
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ERRATA

Volcano Clarification
→ Optimization Phases
→ Enforcers

Send Corrections: db-mistakes@cs.cmu.edu

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(A⨝B)

GET(C)GET(A) GET(B)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN({A,B}⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN(A⨝B)

HASH_JOIN({A,B}⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN(A⨝B)

HASH_JOIN({A,B}⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN(A⨝B)

SEQSCAN(A)

HASH_JOIN({A,B}⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN(A⨝B)

SEQSCAN(A) SEQSCAN(B)

HASH_JOIN({A,B}⨝C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: PHASES

3

Generation Phase:
→ Apply transformation rules to

generate all possible logical expression
alternatives.

Cost Analysis Phase:
→ Apply implementation rules to

generate physical operators.

Start with a logical plan of what
result the query needs to produce.

Logical Op

Physical Op

Enforcer

GET((A⨝B)⨝C)

GET(C⨝(A⨝B))

GET(A⨝B)

GET(C)GET(A) GET(B)

GET(A⨝(B⨝C))

GET(B⨝(A⨝C))

GET(B⨝C)

GET(A⨝C)

HASH_JOIN(A⨝B)

SEQSCAN(A) SEQSCAN(B)

HASH_JOIN({A,B}⨝C)

SEQSCAN(C)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

4

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

VOLCANO: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

4

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

VOLCANO: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

4

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Cascades Overview

Tasks / Scheduling

Optimizations

Implementations

Project #1

16

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES OPTIMIZER

Object-oriented implementation of the previous
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.
→ Depth-first search ordering of tasks via a stack.

Supports expression re-writing through a direct
mapping function rather than an exhaustive search.

17

The Cascades Framework for Query OptimizationIEEE Data Engineering Bulletin 1995

Graefe

Efficiency in the Columbia Database Query OptimizerPortland State University MS Thesis 1998

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

SPECIAL TOPICS (SPRING 2025)

CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + transformation rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Unified representation of rules & operators.
→ Single search engine for logical and physical operators.

18

Efficiency in the Columbia Database Query OptimizerPortland State University MS Thesis 1998

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

SPECIAL TOPICS (SPRING 2025)

CASCADES: EXPRESSIONS

An expression represents some operation in the
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

19

SELECT * FROM A
 JOIN B ON A.id = B.id
 JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions derived from selecting allowable

physical operators for the corresponding logical forms.

20

Output:
{ABC}

Properties:
None

Logical Exprs
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exprs
1.(ASeq⨝SMBSeq)⨝SMCSeq
2.(ASeq⨝HJBSeq)⨝HJCSeq
3.(BSeq⨝NLCSeq)⨝NLASeq
4.(ASeq⨝NLCSeq)⨝NLBSeq
5.⋮

G
ro

u
p

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions derived from selecting allowable

physical operators for the corresponding logical forms.

20

Output:
{ABC}

Properties:
None

Logical Exprs
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exprs
1.(ASeq⨝SMBSeq)⨝SMCSeq
2.(ASeq⨝HJBSeq)⨝HJCSeq
3.(BSeq⨝NLCSeq)⨝NLASeq
4.(ASeq⨝NLCSeq)⨝NLBSeq
5.⋮

Equivalent
Expressions

G
ro

u
p

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions derived from selecting allowable

physical operators for the corresponding logical forms.

20

Output:
{ABC}

Properties:
None

Logical Exprs
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exprs
1.(ASeq⨝SMBSeq)⨝SMCSeq
2.(ASeq⨝HJBSeq)⨝HJCSeq
3.(BSeq⨝NLCSeq)⨝NLASeq
4.(ASeq⨝NLCSeq)⨝NLBSeq
5.⋮

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: GROUPS

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group with a
placeholder (e.g., {ABC}).
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

23

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {A}⨝{BC}
 ⋮

Physical Exprs
1. {AB}⨝SM{C}
2. {AB}⨝HJ{C}
3. {AB}⨝NL{C}
4. {BC}⨝SM{A}
 ⋮

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: RULES

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Pattern

CASCADES: RULES

25

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝{BC}

GET(A)

GET(B) GET(C)

B⨝C

{AB}⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

{AB}⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: ENFORCERS

Represent enforcers as rules that
change physical properties of a plan.
→ An enforcer inserts physical operators that

change the physical properties of the plan.

Cascades does not require special
casing to implement enforcers.
→ Volcano integrated enforcers as operators

via ad hoc code.

26

GET(xxx.a > 10)
ORDER-BY (T.b)

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: TASKS

A task is a fine-grained unit of work that
represents an operation in the query optimization
process.
→ Break down optimization into smaller, manageable pieces

to allow for more flexible and efficient exploration.

The order that a task is invoked can be customized
via promise.

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: PROMISES

A task's promise is the estimated
benefit of a move on a given
expression relative to other tasks.
→ Example: Give a higher priority to a join

order swap rule if the outer table
expression is larger than inner table
expression.

Optimizer must still ensure tasks
execute in the order defined by their
dependencies.

28

A⨝B

GET(A) GET(B)

Properties:
Cardinality=10k

Properties:
Cardinality=100m

A⨝HJB

GET(A) GET(B)

B⨝A

GET(B) GET(A)

Transformation Rule
Rotate Swap Order

Implementation Rule
EQJOIN→HASHJOIN

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Promise = 10 Promise = 100

CASCADES: PROMISES

A task's promise is the estimated
benefit of a move on a given
expression relative to other tasks.
→ Example: Give a higher priority to a join

order swap rule if the outer table
expression is larger than inner table
expression.

Optimizer must still ensure tasks
execute in the order defined by their
dependencies.

28

A⨝B

GET(A) GET(B)

Properties:
Cardinality=10k

Properties:
Cardinality=100m

A⨝HJB

GET(A) GET(B)

B⨝A

GET(B) GET(A)

Transformation Rule
Rotate Swap Order

Implementation Rule
EQJOIN→HASHJOIN

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Promise = 10 Promise = 100

CASCADES: PROMISES

A task's promise is the estimated
benefit of a move on a given
expression relative to other tasks.
→ Example: Give a higher priority to a join

order swap rule if the outer table
expression is larger than inner table
expression.

Optimizer must still ensure tasks
execute in the order defined by their
dependencies.

28

A⨝B

GET(A) GET(B)

Properties:
Cardinality=10k

Properties:
Cardinality=100m

A⨝HJB

GET(A) GET(B)

B⨝A

GET(B) GET(A)

Transformation Rule
Rotate Swap Order

Implementation Rule
EQJOIN→HASHJOIN

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: TASKS

#1 – Optimize Group:
→ Generate best physical plan for a group.

#2 – Optimize Expression:
→ Generate best physical plan for a specific expression.

#3 – Explore Group:
→ Generate logical expressions for a group.

#4 – Explore Expression:
→ Generate logical transformations for a specific expression.

#5 – Apply Rule:
→ Apply a rule to an input expression.

#6 – Optimize Inputs:
→ Optimize the inputs of a given expression.

31

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: TASK FLOW

32

SQL Query

#1 – Optimize Group

#2 – Optimize Expression

#4 – Explore Expression

#3 – Explore Group

#6 – Optimize Inputs

#5 – Apply Rule
1

2

3

4

4

5

6

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: TASK-BASED SEARCH

Optimizer maintains a LIFO stack of tasks to
perform actions on groups and expressions.

Stack ensures expressions are derived after the best
plans of its input expressions are derived.
→ Removes sequential ordering of independent

optimizations.
→ Tasks are stored in the heap rather than in the program

stack to reduce OOM errors.

33

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides an overview of the optimizer's search
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management
→ Superfluous Rule Evaluation

34

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with
the same physical properties.

35

Exploiting Upper and Lower Bounds In Top-Down Query OptimizationIDEAS 2001

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

{A}⨝HJ{B} 80

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

{A}⨝HJ{B} 80

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

CASCADES: MEMO TABLE

36

Output:
{ABC}

Properties:
None

Logical Exprs
1. {AB}⨝{C}
2. {BC}⨝{A}
3. {AC}⨝{B}
4. {B}⨝{AC}

Physical Exprs
1. {AB}⨝NLC
2. {BC}⨝NLA
3. {AC}⨝NLB

⋮

Output:
{AB}

Properties:
None

Logical Exprs
1. {A}⨝{B}
2. {B}⨝{A}

Physical Exprs
1. {A}⨝NL{B}
2. {A}⨝HJ{B}
3. {B}⨝NL{A}
4. {B}⨝HJ{A}

Output:
{A}

Properties:
None

Logical Exprs
1. GET(A)

Physical Exprs
1. SeqScan(A)
2. IdxScan(A)

Output:
{B}

Properties:
None

Logical Exprs
1. GET(B)

Physical Exprs
1. SeqScan(B)
2. IdxScan(B)

Output:
{C}

Properties:
None

Logical Exprs
1. GET(C)

Physical Exprs
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

{ABC}

{AB}

{A}

{C}

{B}

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

{A}⨝HJ{B} 80

({A}⨝HJ{B})⨝HJ{C} 125

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

Promises enable Cascades to potentially target more
beneficial transformations more quickly in the
search process.

Cascades' flexible architecture enables other
optimizations to reduce search times.

52

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SIMPLIFICATION RULES

Some rules simplify the logical query plan and
almost always reduce its cost.

Instead of creating alternative expressions, a
simplification rule replaces the expression with
the transformed expression.
→ Removes the need to retain unnecessary state.
→ Equivalent to Starburst rewrite rules.

53

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

MACRO RULES

To reduce the complexity of the search space and
find a better plan more quickly, the optimizer can
support macro rules that apply multiple
transformations in a single rule.

This goes against the spirit of simple, independent
rules as defined in the Volcano paper.

54

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

PARALLEL SEARCH

If tasks are independent, then the optimizer can
execute them in parallel on multiple threads.
→ Memo table is the shared state of the optimization process.
→ Need to ensure internal data structures are thread-safe.

AFAIK, Orca is the only multi-threaded Cascades
optimizer implementation.

We will discuss this more in Lecture #17.

55

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-query-topics-query-piv-opt-overview.html
https://15799.courses.cs.cmu.edu/spring2025/schedule.html#feb-17-2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

SPECIAL TOPICS (SPRING 2025)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ CMU optd (2025)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CockroachDB (2010s)
→ Snowflake (2010s)
→ Databricks (2010s)

56

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://github.com/cmu-db/optd
https://youtu.be/pQe1LQJiXN0
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://youtu.be/wHo-VtzTHx0
https://youtu.be/CPWn1SZUZqE
https://youtu.be/Xb2zm4-F1HI

SPECIAL TOPICS (SPRING 2025)

MICROSOFT SQL SERVER

First Cascades implementation started in 1995.
→ Derivatives are used in many MSFT database products.
→ All transformations are written in C++. No DSL.
→ Scalar / expression transformations are written in

procedural code and not rules.

DBMS applies transformations in multiple stages
with increasing scope and complexity.
→ The goal is to leverage domain knowledge to apply

transformations that you always want to do first to reduce
the search space.

57

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Tree-to-Tree
Transformations

Cost-based Search
Initialization

Multi-Stage
Cost-Based Search

Engine-Specific
Transformations

Sub-Query Removal
Outer Joins to Inner Joins
Predicate Pushdown
Empty Result Pruning

Stage1: Trivial Plan
Stage2: Quick Plan (Parallel)
Stage3: Full Plan (Parallel)

MSSQL: MULTI-STAGE OPTIMIZATION

58

Simplification /
Normalization

Pre-Exploration Exploration Post-Optimization

Trivial Plan Short-circuit
Projection Normalization
Statistics Identification/Collection
Initial Cardinality Estimates
Join Collapsing

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/pQe1LQJiXN0

SPECIAL TOPICS (SPRING 2025)

MSSQL: OPTIMIZATIONS

Optimization #1: Timeouts are based on the
number of transformations not wallclock time.
→ Ensures that overloaded systems do not generate different

plans than under normal operations.

Optimization #2: Pre-populate the Memo Table
with potentially useful join orderings.
→ Heuristics that consider relationships between tables.
→ Syntactic appearance in query.

59

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://youtu.be/pQe1LQJiXN0

SPECIAL TOPICS (SPRING 2025)

GREENPLUM ORCA

Standalone Cascades implementation in C++.
→ Originally written for Greenplum.
→ Extended to support HAWQ.
→ Supports multi-threaded search.

A DBMS integrates Orca by implementing API to
send catalog + stats + logical plans and then retrieve
physical plans.

Open-sourced in 2010s but then closed-sourced in
2024 after Broadcom acquisition.

60

Orca: A Modular Query Optimizer Architecture for Big DataSIGMOD 2014

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://greenplum.org/
http://hawq.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637

SPECIAL TOPICS (SPRING 2025)

COCKROACHDB

OptGen

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex

analysis and modifications.

Also considers scalar expression (predicates)
transformations together with relational operators.

31

Rebecca Taft

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://github.com/cockroachdb/cockroach/blob/master/pkg/sql/opt/optgen/lang/doc.go
https://youtu.be/wHo-VtzTHx0

SPECIAL TOPICS (SPRING 2025)

COCKROACHDB

OptGen

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex

analysis and modifications.

Also considers scalar expression (predicates)
transformations together with relational operators.

31

Rebecca Taft

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://github.com/cockroachdb/cockroach/blob/master/pkg/sql/opt/optgen/lang/doc.go
https://youtu.be/wHo-VtzTHx0
https://youtu.be/wHo-VtzTHx0

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Andy prefers the Cascades' architecture because it is
conceptually cleaner than other implementations.
→ The quality of a plan is still highly dependent on accurate

statistics and cost estimations.

The Germans disagree with top-down search…

63

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECT #1 – QUERY OPTIMIZER EVALUATION

You will use Apache Calcite to optimize SQL
queries that are then executed on Calcite (via the
Enumerable adapter) and DuckDB.

Due Date: Friday Feb 28th

64

https://15799.courses.cs.cmu.edu/spring2025/project1.html

SQL
Calcite DuckDB

(optimized)
SQL

Enumerable

RelRunner Results

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://calcite.apache.org/
https://calcite.apache.org/javadocAggregate/org/apache/calcite/adapter/enumerable/package-summary.html
https://duckdb.org/
https://15799.courses.cs.cmu.edu/spring2025/project1.html

SPECIAL TOPICS (SPRING 2025)

PROJECT #1 – TASKS

We provide starter code to build and run a Calcite application.

You need to implement the highlighted region.

You are graded against the reference solution on:

(1) RelRunner result correctness

(2) DuckDB performance with disable_optimizer

65

SQL
Calcite DuckDB

(optimized)
SQL

Enumerable

RelRunner Results

Graded with: optimize.sh workload.tgz output_dir

For each foo.sql in workload.tgz/queries,
write to output_dir the following files:

foo.sql [Original SQL query]
foo.txt [Logical Calcite Plan]
foo_optimized.txt [Enumerable Calcite Plan]
foo_results.csv [Results from foo_optimized]
foo_optimized.sql [Optimized SQL query]

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://duckdb.org/docs/configuration/pragmas.html#query-optimization

SPECIAL TOPICS (SPRING 2025)

DEVELOPMENT HINTS

Follow the roadmap.

Use our code for serializing the txt and csv files.

Beware of case sensitivity issues (e.g., table name).

The “standard library” of rules does not include
operation-specific rules. You may need them.

If there’s limited support for optimizing or
deparsing Foo, maybe you can turn Foo into Bar.
Then optimize and/or deparse that instead.

66

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://calcite.apache.org/javadocAggregate/org/apache/calcite/rel/rules/package-summary.html

SPECIAL TOPICS (SPRING 2025)

THINGS TO NOTE

Do not hardcode based on the provided workload’s
data distribution – we test on a different workload.

Limit your memory usage to avoid autograder
crashes: java –Xmx4096m jar App.jar APP_ARGS

Post your questions on Piazza.

Make sure you submit a reflection that documents
what you tried. Bullet points are fine.

67

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Cascades Transformations
→ Everything but sub-queries.
→ You do not need to submit a reading synopsis.

68

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Cascades Query Optimizer
	Slide 2: ERRATA
	Slide 3: VOLCANO: PHASES
	Slide 4: VOLCANO: PHASES
	Slide 5: VOLCANO: PHASES
	Slide 6: VOLCANO: PHASES
	Slide 7: VOLCANO: PHASES
	Slide 8: VOLCANO: PHASES
	Slide 9: VOLCANO: PHASES
	Slide 10: VOLCANO: PHASES
	Slide 11: VOLCANO: PHASES
	Slide 12: VOLCANO: PHASES
	Slide 13: VOLCANO: ENFORCERS
	Slide 14: VOLCANO: ENFORCERS
	Slide 15: VOLCANO: ENFORCERS
	Slide 16: TODAY’S AGENDA

	Cascades
	Slide 17: CASCADES OPTIMIZER
	Slide 18: CASCADES: KEY IDEAS
	Slide 19: CASCADES: EXPRESSIONS
	Slide 20: CASCADES: GROUPS
	Slide 21: CASCADES: GROUPS
	Slide 22: CASCADES: GROUPS
	Slide 23: CASCADES: GROUPS
	Slide 24: CASCADES: RULES
	Slide 25: CASCADES: RULES
	Slide 26: CASCADES: ENFORCERS

	Tasks
	Slide 27: CASCADES: TASKS
	Slide 28: CASCADES: PROMISES
	Slide 29: CASCADES: PROMISES
	Slide 30: CASCADES: PROMISES
	Slide 31: CASCADES: TASKS
	Slide 32: CASCADES: TASK FLOW
	Slide 33: CASCADES: TASK-BASED SEARCH

	Memo Table
	Slide 34: CASCADES: MEMO TABLE
	Slide 35: PRINCIPLE OF OPTIMALITY
	Slide 36: CASCADES: MEMO TABLE
	Slide 37: CASCADES: MEMO TABLE
	Slide 38: CASCADES: MEMO TABLE
	Slide 39: CASCADES: MEMO TABLE
	Slide 40: CASCADES: MEMO TABLE
	Slide 41: CASCADES: MEMO TABLE
	Slide 42: CASCADES: MEMO TABLE
	Slide 43: CASCADES: MEMO TABLE
	Slide 44: CASCADES: MEMO TABLE
	Slide 45: CASCADES: MEMO TABLE
	Slide 46: CASCADES: MEMO TABLE
	Slide 47: CASCADES: MEMO TABLE
	Slide 48: CASCADES: MEMO TABLE
	Slide 49: CASCADES: MEMO TABLE
	Slide 50: CASCADES: MEMO TABLE
	Slide 51: CASCADES: MEMO TABLE

	Optimizations
	Slide 52: OBSERVATION
	Slide 53: SIMPLIFICATION RULES
	Slide 54: MACRO RULES
	Slide 55: PARALLEL SEARCH

	Implementations
	Slide 56: CASCADES IMPLEMENTATIONS
	Slide 57: MICROSOFT SQL SERVER
	Slide 58: MSSQL: MULTI-STAGE OPTIMIZATION
	Slide 59: MSSQL: OPTIMIZATIONS
	Slide 60: GREENPLUM ORCA
	Slide 61: COCKROACHDB
	Slide 62: COCKROACHDB

	Conclusion
	Slide 63: PARTING THOUGHTS

	Project1
	Slide 64: PROJECT #1 – QUERY OPTIMIZER EVALUATION
	Slide 65: PROJECT #1 – TASKS
	Slide 66: DEVELOPMENT HINTS
	Slide 67: THINGS TO NOTE
	Slide 68: NEXT CLASS

