
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ADMINISTRIVIA

Paper Reviews resume this Wednesday Feb 5th

Project #1 is due Friday Feb 28th

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025/syllabus.html#reviews
https://15799.courses.cs.cmu.edu/spring2025/project1.html

SPECIAL TOPICS (SPRING 2025)

UPCOMING DATABASE TALKS

Convex (DB Seminar)
→ Monday Feb 10th @ 4:30pm ET
→ Zoom

The Germans (DB Seminar)
→ Monday Feb 17th @ 4:30pm ET
→ Zoom

Pinot (DB Seminar)
→ Monday Feb 24th @ 4:30pm ET
→ Zoom

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.cs.cmu.edu/events/sql-death-larry-ellison-was-right-kinda-typescript-stored-procedures-for-the-modern-age/
https://db.cs.cmu.edu/events/sql-death-towards-sanity-in-query-languages/
https://db.cs.cmu.edu/events/sql-death-apache-pinot-query-optimizer/

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

We discussed the key ideas of the Cascades
optimizer architecture:
→ Task-based transformation scheduling
→ Deferred Expansion of Logical Expressions
→ Promise-based Guidance
→ Memo Table

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

We now have a conceptual understanding of the
high-level architecture of a query optimizer.

The quality of the plans that an optimizer generates
is mostly based on three factors:
→ Search Algorithm
→ Cost Model
→ Transformations

6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TRANSFORMATIONS

Changing query plan into a new form that is
semantically equivalent / logically correct.
→ Need to ensure new query plan produces the same result as

the original no matter the inputs.
→ Exploit relational algebra equivalencies in the context of

query and database contents (logical + physical).

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TRANSFORMATIONS

Changing query plan into a new form that is
semantically equivalent / logically correct.
→ Need to ensure new query plan produces the same result as

the original no matter the inputs.
→ Exploit relational algebra equivalencies in the context of

query and database contents (logical + physical).

The goal of each transformation is to:
→ Lower query execution cost.
→ Unlock additional transformations.

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NOTA BENE

We will follow the EQO Book style
and represent predicates as separate
logical operators.

In a real-world implementation,
physical operators contain the
predicates as internal attributes.

8

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Access Path

Inner Joins

Outer Joins

Group-By

Star / Snowflake Queries

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCESS PATH TRANSFORMATION

An optimizer chooses the access method(s) for
those relations that minimizes the cost of retrieving
a query's requested data from base relations.

Cost of access method depends on several factors:
→ Selectivity of predicate
→ Sort order of the table / index
→ Data accoutrements (e.g., INCLUDE, zone maps)
→ Compression / encoding

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to improve the likelihood of index-
only queries.

DBMS stores these columns in the
leaf nodes and are not part of the
search key.
→ Include columns cannot be used to

guarantee uniqueness.

11

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to improve the likelihood of index-
only queries.

DBMS stores these columns in the
leaf nodes and are not part of the
search key.
→ Include columns cannot be used to

guarantee uniqueness.

11

SELECT b FROM foo
 WHERE a = 123
 AND c = 'WuTang';

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to improve the likelihood of index-
only queries.

DBMS stores these columns in the
leaf nodes and are not part of the
search key.
→ Include columns cannot be used to

guarantee uniqueness.

11

SELECT b FROM foo
 WHERE a = 123
 AND c = 'WuTang';

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to improve the likelihood of index-
only queries.

DBMS stores these columns in the
leaf nodes and are not part of the
search key.
→ Include columns cannot be used to

guarantee uniqueness.

11

SELECT b FROM foo
 WHERE a = 123
 AND c = 'WuTang';

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to improve the likelihood of index-
only queries.

DBMS stores these columns in the
leaf nodes and are not part of the
search key.
→ Include columns cannot be used to

guarantee uniqueness.

11

SELECT b FROM foo
 WHERE a = 123
 AND c = 'WuTang';

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ACCESS METHODS

Index Seek:
→ Retrieve tuple(s) for a predicate on index.

Index Key Lookup:
→ Return true/false if key exists in index.

Index Scan:
→ Range scan on index.

Table Scan:
→ Sequential scan on table heap.

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SINGLE ACCESS METHOD

Generate multiple alternatives for retrieving data
from a base relation for a given expression.

Available alternatives depend on query, database
logical schema, and DBMS implementation.
→ Example: A rule determines whether an index qualifies

based on a query's predicates (e.g., partial indexes).

Table Scan is always the fallback option.
→ Often worst choice in row stores but it is sometimes the

only choice in column stores.

13

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SINGLE ACCESS METHOD

14

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a_cb ON S(a)
 INCLUDE (c,b);

CREATE INDEX idx_b_ca ON S(b)
 INCLUDE (c,a);

EQOP Book

Logical Op

Physical Op

Enforcer

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

SINGLE ACCESS METHOD

14

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a_cb ON S(a)
 INCLUDE (c,b);

CREATE INDEX idx_b_ca ON S(b)
 INCLUDE (c,a);

EQOP Book

Table Scan

Logical Op

Physical Op

Enforcer

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

SINGLE ACCESS METHOD

14

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a_cb ON S(a)
 INCLUDE (c,b);

CREATE INDEX idx_b_ca ON S(b)
 INCLUDE (c,a);

EQOP Book

Logical Op

Physical Op

Enforcer

Filter

Index(idx_a_cb)

S.b = 20

S.a > 10

Index Seek

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

SINGLE ACCESS METHOD

14

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a_cb ON S(a)
 INCLUDE (c,b);

CREATE INDEX idx_b_ca ON S(b)
 INCLUDE (c,a);

EQOP Book

Logical Op

Physical Op

Enforcer

Filter

Index(idx_b_ca)

S.a > 10

S.b = 20

Index Scan

Filter

Index(idx_a_cb)

S.b = 20

S.a > 10

Index Seek

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

MULTIPLE ACCESS METHODS

If there are multiple access methods available for a
query, the optimizer does not have to pick only one:
→ May be a combination of multiple indexes (common)

and/or table scan (rare).

Represent multiple access methods as a logical self-
join on the target relation.

Convert this self-join into a regular join or use a
special multi-index scans physical operator
→ Example: PostgreSQL Bitmap Scan

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

SPECIAL TOPICS (SPRING 2025)

MULTIPLE ACCESS METHODS

16

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a ON S(a);

EQOP Book

Logical Op

Physical Op

Enforcer

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

MULTIPLE ACCESS METHODS

16

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a ON S(a);

EQOP Book

Logical Op

Physical Op

Enforcer

Filter

Index(idx_a)

S.b = 20

S.a > 10

NL_Join

Index Scan

Index(pkey)

Key Lookup

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

MULTIPLE ACCESS METHODS

16

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a ON S(a);

EQOP Book

Logical Op

Physical Op

Enforcer

Filter

Index(idx_a)

S.b = 20

S.a > 10

NL_Join

Index Scan

Index(pkey)

Key Lookup

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

MULTIPLE ACCESS METHODS

16

CREATE TABLE S (
 id INT PRIMARY KEY,
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL);

SELECT S.a, S.b FROM S
 WHERE S.a > 10
 AND S.b = 20;

Filter

Get(S.a,S.b)

S

LogicalOp-AND

S.a > 10 S.b = 20

CREATE INDEX idx_a ON S(a);

EQOP Book

Logical Op

Physical Op

Enforcer

Filter

Index(idx_a)

S.b = 20

S.a > 10

NL_Join

Index Scan

Index(pkey)

Key Lookup

Physical Data Structure?
Selectivity of Predicate?

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

INNER JOIN

Generate different join orderings for the query.
→ Inner equi-joins are the most common, but optimizer

needs to handle corner cases (e.g., anti-joins).

The commutativity and associativity rules will
generate duplicate expressions.
→ Cascades' memo table ensures that the search algorithm

does not waste time exploring those duplicates.

Join Enumeration via Transformations:
→ Space Complexity: O(3N)
→ Computational Complexity: O(4N)

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INNER JOIN

Generate different join orderings for the query.
→ Inner equi-joins are the most common, but optimizer

needs to handle corner cases (e.g., anti-joins).

The commutativity and associativity rules will
generate duplicate expressions.
→ Cascades' memo table ensures that the search algorithm

does not waste time exploring those duplicates.

Join Enumeration via Transformations:
→ Space Complexity: O(3N)
→ Computational Complexity: O(4N)

17

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645923.673661

SPECIAL TOPICS (SPRING 2025)

JOIN ENUMERATION GUIDANCE

Apply rules in a specific order and maintain a
summary about derivation history of each operator
to determine which rules to disable.

Leverage information about the behavior of rules to
avoid unnecessary transformations.

18

The Complexity of Transformation-Based Join EnumerationVLDB 1997

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645923.673661
https://dl.acm.org/doi/10.5555/645923.673661

SPECIAL TOPICS (SPRING 2025)

JOIN ENUMERATION GUIDANCE

R1: Commutativity
→ X⨝0Y Y⨝1X
→ Disable R1, R2, R3, R4 on new operator ⨝1.

R2: Right Associativity
→ (X⨝0Y)⨝1Z X⨝2(Y⨝3Z)
→ Disable R2, R3, R4 on new operator ⨝2.

R3: Left Associativity
→ X⨝0(Y⨝1Z) (X⨝2Y)⨝3Z)
→ Disable rules R2, R3, R4 on new operator ⨝3.

R4: Exchange
→ (W⨝0X)⨝1(Y⨝2Z) (W⨝3Y)⨝4(X⨝5Z)
→ Disable all rules R1, R2, R3, R4 on ⨝4.

19

Arjan Pellenkoft

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645923.673661

SPECIAL TOPICS (SPRING 2025)

JOIN ENUMERATION GUIDANCE

R1: Commutativity
→ X⨝0Y Y⨝1X
→ Disable R1, R2, R3, R4 on new operator ⨝1.

R2: Right Associativity
→ (X⨝0Y)⨝1Z X⨝2(Y⨝3Z)
→ Disable R2, R3, R4 on new operator ⨝2.

R3: Left Associativity
→ X⨝0(Y⨝1Z) (X⨝2Y)⨝3Z)
→ Disable rules R2, R3, R4 on new operator ⨝3.

R4: Exchange
→ (W⨝0X)⨝1(Y⨝2Z) (W⨝3Y)⨝4(X⨝5Z)
→ Disable all rules R1, R2, R3, R4 on ⨝4.

19

Arjan Pellenkoft

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645923.673661

SPECIAL TOPICS (SPRING 2025)

JOIN ENUMERATION GUIDANCE

R1: Commutativity
→ X⨝0Y Y⨝1X
→ Disable R1, R2, R3, R4 on new operator ⨝1.

R2: Right Associativity
→ (X⨝0Y)⨝1Z X⨝2(Y⨝3Z)
→ Disable R2, R3, R4 on new operator ⨝2.

R3: Left Associativity
→ X⨝0(Y⨝1Z) (X⨝2Y)⨝3Z)
→ Disable rules R2, R3, R4 on new operator ⨝3.

R4: Exchange
→ (W⨝0X)⨝1(Y⨝2Z) (W⨝3Y)⨝4(X⨝5Z)
→ Disable all rules R1, R2, R3, R4 on ⨝4.

19

Arjan Pellenkoft

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645923.673661

SPECIAL TOPICS (SPRING 2025)

(S.a=123)

PREDICATE PUSHDOWN / PULLUP

A predicate that does not reference attributes in a
join result can be moved to occur before or after a
join based on its selectivity and computational cost.

20

EQOP Book

Filter

S

LogicalOp-ANDJoin

T P1 P2 Pn…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

(S.a=123) (S.b LIKE '%WUTANG%')

PREDICATE PUSHDOWN / PULLUP

A predicate that does not reference attributes in a
join result can be moved to occur before or after a
join based on its selectivity and computational cost.

20

EQOP Book

Filter

S

LogicalOp-ANDJoin

T P1 P2 Pn…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

(S.a=123) (S.b LIKE '%WUTANG%')

PREDICATE PUSHDOWN / PULLUP

A predicate that does not reference attributes in a
join result can be moved to occur before or after a
join based on its selectivity and computational cost.

20

EQOP Book

Filter

S

LogicalOp-ANDJoin

T P1 P2 Pn…

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

(S.a=123)

PREDICATE PUSHDOWN / PULLUP

A predicate that does not reference attributes in a
join result can be moved to occur before or after a
join based on its selectivity and computational cost.

20

EQOP Book

Filter

S

LogicalOp-ANDJoin

T P1 P2 Pn…

Filter

S

LogicalOp-ANDJoin

T

P1

P2 Pn…Filter

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

PHYSICAL OPERATOR TRANSFORMATION

The selection of a physical join operator depends on
the join predicates and the layout of data.
→ Hash Joins: Can only be used for equi-joins.
→ Merge Join: Input data must be sorted on join key(s).
→ Nested Loop Join: Fallback option.

The optimizer also selects runtime operator
parameters during this process.
→ Example: Hash table size

21

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OUTER JOIN

Like inner joins, different orderings for outer joins
have wildly different costs.

But unlike inner joins, transformation rules do not
always hold for outer joins.
→ Different orderings retain different non-matching tuples.

The goal is to preserve the same non-matching
tuples and NULL values for attributes.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

REDUNDANCY RULE

Some outerjoins can safely be replaced
by inner joins if the query contains a
null-rejecting predicate
→ Any predicate that filters NULL values.

Converting an outer join to an inner
join unlocks additional optimizations.

23

How to Extend a Conventional Optimizer to Handle One- and Two-sided OuterjoinICDE 1992

SELECT S.a
 FROM S LEFT OUTER JOIN R
 ON S.id = R.id
 WHERE S.a > 10;

Filter

S.a > 10LEFT_OUTER(S,R)

S R

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1109/ICDE.1992.213169
https://doi.org/10.1109/ICDE.1992.213169

SPECIAL TOPICS (SPRING 2025)

REDUNDANCY RULE

Some outerjoins can safely be replaced
by inner joins if the query contains a
null-rejecting predicate
→ Any predicate that filters NULL values.

Converting an outer join to an inner
join unlocks additional optimizations.

23

How to Extend a Conventional Optimizer to Handle One- and Two-sided OuterjoinICDE 1992

SELECT S.a
 FROM S LEFT OUTER JOIN R
 ON S.id = R.id
 WHERE S.a > 10;

Filter

S.a > 10LEFT_OUTER(S,R)

S R

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1109/ICDE.1992.213169
https://doi.org/10.1109/ICDE.1992.213169

SPECIAL TOPICS (SPRING 2025)

REDUNDANCY RULE

Some outerjoins can safely be replaced
by inner joins if the query contains a
null-rejecting predicate
→ Any predicate that filters NULL values.

Converting an outer join to an inner
join unlocks additional optimizations.

23

How to Extend a Conventional Optimizer to Handle One- and Two-sided OuterjoinICDE 1992

SELECT S.a
 FROM S LEFT OUTER JOIN R
 ON S.id = R.id
 WHERE S.a > 10;

Filter

S.a > 10LEFT_OUTER(S,R)

S R

INNER_OUTER(S,R)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1109/ICDE.1992.213169
https://doi.org/10.1109/ICDE.1992.213169

SPECIAL TOPICS (SPRING 2025)

GROUP-BY

When a query computes an aggregation on the
result of joining two or more tables, it may be better
to perform the aggregation first before the join and
then join the tables on the aggregation result.

Two Cases:
→ Complete Group-By Pushdown
→ Partial Group-By Pushdown

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

COMPLETE GROUP-BY PUSHDOWN

All aggregate functions in a group-by
operator only use columns in S.

The primary key of R is a subset of
the columns referenced in a group-by.

The columns referenced in a pushed
down group-by operator is the union
of columns in original group-by and
equi-join columns of S in R⨝S.

44

Including Group-By in Query OptimizationVLDB 1994

SELECT SUM(R.a)
 FROM R JOIN S
 ON R.id = S.r_id
 GROUP BY R.id, S.r_id;

R S

Join

GROUP-BY(R.id,S.r_id)
SUM(S.a)

R

S

Join

GROUP-BY(S.r_id)
SUM(S.a)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.5555/645920.672834
https://dl.acm.org/doi/10.5555/645920.672834

SPECIAL TOPICS (SPRING 2025)

PARTIAL GROUP-BY PUSHDOWN

It may not always be possible to move
an aggregation below a join.

Instead, the optimizer can create a
new group-by operator that computes
a portion of the aggregation.
→ Partial aggregation reduces the cardinality

of the input relation to the join.

45

SELECT SUM(S.a)
 FROM R JOIN S
 ON R.id = S.r_id
 GROUP BY R.b;

R S

Join

GROUP-BY(R.b)
SUM(S.a)

R

S

Join

GROUP-BY(R.b)
SUM(e)

GROUP-BY(S.r_id)
SUM(S.a) AS e

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The optimizer can detect whether a query is
targeting a database with a common design pattern
and invoke transformations that push a query plan
into an ideal form.

We saw this before with sargable queries where the
optimizer can immediately select the best index.

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

STAR / SNOWFLAKE QUERIES

If a query joins a fact table with
multiple dimension tables, then
transform it to a left/right-deep join
tree and order dimension tables from
most to least selective.

Avoid wasting time exploring
bushy plans or alternative join
orderings for dimension tables.

28

SELECT * FROM fact AS F
 JOIN dim1 ON F.d1 = dim1.id
 JOIN dim2 ON F.d2 = dim2.id
 JOIN dim3 ON F.d3 = dim3.id;

EQOP Book

dim3

Join

fact

Join

dim1

Join

dim2

dim1

Join

fact

Join

dim2

Join

dim3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

It takes years to create a comprehensive library of
transformation rules to handle all query plan shapes.
→ Even the best systems miss many opportunities.
→ Search for "$DBMS bad query plan"

One project could be creating an open-source
repository of transformation rules.

We did not discuss nested subquery decorrelation
because it is very hard and Microsoft's approach (as
described in the book) is incomplete.

29

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Switching back to bottom-up optimization to
discuss join enumeration alternatives.

This will be your first (of many) encounter with a
paper from the Germans this semester…

30

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Query Plan Transformations
	Slide 3: ADMINISTRIVIA
	Slide 4: UPCOMING DATABASE TALKS
	Slide 5: LAST CLASS
	Slide 6: OBSERVATION
	Slide 7: TRANSFORMATIONS
	Slide 8: TRANSFORMATIONS
	Slide 9: NOTA BENE
	Slide 10: TODAY’S AGENDA

	Access Path
	Slide 11: ACCESS PATH TRANSFORMATION
	Slide 12: INDEX INCLUDE COLUMNS
	Slide 13: INDEX INCLUDE COLUMNS
	Slide 14: INDEX INCLUDE COLUMNS
	Slide 15: INDEX INCLUDE COLUMNS
	Slide 16: INDEX INCLUDE COLUMNS
	Slide 17: ACCESS METHODS
	Slide 18: SINGLE ACCESS METHOD
	Slide 19: SINGLE ACCESS METHOD
	Slide 20: SINGLE ACCESS METHOD
	Slide 21: SINGLE ACCESS METHOD
	Slide 22: SINGLE ACCESS METHOD
	Slide 23: MULTIPLE ACCESS METHODS
	Slide 24: MULTIPLE ACCESS METHODS
	Slide 25: MULTIPLE ACCESS METHODS
	Slide 26: MULTIPLE ACCESS METHODS
	Slide 27: MULTIPLE ACCESS METHODS

	Inner Join
	Slide 28: INNER JOIN
	Slide 29: INNER JOIN
	Slide 30: JOIN ENUMERATION GUIDANCE
	Slide 31: JOIN ENUMERATION GUIDANCE
	Slide 32: JOIN ENUMERATION GUIDANCE
	Slide 33: JOIN ENUMERATION GUIDANCE
	Slide 34: PREDICATE PUSHDOWN / PULLUP
	Slide 35: PREDICATE PUSHDOWN / PULLUP
	Slide 36: PREDICATE PUSHDOWN / PULLUP
	Slide 37: PREDICATE PUSHDOWN / PULLUP
	Slide 38: PHYSICAL OPERATOR TRANSFORMATION

	Outer Join
	Slide 39: OUTER JOIN
	Slide 40: REDUNDANCY RULE
	Slide 41: REDUNDANCY RULE
	Slide 42: REDUNDANCY RULE

	Group-By
	Slide 43: GROUP-BY
	Slide 44: COMPLETE GROUP-BY PUSHDOWN
	Slide 45: PARTIAL GROUP-BY PUSHDOWN

	Special Cases
	Slide 46: OBSERVATION
	Slide 47: STAR / SNOWFLAKE QUERIES

	Conclusion
	Slide 48: PARTING THOUGHTS
	Slide 49: NEXT CLASS

