
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Paper Reviews resume this Wednesday Feb 5th

Project #1 is due Friday Feb 28th

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025/syllabus.html#reviews
https://15799.courses.cs.cmu.edu/spring2025/project1.html

SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

Convex (DB Seminar)
→ Monday Feb 10th @ 4:30pm ET
→ Zoom

The Germans (DB Seminar)
→ Monday Feb 17th @ 4:30pm ET
→ Zoom

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/events/sql-death-larry-ellison-was-right-kinda-typescript-stored-procedures-for-the-modern-age/
https://db.cs.cmu.edu/events/sql-death-towards-sanity-in-query-languages/
https://db.cs.cmu.edu/events/sql-death-apache-pinot-query-optimizer/

SPECIAL TOPICS (SPRING 2025)

ERRATA

Clarification of the Dynamic Programming with
Hypergraph Algorithm (DPHyp).

Send Corrections: db-mistakes@cs.cmu.edu

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

DYNAMIC PROGRAMMING HYPERGRAPH (DPHYP)

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed

to visit and expand.

5

Dynamic Programming Strikes BackSIGMOD 2008

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

SPECIAL TOPICS (SPRING 2025)

DPHYP: HYPERGRAPHS

A hypergraph is a pair H=(V,E) such
that:
→ V is a non-empty set of nodes.
→ E is a set of hyperedges, where a

hyperedge is an unordered pair (u,v) of
non-empty subsets of V (u ⊂ V, v ⊂ V) with
the additional condition that u∩v =∅.

Allows search algorithm to consider
node groupings instead of each
individual node.

6

SELECT * FROM R1, R2, R3, R4, R5, R6
WHERE R1.a = R2.a
AND R2.b = R3.c
AND R4.d = R5.d
AND R5.e = R6.e
AND abs(R1.f + R3.f) =

abs(R4.g + R6.g)

Dynamic Programming Strikes BackSIGMOD 2008

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

SPECIAL TOPICS (SPRING 2025)

DPHYP: HYPERGRAPHS

A hypergraph is a pair H=(V,E) such
that:
→ V is a non-empty set of nodes.
→ E is a set of hyperedges, where a

hyperedge is an unordered pair (u,v) of
non-empty subsets of V (u ⊂ V, v ⊂ V) with
the additional condition that u∩v =∅.

Allows search algorithm to consider
node groupings instead of each
individual node.

6

SELECT * FROM R1, R2, R3, R4, R5, R6
WHERE R1.a = R2.a
AND R2.b = R3.c
AND R4.d = R5.d
AND R5.e = R6.e
AND abs(R1.f + R3.f) =

abs(R4.g + R6.g)

R5

R4

R6

R2

R1

R3
Dynamic Programming Strikes BackSIGMOD 2008

Simple Edge

Hyper Edge

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

R3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

R3

R3⨝R2 R2⨝R3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

R3

R3⨝R2 R2⨝R3

R3⨝R2⨝R1 R1⨝R3⨝R2 R2⨝R3⨝R1 R1⨝R2⨝R3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of
the query graph.

For each subgraph, enumerate all
other connected subgraphs that are
disjoint but connected to it.
→ Start with one node and expand

recursively by following edges.

7

Thomas Neumann

R2

R1

R3 R4

R3

R3⨝R2 R2⨝R3

R3⨝R2⨝R1 R1⨝R3⨝R2 R2⨝R3⨝R1 R1⨝R2⨝R3
R3⨝R2⨝R4 R4⨝R3⨝R2

⋮
⋮

⋮

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

DHYP: NOW WITH HYPERGRAPHS

Since hyperedges are n:m edges,
adding them to a subgraph connects
additional nodes.

Where to expand to and from
{R1,R2,R3} while still guaranteeing
DP order?
→ Adding R4 causes R6 to be disconnected

from the new graph.

Recursively expand subgraph to cover
all nodes in a hyperedge.

8

Thomas Neumann

R5

R4

R6

R2

R1

R3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws2425/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

Defining a query's complexity based on the
structure of its join graph rather than the number of
relations that it references.

Bottom-Up Join Enumeration
→ Adapting search strategy based on query complexity.
→ Using approximations and simplifications to initialize

search algorithm.

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Top-down search enables enhancements that are
not compatible with bottom-up DP algorithms:
→ Demand-driven interesting orders
→ Branch-and-bound pruning
→ Exploiting partial plan information

But top-down search has other problems:
→ Must store all generated plans and not just optimal ones.
→ No optimal enumeration method that generate plans for

any query without Cartesian products.

10

This is what today's paper solves!

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Partition-based Top-Down Join Enumeration

Branch-and-Bound Pruning Strategies

Top-Down Hypergraph Join Enumeration

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

SELECT * FROM A, B, C, D, E
 WHERE A.a_id = B.a_id
 AND B.c_id = C.c_id
 AND B.d_id = D.d_id
 AND D.e_id = E.e_id;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

B
C
D E

A B
C
D E

A B
C
D E

A

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

AB
C
D E

B
C
D E

B
C
D E

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

AB
C
D E

B
C
D E

B
C
D E

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

A
B

C
D E

CB ED

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into
smaller partitions. Then choose the
optimal ordering for progressively
larger partitions.

Query plan quality is highly
dependent on partitioning scheme.

The algorithm's optimality is not
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

A
B

C
D E

CB ED

B C E D

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OPTIMALITY

1990 Definition:
→ A join enumeration algorithm only enumerates the

minimum number of join operators.

2006 Definition:
→ A join enumeration algorithm incurs no more than linear

time overhead between enumerated join operators for any
join graph.

13

Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross productsVLDB 2006

Measuring the Complexity of Join Enumeration in Query OptimizationVLDB 1990

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/1182635.1164207
https://dl.acm.org/doi/10.5555/1182635.1164207
https://dl.acm.org/doi/10.5555/645916.671976
https://dl.acm.org/doi/10.5555/645916.671976

SPECIAL TOPICS (SPRING 2025)

OTDP: GRAPH ANALYSIS COST

The enumeration algorithm will
repeatedly perform set operations on
the join graph during its search.
→ Example: Check whether edge e exists in

graph G.

The computational cost of analyzing
the join graph depends on how the
optimizer encodes the graph and the
efficiency of those operations.

14

Input: join graph G=(V,E)
Input: interesting order o
Output: best plan satisfying o

bestPlan←∅
for partition (GL,GR) ∈ Partition(G):
 for operator GL⨝iGR satisfying o:
 oL←order for GL required by ⨝i

 pL←GetBestPlan(GL,oL)
 oR←order for GR required by ⨝i

 pR←GetBestPlan(GR,oR)
 curPlan←(pL ⨝i pR)
 if Cost(curPlan) < Cost(bestPlan):
 bestPlan←curPlan
return bestPlan

GetBestPlan(G,o)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OTDP: GRAPH ENCODING

Option #1: Edge-List Encoding
→ Maintain a list of vertex pairs to represent

the edges in the graph G.
→ Set operations execute in constant time.

Option #2: Array of Bitmaps
→ For each vertex in G, maintain a bitmap

where a bit is set to true if that vertex is
connected to another vertex by an edge.

→ Enables the use of bit-wise machine
instructions for fast set operations.

15

B
C
D

A
E

Edge List

[(A,B), (B,C), (B,D), (D,E)]

Edge Bitmaps

A B C D E
A: 0 1 0 0 0
B: 1 0 1 1 0
C: 0 1 0 0 0
D: 0 1 0 0 1
E: 0 0 0 1 0

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

16

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 output (G|(V\{v}), G|{v})

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.

16

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 output (G|(V\{v}), G|{v})

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.
#

→ Partition graph on non-empty, strict
subsets S of V.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for non-empty subsets S ∈ V:
 output (G|(V\S), G|S)

BushyPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.
#

→ Partition graph on non-empty, strict
subsets S of V.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for non-empty subsets S ∈ V:
 output (G|(V\S), G|S)

BushyPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.
#

→ Partition graph on non-empty, strict
subsets S of V.

#4: Bushy Plans w/o Cart. Products
→ Check whether the two subsets from #3

will cause a Cartesian products.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for non-empty subsets S ∈ V:
 output (G|(V\S), G|S)

BushyPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.
#

→ Partition graph on non-empty, strict
subsets S of V.

#4: Bushy Plans w/o Cart. Products
→ Check whether the two subsets from #3

will cause a Cartesian products.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for non-empty subsets S ∈ V:
 output (G|(V\S), G|S)

BushyPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products
→ Partition graph by removing each vertex

on at a time.

#2: Left-Deep w/o Cart. Products
→ Check whether removing a vertex in #1

would cause a Cartesian product join.
#

→ Partition graph on non-empty, strict
subsets S of V.

#4: Bushy Plans w/o Cart. Products
→ Check whether the two subsets from #3

will cause a Cartesian products.

16

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
 if G|(V\{v} is connected:
 output (G|(V\{v}), G|{v})

LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for non-empty subsets S ∈ V:
 if G|S is connected &&

 ⤷ G|(V\S) is connected:
 output (G|(V\S), G|S)

BushyPartition(G)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The previous methods for avoiding Cartesian
products in the naïve partitioning algorithms does
not exploit the join graph's structure.

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The previous methods for avoiding Cartesian
products in the naïve partitioning algorithms does
not exploit the join graph's structure.

A better approach is to identify bad choices upfront
and then avoid them in the selection process.
→ L
→ Need to consider edges not vertexes for bushy plans…
→ exes in G and then avoid them in the partitioning

algorithm.

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an
edge set to remove from a graph G to
divide G into two or more connected
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to

quickly identify edges to remove.

Explore the tree in a depth-first
fashion by choosing edges to remove
to partition the graph.

18

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an
edge set to remove from a graph G to
divide G into two or more connected
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to

quickly identify edges to remove.

Explore the tree in a depth-first
fashion by choosing edges to remove
to partition the graph.

18

B
C
D

A
E

B

CA

{A,B} {B,D,E}{B,C}

D E

Vertex Node

Set Node

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an
edge set to remove from a graph G to
divide G into two or more connected
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to

quickly identify edges to remove.

Explore the tree in a depth-first
fashion by choosing edges to remove
to partition the graph.

18

B
C
D

A
E

B

CA

{A,B} {B,D,E}{B,C}

D E

Vertex Node

Set Node

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Another important consideration in top-down
enumeration is how to prune branches that will
produce a query plan that is worse than the best
plan found so far.
→ Good pruning reduces wasted computation.
→ Bad pruning prevents escaping local minimums.

Option #1: Accumulated-cost Bounding

Option #2: Predicted-cost Bounding

19

Optimal Top-Down Join EnumerationSIGMOD 2007

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Upper-Bound: 100

Cost:
50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Upper-Bound: 100

Lower-Bound: 50

Cost:
50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Output:
{BC}

Properties:
None

Logical Exprs
1. {B}⨝{C}
2. {C}⨝{B}

Physical Exprs
1. {B}⨝NL{C}
2. {B}⨝HJ{C}
3. {C}⨝NL{B}

Upper-Bound: 100

Lower-Bound: 50

Lower-Bound: 50

Cost:
50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Output:
{BC}

Properties:
None

Logical Exprs
1. {B}⨝{C}
2. {C}⨝{B}

Physical Exprs
1. {B}⨝NL{C}
2. {B}⨝HJ{C}
3. {C}⨝NL{B}

Upper-Bound: 100

Lower-Bound: 50

Lower-Bound: 50

Cost:
50

Lower-Bound: 50 Lower-Bound: 50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Output:
{BC}

Properties:
None

Logical Exprs
1. {B}⨝{C}
2. {C}⨝{B}

Physical Exprs
1. {B}⨝NL{C}
2. {B}⨝HJ{C}
3. {C}⨝NL{B}

Upper-Bound: 100

Lower-Bound: 50

Lower-Bound: 50

{B} Cost: 30 {C} Cost: 35

Cost:
50

Cost:
50 + 30 + 35

Lower-Bound: 50 Lower-Bound: 50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Output:
{BC}

Properties:
None

Logical Exprs
1. {B}⨝{C}
2. {C}⨝{B}

Physical Exprs
1. {B}⨝NL{C}
2. {B}⨝HJ{C}
3. {C}⨝NL{B}

Upper-Bound: 100

Lower-Bound: 50

Lower-Bound: 50

{B} Cost: 30 {C} Cost: 35

Cost:
50

Cost:
50 + 30 + 35

Lower-Bound: 50 Lower-Bound: 50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of
the best complete physical plan found
so far in the entire search tree.

The lower-bound (L) is the
summation of the physical operators
as the optimizer traverses down the
search tree.

20

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}

⋮

Physical Exprs
1. {AB}⨝NL{CD}
2. {AB}⨝HJ{CD}

Output:
{BCD}
Properties:

None

Logical Exprs
1. {BC}⨝{D}
2. {B}⨝{CD}

⋮

Physical Exprs
1. {BC}⨝NL{D}
2. {BC}⨝HJ{D}

Output:
{BC}

Properties:
None

Logical Exprs
1. {B}⨝{C}
2. {C}⨝{B}

Physical Exprs
1. {B}⨝NL{C}
2. {B}⨝HJ{C}
3. {C}⨝NL{B}

Upper-Bound: 100

Lower-Bound: 50

Lower-Bound: 50

{B} Cost: 30 {C} Cost: 35

Cost:
50

Cost:
50 + 30 + 35

Lower-Bound: 50 Lower-Bound: 50

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

Predicted Costs:
{AB}⨝{CD}: 100 + 300
{A}⨝{BCD}: 0 + 600
{B}⨝{ACD}: 0 + 500

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

Predicted Costs:
{AB}⨝{CD}: 100 + 300
{A}⨝{BCD}: 0 + 600
{B}⨝{ACD}: 0 + 500

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}

Predicted Costs:
{A}⨝{B} : 0 + 200
{B}⨝{A} : 0 + 300

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of
the best plan found for current logical
expression.
→ As the optimizer traverses down to a new

logical expression, reset U to ∞.

The lower-bound (L) is predicted for
each possible branch and the
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are

only based on logical properties.

21

Output:
{ABCD}
Properties:

None

Logical Exprs
1. {AB}⨝{CD}
2. {A}⨝{BCD}
3. {B}⨝{ACD}

⋮

Physical Exprs

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Comparison of how well the pruning
strategies remove branches from
search tree.

Synthetic Query Graphs
→ Bushy Plans w/o Cartesian Products
→ Cannot compare plan quality.

22

0.25

0.5

0.75

1

2 4 6 8 10 12 14 16 18 20

Si
ze

 R
el

at
iv

e
to

 N
o

P
ru

n
in

g

of Input Relations

Accumulated Predicted

↓ Lower is Better

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Comparison of how much
computational work the optimizer
consumes during search.
→ Combined is using both the

accumulated and predicted pruning
strategies together.

Synthetic Query Graphs
→ Bushy Plans w/o Cartesian Products
→ Cannot compare plan quality.

23

0.1

1

10

2 4 6 8 10 12 14 16 18 20C
P

U
 T

im
e

R
el

at
iv

e
to

 N
o

P
ru

n
in

g

of Input Relations

Accumulated Predicted Combined

↓ Lower is Better

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1247480.1247567

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The previous join enumeration algorithm can only
handle simple (binary) join predicates and inner
joins.

The optimizer needs to support complex join
predicates and outer / non-inner joins.

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TOP-DOWN MINCUT + HYPERGRAPHS

Adaptation of the DP hypergraph algorithm from
the original author for top-down join enumeration.
→ Convert hypergraphs into simple graphs to avoid excessive

exploration of search space.
→ Relies on the min-cut partitioning approach discussed

earlier.

We will go over this in more detail next week when
we discuss search parallelization.

25

Counter Strike: Generic Top-Down Join Enumeration for HypergraphsVLDB 2013

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.14778/2556549.2556565
https://doi.org/10.14778/2556549.2556565

SPECIAL TOPICS (SPRING 2025)

TOP-DOWN MINCUT + HYPERGRAPHS

Adaptation of the DP hypergraph algorithm from
the original author for top-down join enumeration.
→ Convert hypergraphs into simple graphs to avoid excessive

exploration of search space.
→ Relies on the min-cut partitioning approach discussed

earlier.

We will go over this in more detail next week when
we discuss search parallelization.

25

Counter Strike: Generic Top-Down Join Enumeration for HypergraphsVLDB 2013

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.14778/2556549.2556565
https://doi.org/10.14778/2556549.2556565

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Andy still thinks top-down optimization is easier to
understand but that does not mean it is the best
approach.
→ What is good for humans can be bad for computers.

The adaptivity methods from last class could be
modified to support top-down search.
→ Use approximations to preseed memo table.

26

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Parallelization: Bottom-Up

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Join Ordering: Top-Down
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: ERRATA
	Slide 5: DYNAMIC PROGRAMMING HYPERGRAPH (DPHYP)
	Slide 6: DPHYP: HYPERGRAPHS
	Slide 7: DPHYP: HYPERGRAPHS
	Slide 8: DHYP: BASIC ALGORITHM
	Slide 9: DHYP: BASIC ALGORITHM
	Slide 10: DHYP: BASIC ALGORITHM
	Slide 11: DHYP: BASIC ALGORITHM
	Slide 12: DHYP: BASIC ALGORITHM
	Slide 13: DHYP: BASIC ALGORITHM
	Slide 14: DHYP: NOW WITH HYPERGRAPHS
	Slide 15: LAST CLASS
	Slide 16: OBSERVATION
	Slide 17: TODAY’S AGENDA

	Top-Down Partitioning
	Slide 18: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 19: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 20: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 21: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 22: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 23: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 24: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 25: OPTIMAL TOP-DOWN PARTITIONING (OTDP)
	Slide 26: OPTIMALITY
	Slide 27: OTDP: GRAPH ANALYSIS COST
	Slide 28: OTDP: GRAPH ENCODING
	Slide 29: NAÏVE PARTITIONING ALGORITHM
	Slide 30: NAÏVE PARTITIONING ALGORITHM
	Slide 31: NAÏVE PARTITIONING ALGORITHM
	Slide 32: NAÏVE PARTITIONING ALGORITHM
	Slide 33: NAÏVE PARTITIONING ALGORITHM
	Slide 34: NAÏVE PARTITIONING ALGORITHM
	Slide 35: NAÏVE PARTITIONING ALGORITHM
	Slide 36: NAÏVE PARTITIONING ALGORITHM
	Slide 37: OBSERVATION
	Slide 38: OBSERVATION
	Slide 39: MIN-CUT PARTITIONING ALGORITHM
	Slide 40: MIN-CUT PARTITIONING ALGORITHM
	Slide 41: MIN-CUT PARTITIONING ALGORITHM

	Pruning
	Slide 42: BRANCH-AND-BOUND PRUNING
	Slide 43: ACCUMULATED-COST BOUNDING
	Slide 44: ACCUMULATED-COST BOUNDING
	Slide 45: ACCUMULATED-COST BOUNDING
	Slide 46: ACCUMULATED-COST BOUNDING
	Slide 47: ACCUMULATED-COST BOUNDING
	Slide 48: ACCUMULATED-COST BOUNDING
	Slide 49: ACCUMULATED-COST BOUNDING
	Slide 50: PREDICTED-COST BOUNDING
	Slide 51: PREDICTED-COST BOUNDING
	Slide 52: PREDICTED-COST BOUNDING
	Slide 53: PREDICTED-COST BOUNDING
	Slide 54: PREDICTED-COST BOUNDING
	Slide 55: PREDICTED-COST BOUNDING
	Slide 56: BRANCH-AND-BOUND PRUNING
	Slide 57: BRANCH-AND-BOUND PRUNING

	Top-Down Hypergraphs
	Slide 58: OBSERVATION
	Slide 59: TOP-DOWN MINCUT + HYPERGRAPHS
	Slide 60: TOP-DOWN MINCUT + HYPERGRAPHS

	Conclusion
	Slide 61: PARTING THOUGHTS
	Slide 62: NEXT CLASS

