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SPECIAL TOPICS (SPRING 2025)

LAST CLASS

Transformation rules to generate and improve 
query plans.
→ Access Path
→ Inner Joins
→ Outer Joins
→ Group-By
→ Star / Snowflake Queries
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Most queries with a join only target two tables.

There are ridiculous outlier queries with 100s or 
even 1000s of tables.
→ Largest known query joins 5000 tables (SAP).
→ The most complex queries are generated from computers 

and not written by humans.
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Most queries with a join only target two tables.

There are ridiculous outlier queries with 100s or 
even 1000s of tables.
→ Largest known query joins 5000 tables (SAP).
→ The most complex queries are generated from computers 

and not written by humans.

An optimizer must be able to handle the 
common-case "easy" queries but still support 
the occasional freak queries.
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SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Adaptive Join Optimization

Randomized Algorithms
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SPECIAL TOPICS (SPRING 2025)

ADAPTIVE JOIN OPTIMIZATION

Instead of using a single search strategy for all 
queries, the optimizer can select a suitable algorithm 
per query based on the logical complexity.

Combine dynamic programming with search space 
linearization for small to medium queries.

For larger queries, degrade plan quality gracefully.
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https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733


SPECIAL TOPICS (SPRING 2025)

ADAPTIVE OPTIMIZATION DECISION TREE
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SQL Query

Solve Optimally Search Space 
Linearization

Small? Medium?

Graceful 
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The logical complexity of a query plan is not just the 
number of relations it references.

Instead, a query's complexity depends on the 
structure of its graph.
→ How the different relations join with each other.
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SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH STRUCTURES

Chain Graph
→ Each relation is connected to at most two 

other relations.
→ Linear ordering of join precedence.
→ Best Case Scenario

Clique Graph
→ Every relation is connected to all

other relations.
→ These queries are nasty but rare.
→ Worst Case Scenario
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SELECT * FROM R1
  JOIN R2 ON R2.r1_id = R1.id
  JOIN R3 ON R3.r2_id = R2.id
  JOIN R4 ON R4.r3_id = R3.id;

SELECT * FROM R1, R2, R3, R4
 WHERE R1.id = R2.id
   AND R1.id = R3.id
   AND R1.id = R4.id
   AND R2.id = R3.id
   AND R2.id = R4.id
   AND R3.id = R4.id;

R1

R2

R3

R4

R1 R3

R2 R4

Query Simplification: Graceful Degradation for Join-Order OptimizationSIGMOD 2009
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SPECIAL TOPICS (SPRING 2025)

SMALL QUERIES

Queries where the DP table is up 10,000 entries.
→ Chains: Up to 1000 relations
→ Cliques: Less than 14 relations

Run the DPhyp algorithm to generate the optimal 
join ordering.
→ Adapts to the query's graph structure
→ Completely and minimally enumerates all possible join 

orders without cross products.
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SPECIAL TOPICS (SPRING 2025)

DPHYP

Dynamic Programming Hypergraph (DPHyp)

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed 

to visit and expand.

Used in HyPer, Umbra, DuckDB, and GlareDB.
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Dynamic Programming Strikes BackSIGMOD 2008
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SPECIAL TOPICS (SPRING 2025)

DPHYP: HYPERGRAPHS

A hypergraph is a pair H=(V,E) such 
that:
→ V is a non-empty set of nodes.
→ E is a set of hyperedges, where a 

hyperedge is an unordered pair (u,v) of 
non-empty subsets of V (u ⊂ V, v ⊂ V) with 
the additional condition that u∩v =∅.

Allows search algorithm to consider 
node groupings instead of each 
individual node.
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SELECT *
  FROM R1, R2, R3, R4, R5, R6
 WHERE R1.a + R2.b + R3.c
       =
       R4.d + R5.e + R6.f;

R5

R4

R6

R2

R1

R3

Dynamic Programming Strikes BackSIGMOD 2008

Simple Edge

Hyper Edge
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SPECIAL TOPICS (SPRING 2025)

DPHYP: ALGORITHM

Traverse the graph in a fixed order and recursively 
produce larger connected subgraphs.
→ Incrementally expand connected subgraphs.
→ Identify reachable nodes from a subgraph, excluding 

certain nodes based on constraints.
→ Treat hypernodes as single instances when choosing 

subsets.

DPHyp handles complex join predicates and non-
inner joins.

14

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

MEDIUM QUERIES

For a query with more than 100 relations, the 
search strategy depends on its graph structure.

The goal is to convert every query into a chain 
query to simplify the problem.
→ Search Space Linearization 
→ Only need to consider associativity and not commutativity 

of relations when enumerating join orderings.
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SPECIAL TOPICS (SPRING 2025)

SEARCH SPACE LINEARIZATION

Assume the order of relations in the 
optimal plan is known.

Use a polynomial DP algorithm to 
generate optimal plan from this 
linearization.

Optimally combine optimal solutions 
for sub-chains of increasing size.

16

Thomas Neumann
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optimal plan is known.
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SPECIAL TOPICS (SPRING 2025)

OPTIMAL ORDER

IKKBZ algorithm from 1984/1986 to generate an 
optimal left-deep plan in O(n2).

Algorithm Overview:
→ Transform precedence graph into a linear order.
→ If query graph has cycles, generate min-spanning tree.
→ Assign a rank to nodes (cost/benefit ratio).
→ Successively merge child chains increasing in ranks.
→ Resolve contradictory sequences in child chains by 

merging them into a single node.

17

On the optimal nesting order for computing N-relational joinsTODS 1984

Optimization of Nonrecursive QueriesVLDB 1986
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SPECIAL TOPICS (SPRING 2025)

IKKBZ ALGORITHM

Build a precedence graph for 
each individual relation.
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IKKBZ ALGORITHM

Build a precedence graph for 
each individual relation.

Resolve contradictory sequences 
in child chains by merging into a 
single node.
→ Ex: rank(E) > rank(F), but E 

precedes F
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SPECIAL TOPICS (SPRING 2025)

MEDIUM QUERIES

Procedure:
→ Linearize query graph using IKKBZ.
→ Build best bushy plan for linearization.

Properties:
→ Algorithm runs in O(n3)
→ Result is at least as good as the optimal left-deep plan.
→ With proper linearization, discovers globally optimal 

bushy plan.

19
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SPECIAL TOPICS (SPRING 2025)

LARGE QUERIES

Use an iterative dynamic programming approach to 
handle the most complex queries.
→ First greedily build an initial query plan.
→ Then incrementally refine the plan by optimizing the most 

expensive sub-trees of size k using DP.

Greedy Algorithms:
→ Minimum Selectivity (Min-sel)
→ Greedy Operator Ordering (GOO)

20
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Use the same linearization trick to 
improve k=7 to k=100!
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SPECIAL TOPICS (SPRING 2025)

GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with 
min value:
→ size(i) × size(j) × selectivity(i,j)
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GREEDY OPERATOR ORDERING (GOO)

Find pair of connected nodes i, j with 
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node 
and update graph:
→ S
→ Recompute selectivities of edges to other 

nodes.
→ vity(i,j)
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Find pair of connected nodes i, j with 
min value:
→ size(i) × size(j) × selectivity(i,j)

Merge nodes i and j into new node 
and update graph:
→ S
→ Recompute selectivities of edges to other 

nodes.

Repeat until only one node remains.
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EXPERIMENTAL RESULTS

Comparison of different DBMSs 
on random queries with an 
increasing number of relations.

Neither the algorithms or data 
structures used in other 
optimizer implementations can 
handle large queries.
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OBSERVATION

All the methods we've discuss today assume queries 
only contain inner joins and no cross products.

We will further examine how to consider outer 
joins and cross products next class.
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RANDOMIZED ALGORITHMS

Alternative for handling large queries by randomly 
exploring solution space of (valid) plans for a query.
→ Keep searching until a cost threshold is reached or the 

optimizer runs for a length of time.
→ No guarantees about optimality of plans.

Only one DBMS does this and the quality of their 
plans are known to be bad…
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QUICKPICK

Incrementally build random join trees and then pick 
the one that has the lowest cost.
→ Randomly select and remove an edge in the query graph.
→ Add a join or predicate to the new plan.
→ If new query plan has lower cost than best plan seen, keep 

going.
→ Otherwise, discard plan, reset query graph, and start over.

Bias the sampling function when choosing an edge 
towards edges based with lower selectivities.
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SIMULATED ANNEALING

Start with a query plan that is generated using the 
heuristic-only approach.

Compute random permutations of operators (e.g., 
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some 

probability.
→ Reject any change that violates correctness (e.g., sort 

ordering).
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm 
that selects join orderings (GEQO).

At the beginning of each round, generate different 
variants of the query plan.

Select the plans that have the lowest cost and 
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER

28

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER

28

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER
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SPECIAL TOPICS (SPRING 2025)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the 

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the optimizer may have chosen 

a plan.
→ Must do extra work to ensure that query plans are 

deterministic.
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SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Using different strategies based on the complexity 
of a query is a good idea.

Use an "inferior" algorithm that is fast to get a quick 
answer, then spend remaining time to refine it with 
more robust methods.
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SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Top-down join enumeration
→ Assigned reading will not consider adaptivity.
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