
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

The Germans (DB Seminar)
→ Monday Feb 17th @ 4:30pm ET
→ Zoom

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom

Malloy (DB Seminar)
→ Monday Mar 3rd @ 4:30pm ET
→ Zoom

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/events/sql-death-towards-sanity-in-query-languages/
https://db.cs.cmu.edu/events/sql-death-apache-pinot-query-optimizer/
https://db.cs.cmu.edu/events/sql-death-malloy-a-modern-open-source-language-for-analyzing-transforming-and-modeling-data/

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

We discussed a parallel join enumeration algorithm
for bottom-up query optimization.
→ These apply rules / heuristics before switching to the join

enumeration phase.

Key Idea: Partition a query's search space according
to the join graph so that workers can process
independent portions.

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TRANSFORMATION SEARCH SPACE

Since all changes made to a plan are
transformations in a top-down
optimizer, the search space mostly
contains alternatives not related to
join ordering.

Example: TPC-H Query 6
→ Join Order Search Space: <100,000
→ Everything Else Search Space: 230,000,000

4

SELECT n_name,
 SUM(l_extendedprice * (1 - l_discount)) AS revenue
FROM
 customer, orders, lineitem, supplier, nation, region
WHERE
 c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND l_suppkey = s_suppkey
 AND c_nationkey = s_nationkey
 AND s_nationkey = n_nationkey
 AND n_regionkey = r_regionkey
 AND r_name = 'ASIA'
 AND o_orderdate >= date '1994-01-01'
 AND o_orderdate < date '1994-01-01' + interval '1' year
GROUP BY n_name
ORDER BY revenue DESC;

Venkatesh Raghaven

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://wiki.postgresql.org/images/c/cf/South_Bay_PG_Meetup_2016-03-08_Orca.pdf

SPECIAL TOPICS (SPRING 2025)

CASCADES: TASK-BASED SEARCH

Optimizer maintains a LIFO stack of tasks to
perform actions on groups and expressions.

Stack ensures expressions are derived after the best
plans of its input expressions are derived.
→ Tasks are stored in the heap rather than in the program

stack to reduce OOM errors.

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #2

Task #1

Task #1

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #2

Task #1

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #2

Task #1

Task #3

Task #2

Task #4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #1

Task #3

Task #2

Task #4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #1

Task #3

Task #2

Task #4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #1

Task #3

Task #2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #1

Task #2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Worker

CASCADES: TASK-BASED SEARCH

The original Cascades stack-based
scheduling does not preserve
dependencies between tasks.

This restricts execution to a single
worker because the optimizer cannot
guarantee a task's dependencies
complete before it starts running.

6

Task Stack

Task #1

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Parallel Top-Down Search

Project #2

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARALLEL TOP-DOWN CASCADES

Replace the optimizer's task stack with a scheduler
that tracks the state of each task and can execute any
task once its runnable.

Encode dependencies between tasks as child-parent
links in a dependency graph.
→ A parent task can start before its children start, but a

parent task cannot finish before its children finish.

Precursor to the Greenplum Orca optimizer.

8

Parallelizing Extensible Query OptimizersSIgmOD 2009

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025/schedule.html#apr-09-2025
https://doi.org/10.1145/1559845.1559938
https://doi.org/10.1145/1559845.1559938

SPECIAL TOPICS (SPRING 2025)

TASKS

Explore(g):
→ Generate logically equivalent expressions

of all group expressions in group g.

Explore(gexpr):
→ Generate logically equivalent expressions

of a group expression gexpr.

Imp(g):
→ Generate implementations of all group

expressions in group g.

Imp(gexpr):
→ Generate implementation alternatives of

a group expression gexpr.

9

Opt(g, req):
→ Return the plan with the least estimated

cost that is rooted by an operator in
group g and satisfies optimization
request req.

Opt(gexpr, req):
→ Return the plan with the least estimated

cost that is rooted by gexpr and satisfies
optimization request req.

Xform(gexpr, t):
→ Transform group expression gexpr using

rule t.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TASKS

Explore(g):
→ Generate logically equivalent expressions

of all group expressions in group g.

Explore(gexpr):
→ Generate logically equivalent expressions

of a group expression gexpr.

Imp(g):
→ Generate implementations of all group

expressions in group g.

Imp(gexpr):
→ Generate implementation alternatives of

a group expression gexpr.

9

Opt(g, req):
→ Return the plan with the least estimated

cost that is rooted by an operator in
group g and satisfies optimization
request req.

Opt(gexpr, req):
→ Return the plan with the least estimated

cost that is rooted by gexpr and satisfies
optimization request req.

Xform(gexpr, t):
→ Transform group expression gexpr using

rule t.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TASK SCHEDULING

As a task executes, it can generate additional tasks
that either fan out from the current group or
traverse down into the search tree.

Tasks are defined in terms of their goal.
→ Example: Explore(g0)
→ When a task with a certain goal is running, all newly

created tasks with that same goal are paused until the first
task completes. Resumed tasks retrieve results from memo.

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SEARCH STATE DEPENDENCY GRAPH

Runnable: The task can be assigned
to a worker for execution.

Running: A worker is actively
executing this task, and it cannot be
assigned to another worker.

Inactive: The task is waiting for
dependent tasks to complete.

Finalized: The task is complete and
can be discarded.

11

Task

runnable

inactive finalized

running

Created

Assigned to
Worker

All Dependencies
Finalized Suspend Task Finished

Discarded

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

inactive inactive

runnable

runnable

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

Task #4Task #3

inactive inactive

running

running

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

Task #4Task #3

inactive inactive

running

running

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

Task #4

inactive inactive

finalized

running

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

Task #4

inactive inactive

finalized

running

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

inactive inactive

finalized

finalized

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

Search State Dependency Graph

SEARCH STATE DEPENDENCY GRAPH

reentrant

When a new task is added to the
SSDG or when a task completes, the
scheduler assigns any runnable task to
an idle worker.

All optimizer tasks are reentrant.
→ The worker can pause a task, switch to

another one, and resume the first task at
the same point it was paused.

Priority is based on task promises.

12

Worker Worker

Task #1

Task #3

Task #4

Task #2

Task #2

inactive running

finalized

finalized

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Reentrancy_(computing)

SPECIAL TOPICS (SPRING 2025)

ORCA: PARALLEL TASK EXAMPLE

13

Group g0
Output:
{ABCD}
Properties:

None

Logical Exprs Physical Exprs

Group g1
Output:
{BCD}
Properties:

None

Logical Exprs Physical Exprs

Opt(g0,req0)

Opt(g0.gexpr,req0)

Explore(g0.)

Implement(g0)

1. {AB}⨝{CD}

Explore(g0.gexpr.)

2. {A}⨝{BCD}

Opt(g1, req0)

3. {A}⨝{BCD}

Optimize Children

Xform(g0.gexpr, t0) Xform(g0.gexpr, t1.) …

Implement Group Optimize Group Expressions

Implement(g0.gexpr)

Explore Group Expressions

Exploration Rules

Xform(g0.gexpr, t3.)

Implementation Rules

Implement Group ExpressionExplore Group

Explore(g1.)

1. {AB}⨝HJ{CD}

Explore Children

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPPORTUNITY FOR PARALLELISM

Measure the total number of tasks
versus the number of runnable tasks
in the SSDG over time.
→ Query #1: 10-way join, star-shaped graph
→ Query #2: 10-way join, linear/chain graph

Both queries show an initial phase
that requires sequential processing.
But then search space opens to more
parallelizable tasks.

14

Query #1: Star

Query #2: Chain

Intel Core 2 Quad Core Q6600

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1559845.1559938

SPECIAL TOPICS (SPRING 2025)

SPEED-UP

Measure the relative performance
improvement as the optimizer is
given more CPU cores for workers.

Opportunities for parallelism
increases with query complexity.

Latch contention on memo table
limits the scalability of the optimizer.

15

Query #1: Star

Query #2: Chain

Intel Core 2 Quad Core Q6600

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1559845.1559938

SPECIAL TOPICS (SPRING 2025)

ERLANG

Hot swapping

Green Threads

most used functional PL

Functional programming language from the 1980s
based on message-passing actors.

The Erlang runtime supports sophisticated features
out of the box:
→ Fault-tolerance
→ Hot swapping
→ Lightweight Green Threads

Erlang is the most used functional PL in DBMS
implementations.

16

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Dynamic_software_updating
https://en.wikipedia.org/wiki/Green_thread
https://dbdb.io/browse?programming=erlang

SPECIAL TOPICS (SPRING 2025)

ERLANG

Hot swapping

Green Threads

most used functional PL

Functional programming language from the 1980s
based on message-passing actors.

The Erlang runtime supports sophisticated features
out of the box:
→ Fault-tolerance
→ Hot swapping
→ Lightweight Green Threads

Erlang is the most used functional PL in DBMS
implementations.

16
19

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Dynamic_software_updating
https://en.wikipedia.org/wiki/Green_thread
https://dbdb.io/browse?programming=erlang
https://dbdb.io/stats

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Top-down optimizers are more amenable to parallel
implementations because they are considering
multiple transformation types at the same time.

Counter Argument: The "throw it all in!" nature of
exploration in a top-down optimizer is so wasteful
that one is forced to use a parallel implementation.

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Top-down optimizers are more amenable to parallel
implementations because they are considering
multiple transformation types at the same time.

Counter Argument: The "throw it all in!" nature of
exploration in a top-down optimizer is so wasteful
that one is forced to use a parallel implementation.

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Unnesting Arbitrary Queries (The German Way)

18

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: FINAL PROJECT

Group project to implement some
substantial component or feature in a
query optimizer.

Projects should incorporate topics
discussed in this course as well as
from your own interests.

Each group must pick a project that is
unique from their classmates.

19

https://15799.courses.cs.cmu.edu/spring2025/project2.html

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025/project2.html

SPECIAL TOPICS (SPRING 2025)

PROJECT #2 – DELIVERABLES

Proposal Presentation: March 10th

Status Update Presentation: April 7th

Design Document: Final Exam Date (TBA)

Final Presentation: Final Exam Date (TBA)

20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: PROPOSAL

Five-minute presentation to the class that
discusses the high-level topic.

Each proposal must discuss:
→ Architecture and implementation overview of the project.
→ How you will test whether your implementation is correct.
→ What workloads you will use for your project.

21

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: STATUS UPDATE

Five-minute presentation to update the class about
the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: DESIGN DOCUMENT

As part of the status update, you must provide a
design document that describes your project
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: FINAL PRESENTATION

10-minute presentation on the final status of your
project during the scheduled final exam.

You should include any performance measurements
or benchmarking numbers for your
implementation.

Demos are always hot too…

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: TOPICS

Our goal was to have all projects based on CMU-
DB's optd project.

We are in the process of rewriting so unfortunately
it is not ready for others to start contributing.
→ Some projects can start as standalone prototypes that we

can work to integrate into the fall semester.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/projects/optd/

SPECIAL TOPICS (SPRING 2025)

PROJECT #2: TOPICS

Hints

Learned Transformation Promises

German Arbitrary Unnesting via Transformations

Verified LLM SQL Rewriting

Transformation Rule Lingua Franca + Corpus

Injecting PostgreSQL Statistics

Testing / Benchmark Suite for Optimizers

Deparsing Physical Plans to PostgreSQL with Hints

Predicate Embeddings

26

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://github.com/ossc-db/pg_hint_plan

SPECIAL TOPICS (SPRING 2025)

HOW TO START

Form a team. Sign-up on class spreadsheet.

Meet with your team and discuss potential topics.

Plan a (rough) schedule on what you will need to
implement.

I am around during Spring Break for additional
discussion and clarification of the project idea.

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Search Parallelization: Top-Down
	Slide 2: UPCOMING DATABASE TALKS
	Slide 3: LAST CLASS
	Slide 4: TRANSFORMATION SEARCH SPACE
	Slide 5: CASCADES: TASK-BASED SEARCH
	Slide 6: CASCADES: TASK-BASED SEARCH
	Slide 7: CASCADES: TASK-BASED SEARCH
	Slide 8: CASCADES: TASK-BASED SEARCH
	Slide 9: CASCADES: TASK-BASED SEARCH
	Slide 10: CASCADES: TASK-BASED SEARCH
	Slide 11: CASCADES: TASK-BASED SEARCH
	Slide 12: CASCADES: TASK-BASED SEARCH
	Slide 13: CASCADES: TASK-BASED SEARCH
	Slide 14: TODAY’S AGENDA

	Parallel Top-Down
	Slide 15: PARALLEL TOP-DOWN CASCADES
	Slide 16: TASKS
	Slide 17: TASKS
	Slide 18: TASK SCHEDULING
	Slide 19: SEARCH STATE DEPENDENCY GRAPH
	Slide 20: SEARCH STATE DEPENDENCY GRAPH
	Slide 21: SEARCH STATE DEPENDENCY GRAPH
	Slide 22: SEARCH STATE DEPENDENCY GRAPH
	Slide 23: SEARCH STATE DEPENDENCY GRAPH
	Slide 24: SEARCH STATE DEPENDENCY GRAPH
	Slide 25: SEARCH STATE DEPENDENCY GRAPH
	Slide 26: SEARCH STATE DEPENDENCY GRAPH
	Slide 27: ORCA: PARALLEL TASK EXAMPLE
	Slide 28: OPPORTUNITY FOR PARALLELISM
	Slide 29: SPEED-UP
	Slide 30: ERLANG
	Slide 31: ERLANG

	Conclusion
	Slide 32: PARTING THOUGHTS
	Slide 33: PARTING THOUGHTS
	Slide 34: NEXT CLASS

	Project #3
	Slide 35: PROJECT #2: FINAL PROJECT
	Slide 36: PROJECT #2 – DELIVERABLES
	Slide 37: PROJECT #2: PROPOSAL
	Slide 38: PROJECT #2: STATUS UPDATE
	Slide 39: PROJECT #2: DESIGN DOCUMENT
	Slide 40: PROJECT #2: FINAL PRESENTATION
	Slide 41: PROJECT #2: TOPICS
	Slide 42: PROJECT #2: TOPICS
	Slide 43: HOW TO START

