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LAST CLASS

Parallelization of independent transformations in a

top-down optimizer.
— Another example of the need to track dependencies
between parts of the query plan and optimization process.

This concludes the distinction between bottom-up
and top-down methods.
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SUBQUERIES

SQL allows a nested SELECT subquery to exist

(almost?) anywhere in another query.
— Projection, FROM, WHERE, LIMIT, HAVING
— Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries
without having to use separate queries to prepare
intermediate results.

Key Distinction: Uncorrelated vs. Correlated
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UNCORRELATED SUBQUERY

An uncorrelated subquery does not
reference any attributes from the
(calling) outer query.

The DBMS only needs to logically

execute the subquery once and reuse

its result for all tuples in outer query.
— Most DBMSs will do this.

SELECT name
FROM students
WHERE score =
(SELECT MAX(score) FROM students);
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CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

SELECT name, major
FROM students AS si
WHERE score =

(SELECT MAX(s2.score)
FROM students AS s2

WHERE s2.major = sl.major);

name major score

GZA

CompSci

90

RZA

CompSci

80

0DB

Streets

100
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CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

SELECT name, major
FROM students AS si
WHERE score =

name
GZA

major
CompSci

(SELECT MAX(s2.score)

FROM students AS s2
WHERE s2.major

= s1l.major);

name major score

GZA

CompSci

90

RZA

CompSci

80

0DB

Streets

100

s1.major="'CompSci'

MAX(s2.score)=90
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CORRELATED SUBQUERY

A correlated subquery refers to one or
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CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

SELECT name, major
FROM students AS si
WHERE score =

GZA

name major

CompSci

0ODB

Streets

(SELECT MAX(s2.score)

FROM students AS s2
WHERE s2.major

= s1l.major);

name major score

GZA

CompSci

90

RZA

CompSci

80

0DB

Streets

100

s1.major="'Streets'

MAX(s2.score)=100
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CORRELATED SUBQUERY

The goal is for the optimizer to pull a
correlated subquery up from an inner
nesting level so that the DBMS can
execute it as a join.

The optimizer needs to handle any
amount of subquery nesting in any
part of the query where it is allowed.

SELECT
FROM
WHERE

name, major
students AS s
score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = sl.major);

¥

SELECT
FROM
JOIN

ON
AND

s1.name, sl1.major
students AS si
(SELECT major,
MAX(score) AS max_score
FROM students
GROUP BY major) AS s2
s1l.major = s2.major
s1.score S2.max_score
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TODAY’S AGENDA

Binding

Heuristic Rewriting
German-style Unnesting (2015)
German-style Unnesting (2025)
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SUBQUERY BINDING

[f you think of a subquery like a SELECT
function call, then any column that FROM

can be passed to a function should be
available to the subquery.

This can be challenging if the
referenced columns are ambiguous.

Source: Mark Raasveldt

WHERE

name, major
students AS s
score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = sl.major);

¥

SELECT
FROM
WHERE

name, major
students AS si
score = subquery(s1.major);
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Source: Mark Raasveldt

SUBQUERY BINDING

) SELECT (SELECT SUM(il1.1i))
SELECT: FROM integers AS il;

— Normal columns
— AGGREGATE/GROUP columns

WHERE / GROUP BY: SELECT subquery(SUM(i1.1))
— Any normal column available FROM integers AS 115
HAVING: SELECT subquery(il.i)

— AGGREGATE/GROUP columns FROM integers AS il;
ORDER BY:

— Anything that can go in the root of SELECT.

LIMIT:

— No correlated columns allowed.
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Source: Mark Raasveldt

SUBQUERY BINDING

SELECT:

— Normal columns
— AGGREGATE/GROUP columns

WHERE / GROUP BY:

— Any normal column available

HAVING:
— AGGREGATE/GROUP columns

ORDER BY:

=4 == =) == 2 |

(SELECT SUM(il.i))

integers AS 11,

SELECT
FROM

subquery(SUM(i1.1))
integers AS 1i1;

SELECT
FROM

subquery(il1.i)
integers AS 1i1;

— Anything that can go in the root of SELECT.

LIMIT:

— No correlated columns allowed.
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HEURISTIC REWRITING

. . . WSQLi e -~
Slnce the early 19808} Optlmlzers 11.‘Subquer;FIattening e

‘When a subquery occurs in the FROM clause of 3 SELECT, the simplest behavior is to evaluate the subquery into a transient table, then run the outer SELECT against
the transient table. Such a plan can be suboptimal since the transient table will not have any indexes and the outer query (which is likely a join) will be forced to do a

relied on heuristics to identify specific e e

FROM clause of the outer query and rewriting expressions in the outer query that refer to the result set of the subquery. For example:

SELECT t1.3, t2.b FROM t2, (SELECT xey AS & FROW 1 WNERE 2<100) WERE a5

query plan patterns to decorrelate I —

SELECT th.xeth.y AS 4. 12.5 FAON 12, 11 WHERE 1<168 AND a>5

There is a long list of conditions that must all be met in order for query flattening to occur. Some of the constraints are marked as obsolete by itaic text These extra
traints are retained pi g of the other constraints.

n e S t e S u qu e r 1 e S L4 Casual readers are not expected to understand all of these rules. A key take-away from this section is that the rules for determining if query flatting s safe or unsafe

are subtie and complex. There bugs over the y y 9" query flattening. On the other hand, performance of complex
querles and/or queries involving views tends to suffer if query flattening is more conservative.

1. (Obsolete. Query flattening is no longer attempted for aggregate subqueres.)
2. (Obsolete. Query flattening is no longer attempted for aggregate subqueries,)
3.1 the subquery is the right operand of a LEFT JOIN then

. the subquery may not be a join, and
b the FROM dlause of the subquery may not contain a virtual table, and

The optimizer developer human R

S. (Subsumed into constraint 4)
. 6. {Obsolete. Query flattening is no longer attempted for aggregate subquertes)
7. The subquery has a FROM clause.
codifies the patterns to look for when e
9. The subquery does not use LIMIT or the outer query does not use aggregates.
10. (Restriction relaxed in 2005)
11. The subquery and the outer query do not both have ORDER BY clauses.
12. (Subsumed into constraint 3)
13. The subquery and outer query do not both use LIMIT.

and how to decorrelate subqueries. SESREEI e

16.1f the outer query is an aggregate, then the subquery may not contain ORDER BY.
17.1f the sub-query is a compound SELECT, then

a. all compound operators must be UNION ALL, and

b. no terms with the subquery compound may be aggregate or DISTINCT, and
. every term within the subquery must have a FROM clause, and

d. the outer query may not be an aggregate, DISTINCT query, or join.

The parent and sub-query may contain WHERE clauses. Subject to rules (1), (12) and (13), they may also contain ORDER BY, LIMIT and OFFSET dlauses.
18.1f the sub-query is a compound select, then ail terms of the ORDER by clause of the parent must ple to columns of query.
19.1f the subquery uses LIMIT then the outer query may not have a WHERE clause.
20.1f the sub-query is a compound select, then it must not use an ORDER BY clause.
21.1f the subquery uses LIMIT, then the outer query may not be DISTINCT.

22. The subquery may not be a recursive CTE
23. (subsumed into constraint 17d.)
24. (Obsolete. Query fiattening is no longer attempted for aggregate subquertes.)

Query P when views are used as each use of a view is translated into a subquery.

ON OPTIMIZING AN SQL-LIKE NESTED QUERY
ACM TDS 1982
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MAGIC SETS

Early technique for '1"ewr1t1'1'1g queries T e, e
to include auxiliary "magic" tables that FROM students AS s
f}l (1 }1 f' WHERE score =
act as filters to reduce the amount o (SELECT MAX(s2.score)
data processed during query FROM students AS s2
. WHERE s2.major = sl.major);
execution. ‘
Move correlated subqueries out of SELECT s1.name, s1.major
WHERE clause and into FROM clause. FROM students AS s

JOIN (SELECT major,
MAX(score) AS max_score
FROM students
GROUP BY major) AS magic

ON s1.major = magic.major
COMPLEX QUERY DECORRELATION i
ICDE 1996 AND s1.score = magic.max_score
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MSSQL HEURISTICS

o ® S
Use d Set Of Small’ lndependent’ and ! i:‘no fara;leti‘?:rrlu;li;solved from R &
orthogonal optimizations that R A® (0,F) = R&,FE, )
. if no parameters in F resolved from R
collectively remove correlated RA* (0,B) = op(RA* E) @)
SubquerieS. R A* (moE) = 7l'vucolumns(R)(R A E) (4)
RA* (E1UE)) = (RA* E1)U(RA* E) (5)
RAX(E1—E) = (RA*E)-(RA®E) (6)
. .y RA* (B1 x E2) = (RA* E1)Xpiey (RA™ E2)(7)
Remove correla@ons by rewriting g e S ey AP
APPLY operators into standard RA* (GvE) = Geonumms(ry,e(RAYE)  (9)
relational algebra operators like outer
joins.

~|ORTHOGONAL OPTIMIZATION OF SUBQUERIES

-|/AND AGGREGATION
SIGMOD 2001
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HEURISTIC REWRITING

Advantages:

— Transformed queries are more efficient.

— Decision to decorrelate can be a cost-based decision.

— Easy to control decorrelation by enabling/disabling rules.

Disadvantages:

— Hard to write rules for all possible correlations scenarios.
— Changing a small part of a query can make rules ineffective
— Maintaining transformation rules is a difficult.

— Handling all edge cases is exceedingly difficult.

Source: Mayank Baranwal
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GERMAN-STYLE UNNESTING (2015)

Bottom-up method to eliminate dependent joins
one-at-a-time by manipulating the query plan at the
algebra level until the join's RHS no longer depends

on the LHS.

The optimizer then converts dependent joins to

regular joins.
— Some queries switch from a O(n?) nested-loop join to a
O(n) hash join.

~ |UNNESTING ARBITRARY QUERIES

BTW 2015
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = s1.major);

Introduce a dependent join
logical operator to execute RHS
once for every tuple in LHS.

Source: Mark Raasveldt

PROJECTION
name,major

FILTER

#0.0 = SUBQUERY
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

DEPENDENT_JOIN

Introduce a dependent join

. SCAN AGGREGATE
logical operator to execute RHS students s1 ¢ score)
once for every tuple in LHS. ——

s2.major=s1.major

SCAN
students s2

RHS

Source: Mark Raasveldt
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

DEPENDENT_JOIN

Introduce a dependent join

. SCAN AGGREGATE
logical operator to execute RHS students s1 ¢ score)
once for every tuple in LHS. FILTER

s2.major=s1.major

SCAN

students s2

RHS

Source: Mark Raasveldt
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DEPENDENT JOIN

New dependent join relational algebra operator

that denotes a correlated subquery.

— Evaluate RHS of the join for every tuple on the LHS.
— The operator combine results from every execution and

return them as its output.

L1

R1

L1

R2

R2

DEPENDENT_JOIN L2

Source: Mayank Baranwal
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = s1.major);

Push dependent join down into
the RHS of the plan.

Only need to execute RHS once
for every unique combination

of correlated columns.
— Duplicate Elimination Scan

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

DEPENDENT_JOIN S XL EEX LTl

SCAN AGGREGATE
students si MAX(score)

FILTER

s2.major=s1.major

SCAN
students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Push dependent join down into

SCAN
the RHS of the plan. students A
Only need to execute RHS once DUP_ELIM_SCAN AGGREGATE
. R . students d MAX(score)
for every unique combination
of correlated columns. <2 najored nador

— Duplicate Elimination Scan
SCAN
Source: Mark Raasveldt R ——
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Keeping pushing dependent

o« . . SCAN

join as far down into the plan as students s PEPENDENT-JOIN

1S pOSSIble' DUP_ELIM_SCAN AGGREGATE
students d MAX(score)

FILTER
s2.major=d.major
SCAN
Source: Mark Raasveldt
students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS sl name,major
WHERE score =
(SELECT MAX(s2.score) FILTER
FROM students AS s2 #0.0 = #1.0

WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Keeping pushing dependent
jOiIl as far down into the plan as students sl MAX(score) GROUP BY(d.major)

is possible.
DEPENDENT_JOIN
DUP_ELIM_SCAN FILTER
students d s2.major=d.major
SCAN
Source: Mark Raasveldt
students s2

SCAN AGGREGATE
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FLATTENING CORRELATED QUERIES

SELECT name, major

PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER
FROM students AS s2 #0.0 = #1.0

WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Keeping pushing dependent
o« . . SCAN AGGREGATE
]Oln aS far down lnto the plan aS students s1 MAX(score) GROUP BY(d.major) «

is possible.
DEPENDENT_JOIN
DUP_ELIM_SCAN FILTER
students d s2.major=d.major
SCAN
Source: Mark Raasveldt
students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2

WHERE s2.major = s1.major);

Keeping pushing dependent
join as far down into the plan as

is possible.

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

JOIN

s1.major=d.major

SCAN AGGREGATE

students s1 MAX(score) GROUP BY(d.major)

DEPENDENT_JOIN

DUP_ELIM_SCAN FILTER
students d s2.major=d.major
SCAN
students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2

WHERE s2.major = s1.major);

Keeping pushing dependent
join as far down into the plan as

is possible.

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

JOIN

s1.major=d.major

SCAN AGGREGATE

students s1 MAX(score) GROUP BY(d.major)

FILTER

s2.major=d.major

DEPENDENT_ JOIN

DUP_ELIM_SCAN SCAN

students d students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = s1.major);

Convert the dependent join

operator into a cross join.

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

JOIN

s1.major=d.major

SCAN AGGREGATE

students s1 MAX(score) GROUP BY(d.major)

FILTER

s2.major=d.major

DEPENDENT_ JOIN

DUP_ELIM_SCAN SCAN
students d students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = s1.major);

Convert the dependent join

operator into a cross join.

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

JOIN

s1.major=d.major

SCAN AGGREGATE

students s1 MAX(score) GROUP BY(d.major)

FILTER

s2.major=d.major

CROSS_JOIN

DUP_ELIM_SCAN SCAN
students d students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

Source: Mark Raasveldt

JOIN

s1.major=d.major

Convert the dependent join

. e o SCAN AGGREGATE
Operator lnto a_ CrOSS ]01n. students si MAX(score) GROUP BY(d.major)
o o FILTER
Then convert the cross join <2.major=d.major

into an 1inner join.
CROSS_JOIN

DUP_ELIM_SCAN SCAN

students d students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major
FROM students AS s
WHERE score =
(SELECT MAX(s2.score)
FROM students AS s2
WHERE s2.major = s1.major);

Convert the dependent join

operator into a cross join.

Then convert the cross join
into an 1inner join.

Source: Mark Raasveldt

19:00) ) o3 § (O

name,major

FILTER
#0.0 = #1.0

JOIN

s1.major=d.major

SCAN AGGREGATE

students s1 MAX(score) GROUP BY(d.major)

JOIN

d.major=s2.major

DUP_ELIM_SCAN SCAN

students d students s2
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Remove duplicate elimination

. SCAN AGGREGATE
SC&Il entlrely. students s1 MAX(score) GROUP BY(d.major)
JOIN
Remove the filter above the d.najor=s2.major

new join. DUP_ELIM_SCAN SCAN
students d students s2

Source: Mark Raasveldt
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

#0.0 = #1.0

FROM students AS s2
WHERE s2.major = s1.major);

JOIN

s1.major=d.major

Remove duplicate elimination

. SCAN AGGREGATE
Scan entlrely. students s1 MAX(score) GROUP BY(major)
4
SCAN
Remove the filter above the TS o
new join.

Source: Mark Raasveldt
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =
(SELECT MAX(s2.score) FILTER

FROM students AS s2 #0.0 = #1.0

WHERE s2.major = sl1.major); JOIN
s1.major=d.major

Remove duplicate elimination

. SCAN AGGREGATE
Scan entlrely. students s1 MAX(score) GROUP BY(major)
4
SCAN
Remove the filter above the TS o
new join.

Source: Mark Raasveldt
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FLATTENING CORRELATED QUERIES

SELECT name, major PROJECTION
FROM students AS si name,major
WHERE score =

(SELECT MAX(s2.score)
FROM students AS s2 JOIN

s1.major=s2.major AND
s1.score=MAX(score)

WHERE s2.major = s1.major);

Remove duplicate elimination

. SCAN AGGREGATE
Scan entlrely. students s1 MAX(score) GROUP BY(major)
4
SCAN
Remove the filter above the TS o
new join.

Source: Mark Raasveldt
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OBSERVATION

The 2015 unnesting approach handles most queries.
— Known implementations in HyPer, Umbra, DuckDB, and
DataBricks (partial).

But for queries with multiple nested dependent
subqueries where rewriting to remove each
dependent join one at a time leads to inefficient
query plans.



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

OBSERVATION

The 201

— Know
DataBr

t queries just fine, it unfortunately degenerates

ere originally notified about this by Sam Arch, who translated

complex UDFs into pure SQL [Fr24]. There, si

milar to our original example in Figure 1, jt
could happen that dependent subqueries are nested inside each other, We show a variation2
But for below.
i here TewrTlITg to oo —
subqueries w . nefficient

tvated this work, which is procbench
after passing through Apfe] [FHG22]: The unnesting strategy from
exhaustion, while with our new top-down unnesting Umbra
answers the query in 251 mg op TPC-DS SF1.



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

OBSERVATION

~—~oh handleq mA queries.
The 201 2.3 Limitations of the Bottom-Up Approach
— Know Wh
DataBr in

ile the bottom-up approach handles most queries just fine, it unfortunately degenerates
SQIhecorner cases. We were originally notified about this by Sam Arch, who translated
UDFs into pure SQL [Fr24]. There, similar to our o

riginal example in Figure 1, jt
pen that dependent subqueries are nested inside each other, We show a varijation?

€ TEWTTUIIE TO Temmror~———
& ‘ : ima leads to jnefficient
3 .

N— ‘u €mory exhaustion, while with our new top

h 251ms on TPC-DS SFI.

CMU File Photo



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SELECT
(SELECT "ifresultd™.

+ numeric AS
numaric AS
funeric AS
a4 10 AS

“numweb®] AS TLets”("numseb®), LATERAL
“numstore”) AS "letl"{"numstore™), LATERAL
“numeat”) A5 "let2"{"numcat’), LATERAL
(SELECT TRUE 45 let3” (gh 17}, LATERAL (
(SELECT "ifresule?”.
FROM LATERAL
{SELECT
{SELECT sual"web_sales’
FROM web_sales A5 web
WHERE meel sales” . "ws bill custoner_sk® = "C_custoner_sk7) A5
(SELECT TRUE A5 "g8.2°) A5 “Let6"("g8.27), LATERAL (

“us_net_paid_inc ship tax") AS “sur”
ates”

{SELECT "ifresultlo”.”
FROM LATERAL
(sl

(SELECT sun(
FRON store_sales A5 “store sales’

WHERE *store_sales®.”

WHERE NOT "q8_2" 1 DISTINCT
FROM TRUE)

unton ALL

“ifresultss .

RAL
(SELECT TRUE A5 "q12.37) A5 Metld™("q12.;

WHERE "q8_2" IS DISTINCT
FRON TRUEY) 5 "ifresule?
WHERE HOT “gd_1° Ts DISTINCT
FRON TRUE)

"ifrenne2sn.t
FHON LATERAL
(SELECT TRUE AS “g8_2°) AS let1o"('48.2"). LATERAL (
(SELECT "ifresut2d”."
FRON LATERAL
(SELECT
(SELECT sun("store_sales"
FROM store_sales AS "store_sales’
WERE "stare_sales*."ss_customer_:
(SELECT TRUE AS "q12 3") AS "let22 ("

WHERE WOT "q8 2" 15 DISTINCT
FROM TRUE)

tore_sales™.ss net_paid in

- pumagb_6%) A5 "lets" (“numieb 671, LATERAL

"), LATERAL

“3s_net_paid_inc_tax") AS

sk
123

¥ g ¢ custamer_sk°) A5
(SELECT TRUE #5 "q12_3°) A5 "lets"('a12 37). LATERAL (

-c_custoner_sk') #5 "nusstore 3°) AS
3, LATERAL ©

_taxt) AS s

“pumstore 57) AS “lets™{"numstore 3°), LATERAL
(SELECT (*numisb_ 67 + "numstors 5] + result:
FROM LATERAL
(SELECT
\SELECT sun(“catalog_tates”.“cs net paid_inc_ship tax") A5 “sun
“catalog_sales”

pumcat 4° 45

LU custoser_sk" = "c_customer_sk') AS
WHERE NOT ~qi2 3" IS DSTINCT
FROM TRUE)
aIon AL
(SELECT (*numeeh 6" + “nusstore 5°) +
WHERE "q12_3" Ls DISTINC
FRON TRUEY) AS "ifresul1e”

numcat” AS Tresult’

q
(SELECT ("numeeb 6" +
FRON LATERAL
(SELECT

numstore”) + “nuacat 4°

“resie

(SELECT sum(~catatog_sales" ."cs_net paid_inc_ship tax") 15 *sun
FROM catalog_sales A5 "catalog sales’
WERE “catalog sales”."cs bill custofer sk”
WHERE HOT "qi2 3" 1S DISTINCT
FROM TRUE)
UNTON ALL
(SELECT (“numeeb_6° + “numstore”) +
WHERE, "q12 37 1S DISTINCT
FROM TRUE)) 45 “ifresulels®

custonor_sk”) A5 "uncat &%) S "letl6”

“pumcat’ AS "result’

let21"("nunstore 571, LATERAL

(SELECT (“rumeb’ + “numstore 3°) + ‘mumcat 47 A5 "result

(SELECT sun(*catatog, zales”."cs_net_paid_inc_ship tax’) AS Tsul

FAOM catalog sales AS "catalog sates”

e eatatos astas®."cs BALL customer. K" = "c_customer. sk°) A3 “nuncat{7) A5 "let2a”(“numcat &)
VHERE NOT "ql2 3" 15 DISTINCT
FRON TRUE)
UnfoN ALL
(SELECT (“rumveb’ + “numstare 5°) + "aumeat” AS Tresult?
VHERE "ql2_3" TS DISTINCT

FRON TRUE)) A5 "ifresult23”

(SELECT TRUE 46 "q12 37) AS “\et27"{"q12.3"). LATERAL €

WHERE "q8 2" TS DISTINGT
FROM TRUE)) A5 “ifresultze’
WHERE "q4 17 1S DISTINGT
FROM TRUE)) AS "ifresultd’)

FRON customer:

(SELECT (*numvet
FROM LATERAL
(sELECT
(SELECT sun(eatslog =ales”."cs net_paid inc chip tax) 45
FROM catalog sales AS "catalog sales”
“cataleg sates."cs_bill customer sk’
- 15 DISTINCT

& “umstore™) + "numcas_47 AS Tresult”

“c_customer_sk") AS

IO ALL
(SELECT (“oumeb® + “nusstore™) + "nuncat’ A5 ‘result’
WIERE "qL2_3* TS DISTINCT
FROM TRUE)) AS "ifresuls28

“nuncat_47) A5 "letil"("numcat 47}

“numeat 4"

“numeat_47) AS let29"(numcat 47

. most queries.

S jus '
" (J) utttgget,)lt émfortunately degenerates
Foihis Yy Sam Arch, who translated
00 riginal example in Figure 1, it
each other. We show 3 variatio’n2

a

hefficient

?ézdvthis work, which is procbench
rleW]. The unnesting strategy from
top-down unnesting Umbra



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SELECT
(SELECT "ifresultd™.
FRON LATERAL
(SELECT WILL :¢ nuneric AS numweb} A5 "1et"("nuseeh"), LATERAL
(SErECT UL ot numaric A5 “numstors’) A5 "letl'(numstoret). LTERAL
(SELECT MULL :¢ numeric A5 "numeat} A5 *let2”("numcat?), LATERAL
(SELECT TRUE 45 "gd_1°) AS "letd" ("ge 1"}, LATERSL (
(SELECT "ifresule?”.
FROM LATERAL
{SELECT
LSELECT sunl"web_sales” “ws_net_paid ine ship tax’) AS “sur”
FROM web_sales A5 “web_sa
e e sates" s biTL custoner_sk” = "C_customer_sk') AS “rumeb 67} 15 “lets* (“numeb_6"), LATERAL

(SELECT TRUE A5 "g8.2°) A5 “Let6"("g8.27), LATERAL (
{SELECT "ifresultlo”.”
FROM LATERAL
(SELECT
(SELECT =un("store ssles”."ss_net_paid_inc tar’) AS "sun’
store_sates’

WHERE "store s e
(SELECT TRUE 35 "q12.3°) A5 "lets"(

_ e costamr sk*) 45 “mmstore ') AS “lets"{"mmstore 37, LATERAL

q12.3"), LATERAL (
(SELECT (*numueb 6" + "numstors_5°) ¥ "numcat 47 A5 "result

WHERE NOT "q12_3" IS DISTINCT L

WHERE "q12_3" Ts DISTINCT
FRON TRUEY) AS "ifresul1e”
WHERE NOT "q8_2" 1 DISTINCT
FROM TRUE)
unton ALL
(SELECT *ifresultds”.
FROM LATERAL
(SELECT TRUE AS "ql2 3] AS MetldT(ql2 31, LATERAL {

(SELECT
(SELECT sum(“catatog sales" ."cs_nst patd inc_ship tax") £5 s

’s just fine, i
s e e 1b(J) o 1€, it unfortunately degenerates
e R T e s e 47 2 ) 1s by Sam Arch, who tra nslated

WHERE HOT "qi2 3" 1S DISTINCT
FROM TRUE)

I'to o jo
M om0 ur original example in Figure 1, it
FROM TRUE)) A5 ifresultls® 5

nside each
othe )
[SELECT "ifresult7".* r. We show a variation?

FROM LATERAL
{SELECT

{SELECT sum("web_sales"."ws_net id i i
B . _net_paid inc_ship tax™) AS " -
FROM web _sales AS "web_sales” . :I -
WHERE "web_sales"."ws_bill_custo -
» . | . mer_sk® = "c_customer_sk®) AS " - b "

{SELECT TRUE AS "q8 2") AS "let6"("g8 _2"), LATERAL ( = TR BT A5 TR b BT AT
{SELECT "ifresultla®.*
FROM LATERAL

{SELECT

{SELECT sum("store sales”."ss net paid inc tax™) AS "sum”
FROM store_sales AS “store_sales” -

WHERE "store sales"."ss_customer - k
= . - _sk® = "c_customer_sk®) AS " - - o b
{SELECT TRUE AS "gl2 _3") A5 "let89"("gl2 3"}, LATERAL [_ umstere 71 A5 TIetT Unmatare 7. LT

{SELECT {"numweb_G" + *
+ “num " " - "
—_— _| store_5") + "numcat_4% AS "result”
o AL
o her (o + “russtore™) + “numcat” A5 Tresule’
e a2, 3 15 DISTINCT
o TR S "arresuts2s
\WeRE "qB 27 15 DISTINGT
o TRUED) 3 -sfresutize’

VHERE "4 1° 15 DISTINCT
FROM TRUE)) AS "ifresultd’)
FRON customer:



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

CRASH.SQL

Ncnt>5 Ncnt>5
~ ~ ~ ~
Of =123 Lo:cne:... Of =123 Cocn:...
| | | |
T, Nz‘>... T, Ml‘>.../\ natural {7>.b}
/ AN AN
Oh.a=Ti.a Dgy.... / 1_‘{Tz.b};t:...
I ' P - |
OT;.b=T>.bA s
I3 T3.a=T.a \\\ 0_T3.aI=T1 -a
' N
T3 \~‘---> b4T3.b=T2.b
/7 AN
Iz, » T3
/
O-Tg.a=T1.a
|
1,

Source: Thomas Neumann
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CRASH.SQL

Ncnt>5 Ncnt>5 Ncnt>5/\ natural {7}.a}
~ ~ ~
Of =123 Locnt:... Of =123 Locn:... — Ui .ayient:...
| | | | I
T, M T, M~ A natural {T».b} M~ A natural {T.a,1,.b}
/ AN N\ N
0T, .a=T.a F(Z);t:... / 1_‘{Tz.b};t:... /F{Tl.a,Tz.b};t:...
I ' I I
T OT;5.b=T>.bA OT: a=T, .a M
2 T3.a=T.a 3- |_ 1 T;.a=T.a
' / AN
T3 b4T3.b=T2.b HT].a NTg.bZTz.b
7/ AN /7 AN
7, 5 T3 / 7, 5 T3
/ ~
0T .a=T.a T>.a=T.a
| 7/ AN
T, 7, .q I;
/
Of =123
|
T

Source: Thomas Neumann
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CRASH.SQL

Ncnt>5 Ncnt>5 Ncnt>5/\ natural {7}.a}
~ ~ ~ ~ ~
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| | | | I
T, M T, M~ A natural {T».b} M~ ...A natural {T.a,1,.b}
7 N\ N N
0T, .a=T.a F(Z);t:... / 1_‘{Tz.b};t:... /F{Tl.a,Tz.b};t:...
I ' I I
T OT;5.b=T>.bA OT: a=T, .a M
2 T3.a=T.a 3- |_ 1 T;.a=T.a
' /7 AN
T3 b4T3.b=T2.b HT].a NTg.bITz.b
7/ AN /7 AN
I, » T; / Iz, » 13
/ ~
0T .a=T.a T>.a=T.a
| 7/ AN
fb) 7, .q I,
/
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|
T

Source: Thomas Neumann
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CRASH.SQL

Ncnt>5 Ncnt>5 Ncnt>5/\ natural {7}.a}
~ ~ ~ ~ ~
Of =123 Locnt:... Of =123 Locn:... Ui .ayient:...
| | | | I
T, M T, M~ A natural {T».b} M~ A natural {T.a,1,.b}
7 N\ N N
0T, .a=T.a F@;t:... / 1_‘{Tz.b};t:... /F{Tl.a,Tz.b};t:...
I ' I I
T OT;5.b=T>.bA OT: a=T, .a M
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T3 b4T3.b=T2.b HT].a NTg.b=T2.b
7/ AN /7 AN
I, » T; Iz, » 13
/ ~
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|
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Source: Thomas Neumann
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HOLISTIC UNNESTING (20625)

Remove all dependent joins at the same time

starting at the top of the query plan.

— Keep track of where they are in the plan and then rewrite
all operators in a top-down pass until each join is
unnecessary or it can be safely added.

— Avoids pushing dependency sets across joins.

The optimizer needs an efficient way to identify the
flow of attributes through the plan...

IMPROVING UNNESTING OF COMPLEX QUERIES

BTW 2025
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INDEXED ALGEBRA

Unnesting subqueries requires the ey
optimizer to reason about the R
dependencies and flow of attributes in [fﬁli‘;;‘-:BLX ITc yiSUM(C.v)
a query plan's operators. / ,,,,, SN '
e A ‘.‘"' B UA z= C 7
] ] . ] IUs {X y, ,} IUs {x} J

Maintain an auxiliary index of e L O

“1- X V¥
operator meta-data to facilitate faster 1Us {y.z,v
examination of plans and to identify — Operator Connectiony

rewrite opportunities. > Source Operator
<» TU Consumers

—| ASYMPTOTICALLY BETTER QUERY OPTIMIZATION
USING INDEXED ALGEBRA
VLDB 2023



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.14778/3611479.3611505
https://doi.org/10.14778/3611479.3611505

HOLISTIC UNNESTING: IDENTIFICATION

[dentify dependent joins where the M
. . - ]
RHS accesses attributes provided by oy Do
I |
the LHS. s 5
Tl ] Nt>..
* ' / N\
\ N 6 FS
For each column accessed, compute N Trea] Ter
RS L 9
the lowest common ancestor of ] Tnbsnon
3.a=11.a
operator o, that accesses a column and 0

operator o, that provides the column.
— If 0, # 0,, then it is a dependent join.

Source: Thomas Neumann



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.conftool.net/btw2025/index.php/Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf?page=downloadPaper&ismobile=false&filename=Neumann-Improving_Unnesting_of_Complex_Queries-114_b.pdf&form_id=114&form_index=2&form_version=final

HOLISTIC UNNESTING: IDENTIFICATION

[dentify dependent joins where the
RHS accesses attributes provided by
the LHS.

For each column accessed, compute
the lowest common ancestor of
operator o, that accesses a column and

operator o, that provides the column.
— If 0, # 0,, then it is a dependent join.

Source: Thomas Neumann

2 N 4 SN
Of =123 h Lo S
| ! | k
f' \\
o M, \
R /N !
\ 0_6 8 ]
‘\ T.a=T;.a 0;t:... "
\\ I 9 ]
)
\\ T; O-T3-b1_'
\\ Tz.a¥T.a
A Ly
S ae=" 710

accessing(X!) := {00, 0°}
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HOLISTIC UNNESTING: IDENTIFICATION

[dentify dependent joins where the Meuss
RHS accesses attributes provided by T Cocn..
the LHS. T|13 Nf|> .

¢ 7~ N
For each column accessed, compute ‘\\ (’%-TTI-‘Z L
the lowest common ancestor of A 77 G%:Z““Tl. 2
operator o, that accesses a column and N 10
operator o, that provides the column. 3
— If o, #0,, then it is a dependent join. accessing(X') := {0, o}

accessing( X>) := {7}

Source: Thomas Neumann
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HOLISTIC UNNESTING: IDENTIFICATION

[dentify dependent joins where the Meuss
RHS accesses attributes provided by T Cocn..
the LHS. e =T

¢ LHS 7 t>"\8 W
For each column accessed, compute ‘\\ 7] Lowe ]
the lowest common ancestor of A 77 G%:Z““Tl. 2
operator o, that accesses a column and N 10
operator o, that provides the column. 3
— If o, #0,, then it is a dependent join. accessing(X') := {0, o}

accessing( X>) := {7}

Source: Thomas Neumann
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SIMPLE ELIMINATION

Inspect all operators that access the Mo
LHS of a dependent join. TF - 123 Cocn..
I |
1" - " o e Tl?, N?>
Then use the "simple" dependent join TN
. . . . . I
elimination discussed earlier. ‘TTz-“le-a 03t:...
— Move operators up towards the join. ] R b=ty bn
T;.a=T.a
. : 710
Otherwise, use the full unnesting ’

algorithm...
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HOLISTIC ELIMINATION

Rewrite RHS of dependent join such Meuss
that no references from the "outer" TF L
side occur anymore. Tlf‘ N?L
— Columns from the LHS that are accessed /N
from the RHS. T ati.a Fﬁ;f;...
TI27 %.b:Tz bA
Maintain state about the algorithm's TS;Z )

progress to keep track of where
columns are coming from in plan.
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1
cnt>5

outerRef:={T;.a}
cclasses:=0
repr:=0

next: unnest(I'*, {o%, °})

Source: Thomas Neumann

HOLISTIC

ELIMINATION
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HOLISTIC ELIMINATION

1 3
cnt>5 N

outerRef:={T;.a}
cclasses:=0
repr:=0

next: unnest(I'*, {o%, °})

Source: Thomas Neumann
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HOLISTIC ELIMINATION

1 1
cnt>5 [T« cnt>5
\~ -
2 4 2 4
Of=123 Locnt:... Of=123 Locne s
I I I I )
3 5 3 5 ’
Tl Nt>.. Tl Nt>... «
7/ '\ 7/ '\
6 8 6 8
O-Tz a=T1i.a 0;t:... O-Tz a=Ti.a 0;t:...
I7 o I7 o2
T2 T3.b=T>.bA T2 T3.b=T>.bA
T;.a=T|.a T;.a=T.a
10 10
T3 T3
outerRef:={T;.a} outerRef:={T;.a}
cclasses:=(0 cclasses:=(0
repr:=0 repr:=0
next: unnest(I'*, {o%, °}) stack: [T*]

Source: Thomas Neumann

next: unnest(X>, {6, o°})
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HOLISTIC ELIMINATION

1 1 1
cnt>5 TS cnt>5 cnt>5
\V 2 - 2 - -
2 4 4
O-f =123 IﬂQ);cnt:... O-f =123 IﬂQ);cnt \\\ O-f =123 IﬂQ);cnt
I I I | ) I |
3 5 3 5 ’ 3 5
Tl Nt>.. Tl Nt>... <« Tl ’1" Nt>...
/ N\ / N\ $ 7N
6 8 6 8 6 8
O-Tz a=T1i.a 0t:... O-Tz.a=T1 a F@ t... O-Tz a=Ti.a 0;t:...
I7 oy I7 o I7 o)
T2 T3.b=T>.bA T2 T3.b=T>.bA T2 T3.b=T>.bA
T;.a=T|.a T;.a=T.a T3.a=T.a
10 10 10
T3 T3 T3

outerRef:={T;.a}

outerRef:={T;.a}

outerRef:={T;.a}

cclasses:=(0 cclasses:=(0 cclasses:={{T.a,T>.a}}
repr:=0 repr:=0 repr:=0
next: unnest(I'*, {o%, °}) stack: [T*] stack: [T, M°]

Source: Thomas Neumann

next: unnest(X>, {6, o°})

next: unnest(c®, {o})
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HOLISTIC

- ~
2 4
Of-123 Locent
| |
3 5
T] Nl>...
Z .\
6 8
," O-Tz.a:Tl.a F@;Z’Z...
] i '
s 7 0'9
S~ T2 T5.b=T>.bA
T;.a=T|.a
10
T3

outerRef:={T;.a}
cclasses:={{T.a,T».a}}
repr:=0

stack: [T*, M5, o7%]
next: unnest(7, {})

Source: Thomas Neumann

ELIMINATION
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HOLISTIC ELIMINATION

- ~
2 4
Of-123 Locent
| |
3 5
T] Nl>...
Z .\
6 8
Y O-Tz.ale.a F@;l’:...
(] i '
s 7 0'9
S~ T2 T5.b=T>.bA
T;.a=T|.a
10
T3

outerRef:={T;.a}
cclasses:={{T.a,T».a}}
repr:=0

stack: [T, M°, 0]
next: unnest(7./, {})

Source: Thomas Neumann

cnt>5
~
4
Iﬂ(l);cnt

|
5

Nt>..

7/ '\

6 8

/ \ T;.a=T.a

Ha’:le.a T7 T310

2
outerRef:={T}.a,T>.b}
cclasses:=(0
repr:=0

stack: [[™*, W]
next: unnest(I'®, {o°})
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HOLISTIC ELIMINATION

1 1
cnt>5 Ncnt>5
- ~ ~
2 4 / 4
O-f =123 IﬂQ);cnt IﬂQ);cnt
I | |
T3
1
6
O-Tz.a
T7

outerRef:={T;.a}

cclasses:={{T.a, T».a}} Or_ 123 outerRef:={T\.a,T5.b}
repr:=0 | cclasses:=0
» T3 repr:=0
stack: [[4, M°, 09] :
next: unnest(7/, {}) stack: [T, W3]

. 8 9
Source: Thomas Neumann next: unnest(I"™, {0 })
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HOLISTIC ELIMINATION

~ ~
2 4
Of-123 Lo cnt
I |
3 5
Tl Nt>..
/7 \
6 8
O-Tz.aZTl a Oit:...
I7 o2
T2 Ts3.b=T>.bA
T;.a=T|.a
TlO

outerRef:={T;.a}
cclasses:={{T.a,T».a}}
repr:=0

stack: [T, M°, 0]
next: unnest(7./, {})

Source: Thomas Neumann

6 8
O-Tz.ale.a F@;l’:...

| 9
M O-T3.b=T2.b/\

/ \ T;.a=T.a

Ha’:le.a T7 T310

2
outerRef:={T}.a,T>.b}
cclasses:=(0
repr:=0

stack: [[™*, W]
next: unnest(I'®, {o°})
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HOLISTIC ELIMINATION

cnt>5
- ~
2 4
Of-123 Lo cnt
I I
3 5
Tl Nt>..
7/ N\
6 8
O-Tz.aZTl a F@;l’:...
I7 0'9
T2 T5.b=T>.bA
T;.a=T|.a
TlO

outerRef:={T;.a}
cclasses:={{T.a,T>.a}}
repr:=0

stack: [T, M°, 0]
next: unnest(7./, {})

Source: Thomas Neumann

{Ts.a};cnt:...

t>..ANTy.a=T3.aNT, .b=T3.b

1 1
Ncm‘>5 Ncnt>5/\T1.a=T3.a
~ ~
4 4
IﬂQ);cnt:... / r
I
5 5
NZ>.. M
7\ /
6 8 6
O-Tz.ale.a F@;l’:... O-Tz.ale.a
| 9 |
M O-T3.b=T2.b/\ M
/ \ T;.a=T.a / \
Ha’:le.a T27 T310 I—[a’:=T1.a
/
2
outerRef:={T}.a,T>.b} T - 123
cclasses:=0) |
repr:=0 T3

stack: [[™*, W]
next: unnest(I'®, {o°})

AN

8
{T3.a,T5.b}t:...

9
O-T3 .b=T;3.bA
T3.a=Tz.a

7 10
T2 T3
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HOLISTIC ELIMINATION

1 1 1
Ncm‘>5 Ncm‘>5 ------------------ g Mcnt>5/\T1.a=T3.a
~ ~ N
2 4 / 4 4
O-f =123 IﬁQ);cnt'... IﬂQ);cnt:... / r‘{T3.a};cm‘:...
| | | ]
3 5 5 b mmmmeaaeoo | 5
T] Nl>.. Nl>... > Mt>.../\Tl.a=T3.a/\T2.b=T3.b
/7 N\ 7 N 7 N
6 8 6 8 6 8
O-Tz a=T.a 1—‘Q);t:... O-Tz.ale.a 1—‘Q);t:... O-Tz.ale.a F{T3.a,T3.b};ti...
I ' | | .
9 9 9
T27 O .b=T.b1 M 9T.0=T>.b1 M 0T .b=T;.bA
T;.a=T|.a T;.a=T.a T3.a=Tz.a
o SN 7N
T3 Ha’::Tl .a T2 T3 Ha,:=Tl .a Tg T310
outerRef:={T;.a} 5 -~ 5 4
cclasses:={{T\.a, T>.a}} % =123 outerRef:={T;.a, T>.b} T =123
repr:=0 | cclasses:=0 |
T3 repr:=0 T3

stack: [T, M°, 0]
next: unnest(7/, {}) stack: T4, M°]

. 8 9
Source: Thomas Neumann next: unnest(I"™, {0 })
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PARTING THOUGHTS

Holistic unnesting is the definitive way to

decorrelate subqueries.

— Relies on DBMS supporting DAG query plans.

— Build indexes to speed up query plan analysis during
optimization phases.

We will see correlated subqueries again when
discussing UDF inlining.
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NEXT CLASS

Cost Models! Statistics!
— aka when everything falls apart...
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