOLISTIC ELIMINATION
	Slide 66: HOLISTIC ELIMINATION
	Slide 67: HOLISTIC ELIMINATION
	Slide 68: HOLISTIC ELIMINATION
	Slide 69: HOLISTIC ELIMINATION
	Slide 70: HOLISTIC ELIMINATION
	Slide 71: HOLISTIC ELIMINATION

	Conclusion
	Slide 72: PARTING THOUGHTS
	Slide 73: NEXT CLASS

