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SPECIAL TOPICS (SPRING 2025)

ERRATA
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→ Optimization Phases
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SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to 

generate all possible logical expression 
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to 

generate physical operators.

Start with a logical plan of what 
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(A⨝B)

GET(C)GET(A) GET(B)
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SPECIAL TOPICS (SPRING 2025)

VOLCANO: ENFORCERS

Enforcers are physical operators that 
ensure the properties of the output of 
a sub-plan / expression.

Volcano's rule engine has additional 
logical to avoid considering operators 
below it in the plan that satisfy its 
property requirements.
→ Example: INDEX_SCAN(xxx.b)

4

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book
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SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Cascades Overview

Tasks / Scheduling

Optimizations

Implementations

Project #1

16
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SPECIAL TOPICS (SPRING 2025)

CASCADES OPTIMIZER

Object-oriented implementation of the previous 
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.
→ Depth-first search ordering of tasks via a stack.

Supports expression re-writing through a direct 
mapping function rather than an exhaustive search.

17

The Cascades Framework for Query OptimizationIEEE Data Engineering Bulletin 1995

Graefe

Efficiency in the Columbia Database Query OptimizerPortland State University MS Thesis 1998
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SPECIAL TOPICS (SPRING 2025)

CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + transformation rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Unified representation of rules & operators.
→ Single search engine for logical and physical operators.

18

Efficiency in the Columbia Database Query OptimizerPortland State University MS Thesis 1998
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SPECIAL TOPICS (SPRING 2025)

CASCADES: EXPRESSIONS

An expression represents some operation in the 
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two 

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

19

SELECT * FROM A
  JOIN B ON A.id = B.id
  JOIN C ON C.id = A.id;
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SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions derived from selecting allowable 

physical operators for the corresponding logical forms.

20

Output:
{ABC}

Properties:
None

Logical Exprs
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exprs
1.(ASeq⨝SMBSeq)⨝SMCSeq
2.(ASeq⨝HJBSeq)⨝HJCSeq
3.(BSeq⨝NLCSeq)⨝NLASeq
4.(ASeq⨝NLCSeq)⨝NLBSeq
5.⋮

G
ro

u
p
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G
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SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group with a 
placeholder (e.g., {ABC}).
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.

23

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {A}⨝{BC}
 ⋮

Physical Exprs
1. {AB}⨝SM{C}
2. {AB}⨝HJ{C}
3. {AB}⨝NL{C}
4. {BC}⨝SM{A}
 ⋮
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SPECIAL TOPICS (SPRING 2025)

CASCADES: RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.

24
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SPECIAL TOPICS (SPRING 2025)

Pattern

CASCADES: RULES

25

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝{BC}

GET(A)

GET(B) GET(C)

B⨝C

{AB}⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

{AB}⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
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SPECIAL TOPICS (SPRING 2025)

CASCADES: ENFORCERS

Represent enforcers as rules that 
change physical properties of a plan.
→ An enforcer inserts physical operators that 

change the physical properties of the plan.

Cascades does not require special 
casing to implement enforcers.
→ Volcano integrated enforcers as operators 

via ad hoc code.

26

GET(xxx.a > 10)
ORDER-BY (T.b)

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;
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https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

CASCADES: TASKS

A task is a fine-grained unit of work that 
represents an operation in the query optimization 
process.
→ Break down optimization into smaller, manageable pieces 

to allow for more flexible and efficient exploration.

The order that a task is invoked can be customized 
via promise.

27
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SPECIAL TOPICS (SPRING 2025)

CASCADES: PROMISES

A task's promise is the estimated 
benefit of a move on a given 
expression relative to other tasks.
→ Example: Give a higher priority to a join 

order swap rule if the outer table 
expression is larger than inner table 
expression.

Optimizer must still ensure tasks 
execute in the order defined by their 
dependencies.

28

A⨝B

GET(A) GET(B)

Properties:
Cardinality=10k

Properties:
Cardinality=100m

A⨝HJB

GET(A) GET(B)

B⨝A

GET(B) GET(A)

Transformation Rule
Rotate Swap Order

Implementation Rule
EQJOIN→HASHJOIN

https://db.cs.cmu.edu/
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Promise = 10 Promise = 100
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order swap rule if the outer table 
expression is larger than inner table 
expression.

Optimizer must still ensure tasks 
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SPECIAL TOPICS (SPRING 2025)

CASCADES: TASKS

#1 – Optimize Group:
→ Generate best physical plan for a group.

#2 – Optimize Expression:
→ Generate best physical plan for a specific expression.

#3 – Explore Group:
→ Generate logical expressions for a group.

#4 – Explore Expression:
→ Generate logical transformations for a specific expression.

#5 – Apply Rule:
→ Apply a rule to an input expression.

#6 – Optimize Inputs:
→ Optimize the inputs of a given expression.

31

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025


SPECIAL TOPICS (SPRING 2025)

CASCADES: TASK FLOW

32

SQL Query

#1 – Optimize Group

#2 – Optimize Expression

#4 – Explore Expression

#3 – Explore Group

#6 – Optimize Inputs

#5 – Apply Rule
1

2

3

4

4

5

6

7
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SPECIAL TOPICS (SPRING 2025)

CASCADES: TASK-BASED SEARCH

Optimizer maintains a LIFO stack of tasks to 
perform actions on groups and expressions.

Stack ensures expressions are derived after the best 
plans of its input expressions are derived.
→ Removes sequential ordering of independent 

optimizations.
→ Tasks are stored in the heap rather than in the program 

stack to reduce OOM errors.

33
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides an overview of the optimizer's search 
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management
→ Superfluous Rule Evaluation

34
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SPECIAL TOPICS (SPRING 2025)

PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with 
the same physical properties.

35

Exploiting Upper and Lower Bounds In Top-Down Query OptimizationIDEAS 2001
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

https://db.cs.cmu.edu/
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

{A}⨝HJ{B} 80
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

{A}⨝HJ{B} 80
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80
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SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80

({A}⨝HJ{B})⨝HJ{C} 125
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SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Promises enable Cascades to potentially target more 
beneficial transformations more quickly in the 
search process.

Cascades' flexible architecture enables other 
optimizations to reduce search times.

52
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SPECIAL TOPICS (SPRING 2025)

SIMPLIFICATION RULES

Some rules simplify the logical query plan and 
almost always reduce its cost.

Instead of creating alternative expressions, a 
simplification rule replaces the expression with 
the transformed expression.
→ Removes the need to retain unnecessary state.
→ Equivalent to Starburst rewrite rules.

53
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SPECIAL TOPICS (SPRING 2025)

MACRO RULES

To reduce the complexity of the search space and 
find a better plan more quickly, the optimizer can 
support macro rules that apply multiple 
transformations in a single rule.

This goes against the spirit of simple, independent 
rules as defined in the Volcano paper.

54
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SPECIAL TOPICS (SPRING 2025)

PARALLEL SEARCH

If tasks are independent, then the optimizer can 
execute them in parallel on multiple threads.
→ Memo table is the shared state of the optimization process.
→ Need to ensure internal data structures are thread-safe.

AFAIK, Orca is the only multi-threaded Cascades 
optimizer implementation.

We will discuss this more in Lecture #17.

55
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SPECIAL TOPICS (SPRING 2025)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ CMU optd (2025)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CockroachDB (2010s)
→ Snowflake (2010s)
→ Databricks (2010s)

56
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SPECIAL TOPICS (SPRING 2025)

MICROSOFT SQL SERVER

First Cascades implementation started in 1995.
→ Derivatives are used in many MSFT database products.
→ All transformations are written in C++. No DSL.
→ Scalar / expression transformations are written in 

procedural code and not rules.

DBMS applies transformations in multiple stages 
with increasing scope and complexity.
→ The goal is to leverage domain knowledge to apply 

transformations that you always want to do first to reduce 
the search space.

57
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SPECIAL TOPICS (SPRING 2025)

Tree-to-Tree
Transformations

Cost-based Search
Initialization

Multi-Stage
Cost-Based Search

Engine-Specific
Transformations

Sub-Query Removal
Outer Joins to Inner Joins
Predicate Pushdown
Empty Result Pruning

Stage1: Trivial Plan
Stage2: Quick Plan (Parallel)
Stage3: Full Plan (Parallel)

MSSQL: MULTI-STAGE OPTIMIZATION

58

Simplification / 
Normalization

Pre-Exploration Exploration Post-Optimization

Trivial Plan Short-circuit
Projection Normalization
Statistics Identification/Collection
Initial Cardinality Estimates
Join Collapsing
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SPECIAL TOPICS (SPRING 2025)

MSSQL: OPTIMIZATIONS

Optimization #1: Timeouts are based on the 
number of transformations not wallclock time.
→ Ensures that overloaded systems do not generate different 

plans than under normal operations.

Optimization #2: Pre-populate the Memo Table 
with potentially useful join orderings.
→ Heuristics that consider relationships between tables.
→ Syntactic appearance in query.
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SPECIAL TOPICS (SPRING 2025)

GREENPLUM ORCA

Standalone Cascades implementation in C++.
→ Originally written for Greenplum.
→ Extended to support HAWQ.
→ Supports multi-threaded search.

A DBMS integrates Orca by implementing API to 
send catalog + stats + logical plans and then retrieve 
physical plans.

Open-sourced in 2010s but then closed-sourced in 
2024 after Broadcom acquisition.
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SPECIAL TOPICS (SPRING 2025)

COCKROACHDB

OptGen

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom 
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex 

analysis and modifications.

Also considers scalar expression (predicates) 
transformations together with relational operators.
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SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Andy prefers the Cascades' architecture because it is 
conceptually cleaner than other implementations.
→ The quality of a plan is still highly dependent on accurate 

statistics and cost estimations.

The Germans disagree with top-down search…
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SPECIAL TOPICS (SPRING 2025)

PROJECT #1 – QUERY OPTIMIZER EVALUATION

You will use Apache Calcite to optimize SQL 
queries that are then executed on Calcite (via the 
Enumerable adapter) and DuckDB.

Due Date: Friday Feb 28th
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SPECIAL TOPICS (SPRING 2025)

PROJECT #1 – TASKS

We provide starter code to build and run a Calcite application.

You need to implement the highlighted region.

You are graded against the reference solution on:

(1) RelRunner result correctness

(2) DuckDB performance with disable_optimizer
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Graded with: optimize.sh workload.tgz output_dir

For each foo.sql in workload.tgz/queries,
write to output_dir the following files:

foo.sql             [Original SQL query]
foo.txt             [Logical Calcite Plan]
foo_optimized.txt   [Enumerable Calcite Plan]
foo_results.csv     [Results from foo_optimized]
foo_optimized.sql   [Optimized SQL query]
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https://duckdb.org/docs/configuration/pragmas.html#query-optimization


SPECIAL TOPICS (SPRING 2025)

DEVELOPMENT HINTS

Follow the roadmap.

Use our code for serializing the txt and csv files.

Beware of case sensitivity issues (e.g., table name).

The “standard library” of rules does not include 
operation-specific rules. You may need them.

If there’s limited support for optimizing or 
deparsing Foo, maybe you can turn Foo into Bar. 
Then optimize and/or deparse that instead.
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SPECIAL TOPICS (SPRING 2025)

THINGS TO NOTE

Do not hardcode based on the provided workload’s 
data distribution – we test on a different workload.

Limit your memory usage to avoid autograder 
crashes: java –Xmx4096m jar App.jar APP_ARGS

Post your questions on Piazza.

Make sure you submit a reflection that documents 
what you tried. Bullet points are fine.
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SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Cascades Transformations
→ Everything but sub-queries.
→ You do not need to submit a reading synopsis.
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