
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

Transformation rules to generate and improve
query plans.
→ Access Path
→ Inner Joins
→ Outer Joins
→ Group-By
→ Star / Snowflake Queries

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Most queries with a join only target two tables.

There are ridiculous outlier queries with 100s or
even 1000s of tables.
→ Largest known query joins 5000 tables (SAP).
→ The most complex queries are generated from computers

and not written by humans.

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Most queries with a join only target two tables.

There are ridiculous outlier queries with 100s or
even 1000s of tables.
→ Largest known query joins 5000 tables (SAP).
→ The most complex queries are generated from computers

and not written by humans.

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Most queries with a join only target two tables.

There are ridiculous outlier queries with 100s or
even 1000s of tables.
→ Largest known query joins 5000 tables (SAP).
→ The most complex queries are generated from computers

and not written by humans.

An optimizer must be able to handle the
common-case "easy" queries but still support
the occasional freak queries.

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Adaptive Join Optimization

Randomized Algorithms

6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ADAPTIVE JOIN OPTIMIZATION

Instead of using a single search strategy for all
queries, the optimizer can select a suitable algorithm
per query based on the logical complexity.

Combine dynamic programming with search space
linearization for small to medium queries.

For larger queries, degrade plan quality gracefully.

7

Adaptive Optimization of Very Large Join QueriesSIGMOD 2018

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733

SPECIAL TOPICS (SPRING 2025)

ADAPTIVE OPTIMIZATION DECISION TREE

8

SQL Query

Solve Optimally Search Space
Linearization

Small? Medium?

Graceful
Greediness

yes

no

yes

no
Large!

Thomas Neumann

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The logical complexity of a query plan is not just the
number of relations it references.

Instead, a query's complexity depends on the
structure of its graph.
→ How the different relations join with each other.

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH STRUCTURES

Chain Graph
→ Each relation is connected to at most two

other relations.
→ Linear ordering of join precedence.
→ Best Case Scenario

Clique Graph
→ Every relation is connected to all

other relations.
→ These queries are nasty but rare.
→ Worst Case Scenario

10

SELECT * FROM R1
 JOIN R2 ON R2.r1_id = R1.id
 JOIN R3 ON R3.r2_id = R2.id
 JOIN R4 ON R4.r3_id = R3.id;

SELECT * FROM R1, R2, R3, R4
 WHERE R1.id = R2.id
 AND R1.id = R3.id
 AND R1.id = R4.id
 AND R2.id = R3.id
 AND R2.id = R4.id
 AND R3.id = R4.id;

R1

R2

R3

R4

R1 R3

R2 R4

Query Simplification: Graceful Degradation for Join-Order OptimizationSIGMOD 2009

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1559845.1559889

SPECIAL TOPICS (SPRING 2025)

SMALL QUERIES

Queries where the DP table is up 10,000 entries.
→ Chains: Up to 1000 relations
→ Cliques: Less than 14 relations

Run the DPhyp algorithm to generate the optimal
join ordering.
→ Adapts to the query's graph structure
→ Completely and minimally enumerates all possible join

orders without cross products.

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

DPHYP

Dynamic Programming Hypergraph (DPHyp)

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed

to visit and expand.

Used in HyPer, Umbra, DuckDB, and GlareDB.

12

Dynamic Programming Strikes BackSIGMOD 2008

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

SPECIAL TOPICS (SPRING 2025)

DPHYP: HYPERGRAPHS

A hypergraph is a pair H=(V,E) such
that:
→ V is a non-empty set of nodes.
→ E is a set of hyperedges, where a

hyperedge is an unordered pair (u,v) of
non-empty subsets of V (u ⊂ V, v ⊂ V) with
the additional condition that u∩v =∅.

Allows search algorithm to consider
node groupings instead of each
individual node.

13

SELECT *
 FROM R1, R2, R3, R4, R5, R6
 WHERE R1.a + R2.b + R3.c
 =
 R4.d + R5.e + R6.f;

R5

R4

R6

R2

R1

R3

Dynamic Programming Strikes BackSIGMOD 2008

Simple Edge

Hyper Edge

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

SPECIAL TOPICS (SPRING 2025)

DPHYP: ALGORITHM

Traverse the graph in a fixed order and recursively
produce larger connected subgraphs.
→ Incrementally expand connected subgraphs.
→ Identify reachable nodes from a subgraph, excluding

certain nodes based on constraints.
→ Treat hypernodes as single instances when choosing

subsets.

DPHyp handles complex join predicates and non-
inner joins.

14

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

MEDIUM QUERIES

For a query with more than 100 relations, the
search strategy depends on its graph structure.

The goal is to convert every query into a chain
query to simplify the problem.
→ Search Space Linearization
→ Only need to consider associativity and not commutativity

of relations when enumerating join orderings.

15

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝ ⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝ ⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝ ⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

⨝

⨝

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the
optimal plan is known.

Use a polynomial DP algorithm to
generate optimal plan from this
linearization.

Optimally combine optimal solutions
for sub-chains of increasing size.

16

Thomas Neumann

R1 R2
R3 R4

R6R5

R1R2 R3 R4R6R5

Optimal Join Order

⨝

⨝

⨝

⨝

⨝

???

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

OPTIMAL ORDER

IKKBZ algorithm from 1984/1986 to generate an
optimal left-deep plan in O(n2).

Algorithm Overview:
→ Transform precedence graph into a linear order.
→ If query graph has cycles, generate min-spanning tree.
→ Assign a rank to nodes (cost/benefit ratio).
→ Successively merge child chains increasing in ranks.
→ Resolve contradictory sequences in child chains by

merging them into a single node.

17

On the optimal nesting order for computing N-relational joinsTODS 1984

Optimization of Nonrecursive QueriesVLDB 1986

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/1270.1498
https://doi.org/10.1145/1270.1498
https://dl.acm.org/doi/10.5555/645913.671481
https://dl.acm.org/doi/10.5555/645913.671481

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

18

Thomas Neumann

B
C D

FE
A

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

18

Thomas Neumann

B
C D

FE
A

B

C

DF

E

A

3/10

4/10

3/10

6/10

9/10

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

Resolve contradictory sequences
in child chains by merging into a
single node.
→ Ex: rank(E) > rank(F), but E

precedes F

18

Thomas Neumann

B
C D

FE
A

B

C

DF

E

A

3/10

4/10

3/10

6/10

9/10

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

Resolve contradictory sequences
in child chains by merging into a
single node.
→ Ex: rank(E) > rank(F), but E

precedes F

18

Thomas Neumann

B
C D

FE
A

B

C

DF

E

A

3/10

4/10

3/10

6/10

9/10

B

C

D

E,F

A

3/10

7/10 6/10

9/10

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

Resolve contradictory sequences
in child chains by merging into a
single node.
→ Ex: rank(E) > rank(F), but E

precedes F

M

→ Ex: rank(C) < rank(E,F) < rank(D)
→ e nodes rank

18

Thomas Neumann

B
C D

FE
A

B

C

DF

E

A

3/10

4/10

3/10

6/10

9/10

B

C

D

E,F

A

3/10

7/10 6/10

9/10

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for
each individual relation.

Resolve contradictory sequences
in child chains by merging into a
single node.
→ Ex: rank(E) > rank(F), but E

precedes F

M

→ Ex: rank(C) < rank(E,F) < rank(D)
→ e nodes rank

18

Thomas Neumann

B
C D

FE
A

B

C

DF

E

A

3/10

4/10

3/10

6/10

9/10

B

C

D

E,F

A

3/10

7/10 6/10

9/10

B

C

A

3/10

E,F 7/10

6/10

D 9/10

B
C D

FE
A

C
D

FEB
A

D
A

FE
C B

…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

MEDIUM QUERIES

Procedure:
→ Linearize query graph using IKKBZ.
→ Build best bushy plan for linearization.

Properties:
→ Algorithm runs in O(n3)
→ Result is at least as good as the optimal left-deep plan.
→ With proper linearization, discovers globally optimal

bushy plan.

19

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

LARGE QUERIES

Use an iterative dynamic programming approach to
handle the most complex queries.
→ First greedily build an initial query plan.
→ Then incrementally refine the plan by optimizing the most

expensive sub-trees of size k using DP.

Greedy Algorithms:
→ Minimum Selectivity (Min-sel)
→ Greedy Operator Ordering (GOO)

20

Thomas Neumann

Use the same linearization trick to
improve k=7 to k=100!

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

LARGE QUERIES

Use an iterative dynamic programming approach to
handle the most complex queries.
→ First greedily build an initial query plan.
→ Then incrementally refine the plan by optimizing the most

expensive sub-trees of size k using DP.

Greedy Algorithms:
→ Minimum Selectivity (Min-sel)
→ Greedy Operator Ordering (GOO)

20

Thomas Neumann

Use the same linearization trick to
improve k=7 to k=100!

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node
and update graph:
→ S
→ Recompute selectivities of edges to other

nodes.
→ vity(i,j)

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node
and update graph:
→ S
→ Recompute selectivities of edges to other

nodes.
→ vity(i,j)

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

BC DA
100 2000 1000

0.3 0.08

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node
and update graph:
→ S
→ Recompute selectivities of edges to other

nodes.

Repeat until only one node remains.

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

BC DA
100 2000 1000

0.3 0.08

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node
and update graph:
→ S
→ Recompute selectivities of edges to other

nodes.

Repeat until only one node remains.

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

A,B = 100 × 200 × 0.5 = 10000
B,C = 200 × 50 × 0.2 = 2000
B,D = 200 × 1000 × 0.1 = 20000

BC DA
100 2000 1000

0.3 0.08

A,BC = 100 × 2000 × 0.3 = 60000
BC,D = 2000 × 1000 × 0.08 = 160000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node
and update graph:
→ S
→ Recompute selectivities of edges to other

nodes.

Repeat until only one node remains.

21

A New Heuristic for Optimizing Large QueriesDEXA 1998

B
C

D
A
100 200

1000

50

0.5
0.2

0.1

⨝

B C DA

⨝

⨝

Works with cyclic and acyclic query graphs.
Generates bushy (not just deep-left) join trees.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528

SPECIAL TOPICS (SPRING 2025)

EXPERIMENTAL RESULTS

Comparison of different DBMSs
on random queries with an
increasing number of relations.

Neither the algorithms or data
structures used in other
optimizer implementations can
handle large queries.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/xFw_RVg6a94

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

All the methods we've discuss today assume queries
only contain inner joins and no cross products.

We will further examine how to consider outer
joins and cross products next class.

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RANDOMIZED ALGORITHMS

Alternative for handling large queries by randomly
exploring solution space of (valid) plans for a query.
→ Keep searching until a cost threshold is reached or the

optimizer runs for a length of time.
→ No guarantees about optimality of plans.

Only one DBMS does this and the quality of their
plans are known to be bad…

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

QUICKPICK

Incrementally build random join trees and then pick
the one that has the lowest cost.
→ Randomly select and remove an edge in the query graph.
→ Add a join or predicate to the new plan.
→ If new query plan has lower cost than best plan seen, keep

going.
→ Otherwise, discard plan, reset query graph, and start over.

Bias the sampling function when choosing an edge
towards edges based with lower selectivities.

25

Join Order Selection — Good Enough is EasyADVANCES IN DATABASES 2000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1007/3-540-45033-5_5
https://doi.org/10.1007/3-540-45033-5_5

SPECIAL TOPICS (SPRING 2025)

SIMULATED ANNEALING

Start with a query plan that is generated using the
heuristic-only approach.

Compute random permutations of operators (e.g.,
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some

probability.
→ Reject any change that violates correctness (e.g., sort

ordering).

26

Query Optimization by Simulated Annealing SIGMOD 1987

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://dl.acm.org/citation.cfm?id=38722
http://dl.acm.org/citation.cfm?id=38722

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm
that selects join orderings (GEQO).

At the beginning of each round, generate different
variants of the query plan.

Select the plans that have the lowest cost and
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

R S

T

HJ

HJ

R S

T

HJ

HJ

R T

S

HJ

HJ

Cost:
90

Cost:
160

Cost:
120

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the optimizer may have chosen

a plan.
→ Must do extra work to ensure that query plans are

deterministic.

29

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the optimizer may have chosen

a plan.
→ Must do extra work to ensure that query plans are

deterministic.

29

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Using different strategies based on the complexity
of a query is a good idea.

Use an "inferior" algorithm that is fast to get a quick
answer, then spend remaining time to refine it with
more robust methods.

30

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Top-down join enumeration
→ Assigned reading will not consider adaptivity.

31

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Join Ordering: Bottom-Up
	Slide 2: LAST CLASS
	Slide 3: OBSERVATION
	Slide 4: OBSERVATION
	Slide 5: OBSERVATION
	Slide 6: TODAY’S AGENDA

	Adapative Optimization
	Slide 7: ADAPTIVE JOIN OPTIMIZATION
	Slide 8: ADAPTIVE OPTIMIZATION DECISION TREE
	Slide 9: OBSERVATION
	Slide 10: QUERY GRAPH STRUCTURES

	Small Queries
	Slide 11: SMALL QUERIES
	Slide 12: DPHYP
	Slide 13: DPHYP: HYPERGRAPHS
	Slide 14: DPHYP: ALGORITHM

	Medium Queries
	Slide 15: MEDIUM QUERIES
	Slide 16: SEARCH SPACE LINEARIZATION
	Slide 17: SEARCH SPACE LINEARIZATION
	Slide 18: SEARCH SPACE LINEARIZATION
	Slide 19: SEARCH SPACE LINEARIZATION
	Slide 20: SEARCH SPACE LINEARIZATION
	Slide 21: SEARCH SPACE LINEARIZATION
	Slide 22: SEARCH SPACE LINEARIZATION
	Slide 23: SEARCH SPACE LINEARIZATION
	Slide 24: SEARCH SPACE LINEARIZATION
	Slide 25: SEARCH SPACE LINEARIZATION
	Slide 26: SEARCH SPACE LINEARIZATION
	Slide 27: OPTIMAL ORDER
	Slide 28: IKKBZ ALGORITHM
	Slide 29: IKKBZ ALGORITHM
	Slide 30: IKKBZ ALGORITHM
	Slide 31: IKKBZ ALGORITHM
	Slide 32: IKKBZ ALGORITHM
	Slide 33: IKKBZ ALGORITHM
	Slide 34: MEDIUM QUERIES

	Large Queries
	Slide 35: LARGE QUERIES
	Slide 36: LARGE QUERIES
	Slide 37: GREEDY OPERATOR ORDERING (GOO)
	Slide 38: GREEDY OPERATOR ORDERING (GOO)
	Slide 39: GREEDY OPERATOR ORDERING (GOO)
	Slide 40: GREEDY OPERATOR ORDERING (GOO)
	Slide 41: GREEDY OPERATOR ORDERING (GOO)
	Slide 42: GREEDY OPERATOR ORDERING (GOO)
	Slide 43: GREEDY OPERATOR ORDERING (GOO)
	Slide 44: GREEDY OPERATOR ORDERING (GOO)
	Slide 45: EXPERIMENTAL RESULTS
	Slide 46: OBSERVATION

	Randomized
	Slide 47: RANDOMIZED ALGORITHMS
	Slide 48: QUICKPICK
	Slide 49: SIMULATED ANNEALING
	Slide 50: POSTGRES GENETIC OPTIMIZER
	Slide 51: POSTGRES GENETIC OPTIMIZER
	Slide 52: POSTGRES GENETIC OPTIMIZER
	Slide 53: POSTGRES GENETIC OPTIMIZER
	Slide 54: POSTGRES GENETIC OPTIMIZER
	Slide 55: POSTGRES GENETIC OPTIMIZER
	Slide 56: POSTGRES GENETIC OPTIMIZER
	Slide 57: POSTGRES GENETIC OPTIMIZER
	Slide 58: RANDOMIZED ALGORITHMS
	Slide 59: RANDOMIZED ALGORITHMS

	Conclusion
	Slide 60: PARTING THOUGHTS
	Slide 61: NEXT CLASS

