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SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Paper Reviews resume this Wednesday Feb 5th

Project #1 is due Friday Feb 28th
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SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

Convex (DB Seminar)
→ Monday Feb 10th @ 4:30pm ET
→ Zoom

The Germans (DB Seminar)
→ Monday Feb 17th @ 4:30pm ET
→ Zoom

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom
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SPECIAL TOPICS (SPRING 2025)

ERRATA

Clarification of the Dynamic Programming with 
Hypergraph Algorithm (DPHyp).

Send Corrections: db-mistakes@cs.cmu.edu 
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SPECIAL TOPICS (SPRING 2025)

DYNAMIC PROGRAMMING HYPERGRAPH (DPHYP)

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed 

to visit and expand.
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Dynamic Programming Strikes BackSIGMOD 2008
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SPECIAL TOPICS (SPRING 2025)

DPHYP: HYPERGRAPHS

A hypergraph is a pair H=(V,E) such 
that:
→ V is a non-empty set of nodes.
→ E is a set of hyperedges, where a 

hyperedge is an unordered pair (u,v) of 
non-empty subsets of V (u ⊂ V, v ⊂ V) with 
the additional condition that u∩v =∅.

Allows search algorithm to consider 
node groupings instead of each 
individual node.
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SELECT * FROM R1, R2, R3, R4, R5, R6
WHERE R1.a = R2.a
AND R2.b = R3.c
AND R4.d = R5.d
AND R5.e = R6.e
AND abs(R1.f + R3.f) =

abs(R4.g + R6.g) 
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SPECIAL TOPICS (SPRING 2025)

DHYP: BASIC ALGORITHM

Enumerate all connected subgraphs of 
the query graph.

For each subgraph, enumerate all 
other connected subgraphs that are 
disjoint but connected to it.
→ Start with one node and expand 

recursively by following edges.
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SPECIAL TOPICS (SPRING 2025)

DHYP: NOW WITH HYPERGRAPHS

Since hyperedges are n:m edges, 
adding them to a subgraph connects 
additional nodes.

Where to expand to and from 
{R1,R2,R3} while still guaranteeing 
DP order?
→ Adding R4 causes R6 to be disconnected 

from the new graph.

Recursively expand subgraph to cover 
all nodes in a hyperedge.
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SPECIAL TOPICS (SPRING 2025)

LAST CLASS

Defining a query's complexity based on the 
structure of its join graph rather than the number of 
relations that it references.

Bottom-Up Join Enumeration
→ Adapting search strategy based on query complexity.
→ Using approximations and simplifications to initialize 

search algorithm.
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Top-down search enables enhancements that are 
not compatible with bottom-up DP algorithms:
→ Demand-driven interesting orders
→ Branch-and-bound pruning
→ Exploiting partial plan information

But top-down search has other problems:
→ Must store all generated plans and not just optimal ones.
→ No optimal enumeration method that generate plans for 

any query without Cartesian products.
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This is what today's paper solves!
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SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Partition-based Top-Down Join Enumeration

Branch-and-Bound Pruning Strategies

Top-Down Hypergraph Join Enumeration
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SPECIAL TOPICS (SPRING 2025)

OPTIMAL TOP-DOWN PARTITIONING (OTDP)

Recursively split the join graph into 
smaller partitions. Then choose the 
optimal ordering for progressively 
larger partitions.

Query plan quality is highly 
dependent on partitioning scheme.

The algorithm's optimality is not 
based on the query plan…

12

Optimal Top-Down Join EnumerationSIGMOD 2007

SELECT * FROM A, B, C, D, E
 WHERE A.a_id = B.a_id
 AND B.c_id = C.c_id
 AND B.d_id = D.d_id
 AND D.e_id = E.e_id;
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https://doi.org/10.1145/1247480.1247567
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SPECIAL TOPICS (SPRING 2025)

OPTIMALITY

1990 Definition:
→ A join enumeration algorithm only enumerates the 

minimum number of join operators.

2006 Definition:
→ A join enumeration algorithm incurs no more than linear 

time overhead between enumerated join operators for any 
join graph.
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Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross productsVLDB 2006

Measuring the Complexity of Join Enumeration in Query OptimizationVLDB 1990
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SPECIAL TOPICS (SPRING 2025)

OTDP: GRAPH ANALYSIS COST

The enumeration algorithm will 
repeatedly perform set operations on 
the join graph during its search.
→ Example: Check whether edge e exists in 

graph G.

The computational cost of analyzing 
the join graph depends on how the 
optimizer encodes the graph and the 
efficiency of those operations.
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Input: join graph G=(V,E)
Input: interesting order o
Output: best plan satisfying o

bestPlan←∅
for partition (GL,GR) ∈ Partition(G):
  for operator GL⨝iGR satisfying o:
    oL←order for GL required by ⨝i

    pL←GetBestPlan(GL,oL)
 oR←order for GR required by ⨝i

 pR←GetBestPlan(GR,oR)
    curPlan←(pL ⨝i pR)
    if Cost(curPlan) < Cost(bestPlan):
      bestPlan←curPlan
return bestPlan

GetBestPlan(G,o)
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SPECIAL TOPICS (SPRING 2025)

OTDP: GRAPH ENCODING

Option #1: Edge-List Encoding
→ Maintain a list of vertex pairs to represent 

the edges in the graph G.
→ Set operations execute in constant time.

Option #2: Array of Bitmaps
→ For each vertex in G, maintain a bitmap 

where a bit is set to true if that vertex is 
connected to another vertex by an edge.

→ Enables the use of bit-wise machine 
instructions for fast set operations. 
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Edge List

[ (A,B), (B,C), (B,D), (D,E) ]

Edge Bitmaps

A  B  C  D  E
A: 0  1  0  0  0
B: 1  0  1  1  0
C: 0  1  0  0  0
D: 0  1  0  0  1
E: 0  0  0  1  0
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SPECIAL TOPICS (SPRING 2025)

NAÏVE PARTITIONING ALGORITHM

#1: Left-Deep with Cart. Products 
→ Partition graph by removing each vertex 

on at a time.
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LeftDeepPartition(G)

Input: join graph G=(V,E)
Output: partitions of G

for v ∈ V:
  output (G|(V\{v}), G|{v})
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OBSERVATION

The previous methods for avoiding Cartesian 
products in the naïve partitioning algorithms does 
not exploit the join graph's structure.
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OBSERVATION

The previous methods for avoiding Cartesian 
products in the naïve partitioning algorithms does 
not exploit the join graph's structure.

A better approach is to identify bad choices upfront 
and then avoid them in the selection process.
→ L
→ Need to consider edges not vertexes for bushy plans…
→ exes in G and then avoid them in the partitioning 

algorithm. 
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SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an 
edge set to remove from a graph G to 
divide G into two or more connected 
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to 

quickly identify edges to remove.

Explore the tree in a depth-first 
fashion by choosing edges to remove 
to partition the graph.

18

B
C
D

A
E

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an 
edge set to remove from a graph G to 
divide G into two or more connected 
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to 

quickly identify edges to remove.

Explore the tree in a depth-first 
fashion by choosing edges to remove 
to partition the graph.

18

B
C
D

A
E

B

CA

{A,B} {B,D,E}{B,C}

D E

Vertex Node

Set Node

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

MIN-CUT PARTITIONING ALGORITHM

Generate partitions by selecting an 
edge set to remove from a graph G to 
divide G into two or more connected 
sub-graphs.
→ Start with a random vertex
→ Lazily build a biconnection tree to 

quickly identify edges to remove.

Explore the tree in a depth-first 
fashion by choosing edges to remove 
to partition the graph.

18

B
C
D

A
E

B

CA

{A,B} {B,D,E}{B,C}

D E

Vertex Node

Set Node

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Another important consideration in top-down 
enumeration is how to prune branches that will 
produce a query plan that is worse than the best 
plan found so far.
→ Good pruning reduces wasted computation.
→ Bad pruning prevents escaping local minimums.

Option #1: Accumulated-cost Bounding

Option #2: Predicted-cost Bounding

19
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SPECIAL TOPICS (SPRING 2025)

ACCUMULATED-COST BOUNDING

The upper-bound (U) is the cost of 
the best complete physical plan found 
so far in the entire search tree.

The lower-bound (L) is the 
summation of the physical operators 
as the optimizer traverses down the 
search tree.
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SPECIAL TOPICS (SPRING 2025)

PREDICTED-COST BOUNDING

The upper-bound (U) is the cost of 
the best plan found for current logical 
expression.
→ As the optimizer traverses down to a new 

logical expression, reset U to ∞.

The lower-bound (L) is predicted for 
each possible branch and the 
optimizer only explores best ones.
→ Without exploring a sub-tree, costs are 

only based on logical properties.
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SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Comparison of how well the pruning 
strategies remove branches from 
search tree.

Synthetic Query Graphs
→ Bushy Plans w/o Cartesian Products
→ Cannot compare plan quality.

22
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SPECIAL TOPICS (SPRING 2025)

BRANCH-AND-BOUND PRUNING

Comparison of how much 
computational work the optimizer 
consumes during search.
→ Combined is using both the

accumulated and predicted pruning 
strategies together.

Synthetic Query Graphs
→ Bushy Plans w/o Cartesian Products
→ Cannot compare plan quality. 
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The previous join enumeration algorithm can only 
handle simple (binary) join predicates and inner 
joins.

The optimizer needs to support complex join 
predicates and outer / non-inner joins.

24
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SPECIAL TOPICS (SPRING 2025)

TOP-DOWN MINCUT + HYPERGRAPHS

Adaptation of the DP hypergraph algorithm from 
the original author for top-down join enumeration.
→ Convert hypergraphs into simple graphs to avoid excessive 

exploration of search space.
→ Relies on the min-cut partitioning approach discussed 

earlier.

We will go over this in more detail next week when 
we discuss search parallelization.
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SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Andy still thinks top-down optimization is easier to 
understand but that does not mean it is the best 
approach.
→ What is good for humans can be bad for computers.

The adaptivity methods from last class could be 
modified to support top-down search.
→ Use approximations to preseed memo table.
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SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Parallelization: Bottom-Up
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