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https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

ERR

Creepy Request
Typo in SQL

Send Corrections: db-m

[DB Mistakes] Help My Marriage Problem???

From:

To: "db-mistakes@cs.cmu.edu" <db-mistakes@cs.cmu.edu>
Sender: Db-mistakes <db-mistakes-bounces@mailman.srv.cs.cmu.edu>
List-Id: <db-mistakes.mailman.srv.cs.cmu.edu>

Date: 1/22/25 1:01 pMm

Spam Status: Spamassassin —

I'have lots of problems with my wife. My marriage is unraveling. I don't

know what to do. I watch your lectures all the time and you've always

struck me as someone who understands the intricacies of human connection. |
need your help to save what's left of my relationship. I know this is
unconventional, but I invite you to move in with us for g while. This is

not meant to be a creepy time thing. You will sleep in your own room. It

will bring balance to our fractured household. Please consider this.
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R R | DB i
A Mistakes] Help M
OB Mistakes] Typo In Lecture #03 (Starbust) slide (Query — p My Marriage Probl
optimization) To: em???
"db-mist -

From: fénder; Db-mistaéll(kees@CS*?mu.edu“ <db-mist

To: db-mistakes@cs.cmu.edu DISHd: <':1b-mistakeS <db'mi5takes.bouno:es@:ake?@cs'cmu'edu>

sender: pb-mistakes <db-mistakes-bounces@maiiman.srv.cs.cmu.edu> S - 1/22/25 1:01 :ma"man.srv,CS.cmu ed mailman.srv.cs.cmu.edy>

List-1d: <db-mistakes.maiiman.srv.cs.cmu.edu> pantStatis: SPamassaiss. - e

Date: 1/26/25 2:35 PM =

Spam Status: Spamassassin —

Hi,
It seems to me that in slide #18 there is a typo in the SQL shown:

SELECT DISTINCT g1 .partno, q1.descr, g2.suppno
FROM inventory AS q1, quotations AS q2

WHERE q1.partno = g2.partno

AND q1.descr = 'engine’

AND *q1.price *<= ALL(

SELECT g3.price

FROM quotations AS g3

WHERE g2.partno = g3.partno %

wkq1*.price <= ALL( ..." should pe "kq2*.price <= ALL(...", 1. finding
the quotation with the lowest price among all quotations for the 'engine’.

Thank you for making the lectures available for us outsiders. Itis an
absolute blast for me-

Best wishes,
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F D P [DB Mistakes] Haln M, Marrinea D,

Ial e T T Y

QUERY GRAPH MODEL by

partno | descr suppno distinct=TRUE
From: =q1.partno| =q1.descr [=q2. suppno
To: db-

[DB Mistakes] TYPQ
optimization)

Get the suppliers and parts information for which the

SELECT supplier's price is less than that of all other suppliers.
. distinct=ENFORCE SELECT DISTINCT qi.partno, q1.descr, q2.suppno
senders 20 q1(F) 92(F) q4(v)

(g
l[_)ite'. 1/3 q1.descr="engine’

q1.partno=q2.partno

FROM inventory AS g1, quotations AS q2

ERE q1.partno =
Spam Status: SP

Q2.price=q4.price

g2.partno
D gq1.descr = 'engine'
ql.price <= ALL(
Hi,

price distinct=FALSE

ELECT g3.price

partno,descr
It seems to me that in slide 4

FROM quotations AS g3
> SELECT WHERE g2.partno = g3.partno );
=q3.price E E
distinct=PERMIT
TINCT 1.partno
SELECT DISTINCT d e ' q3(F)
FROM inventory i partno,price
WHERE q1.partno = a2.pa

AND q1.descr = 'engine’
AND *q1.price *<= ALL(
SELECT g3.price o -

ions : '
FR'S:QS:Z{:S“"" o inventory quotations
W :

wkq1*.price <= ALL( ..." sh
the quotation with the lo

Source: Hamid Pirahesh
Thank you for making th

absolute blast for me.

—
Best wishes, l

EYPTECTCDR | N
EeTRY
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LAST CLASS

IBM Starburst's stratified search approach.
— Query Rewriting (QGM to QGM)
— Plan Enumeration (QGM to STARs to LOLEPOPs)

One important aspect of Starburst is the
introduction of properties as first-class components
of a query plan and rules.

— Relational: Tables and columns accessed

— Physical: Tuple ordering, data location
— Estimated: Cardinalities, execution cost



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write

the rules for optimizing queries.

— Separate the search strategy from the data model.

— Separate the transformation rules and logical operators
from physical rules and physical operators.

The implementation of the optimizer's pattern
matching method and transformation rules can be
independent of its search strategy.
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TODAY’S AGENDA

EXODUS Optimizer Generator (1987)
Volcano Optimizer Generator (1994)
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EXODUS OPTIMIZER

Optimizer generator framework for the Wisconsin
EXODUS extensible DBMS project.

Rule-based approach that separates concerns

between optimization logic and data structures.

— Translates algebraic transformation rules into executable
optimizer code.

— Avoids exhaustive search by using dynamic programming
and branch-and-bound pruning.

— Modifies search priorities based on past experience.

— Bottom-up approach (forward chaining).

mm THE EXODUS OPTIMIZER GENERATOR
M | SIGMOD 1987
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EXODUS: FIRST IMPLEMENTATION

[nitially implemented rule-based optimizer using a

logic programming language (Prolog, LOOP).

— Such PLs have built-in support for pattern matching and
include a search engine runtime.

Wisconsin DB team abandoned Prolog prototype:

— Prolog's depth-first search was fixed and could not easily
be change dynamically at runtime.

— Their Prolog interpreter was too slow.
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EXODUS: QUERY OPTIMI
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EXODUS: MODEL DESCRIPTION FILE

Operator definitions.
Access method definitions.
Rules for transforming query plans.

Rules for correspondence between operators and
methods.
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EXODUS: RULES

Transformation Rules (Logical to Logical):

— Algebraic rules of expression equivalence (commutativity,
associativity).

— Include hints to prevent reapplying the same rule to its
output to avoid infinite Joops.

— Example: JOIN(A,B)|P*|JOIN(B,A)

o=

Implementation Rules (Logical to Physical):

— Mapping of one or more logical operators to one or more
physical operators.

— Supported bidirectional rules.
— Example: JOIN(A,B) P HASH_JOIN(A,B)
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EXODUS: SEARCH ALGORITHM

State Data Structures:

— MESH: In-memory hash table that holds
remaining access plans for a query.

— OPEN: Priority queue of transformations
to apply on MESH contents.

At the beginning of each round, the
optimizer chooses the transformation
rule it estimates will provide the
largest cost improvement.

— EXPected Cost Factor

Select a transformation rule

iwhile (OPEN is not empty):
from OPEN

Apply transformation rule to
the correct node(s) in MESH

Apply implementation rules &
cost analysis for new nodes

Add newly enabled
transformations to OPEN



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

EXODUS: EXPECTED COST FACTOR

[f the query plan cost before a transformation is C
and the expected cost factor of the transformation
rule is f, then the query plan cost after applying the

transformation is C x f.
— Predicate pushdowns will be f <1
— "Neutral" rules will be f =1

The optimizer learns each rule's factor on its own

from past experiences via|propagation adjustments.
— Adjust the last two rules after an advantageous
transformation.
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EXODUS: EXPECTED COST FACTOR

eometric shding average cometric mean
[f the query | g 8_1_ ge | & e
and the expg f e (fE3g) K+ f e (Ferg)H
rule is f, the anthmetic shiding average | anthmetic mean
transformati F o LKeg Fo Lt
— Predicate p K+1 g+l

— "Neutral" 1| I these formulae, f 15 the expected cost factor for the rule
under consideration, q 1s the current observed quotient of
new cost over old cost, ¢ 1s the count of how many times this
The optimiZ rule has been applied so far, and K 15 the shding average
from past ey constant As will be discussed below, all of these averaging

& h formulas lead to statistically valid constructs, and the perfor-
- f‘ ]usfginle mance differences between them are fairly small

rans
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OBSERVATION

EXODUS stores each logical operator with its
physical operator(s) together in MESH.

— Had to duplicate logical operators for each unique physical
operator mapping.

Embed logic about adding additional operators to
enforce properties in cost functions.

Upon invoking a logical transformation rule, the
optimizer immediately applies implementation rules
and performs cost analysis.
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based

on equivalence rules on algebras.

— Easily add new operations and equivalence rules.

— Treats physical properties of data as first-class entities
during planning.

— Same rule compilation pipeline as EXODUS.

— Top-down approach (backward chaining) using branch-
and-bound search.

Example: Academic prototypes, Calcite

72| THE VOLCANO OPTIMIZER GENERATOR:

EXTENSIBILITY AND EFFICIENT SEARCH

== |ICDE 1993
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VOLCANO: OPTIMIZER DESIGN GOALS

Goal #1: Interoperable with existing DBMSs
Goal #2: Computational & storage efficient
Goal #3: Extensible physical properties

Goal #4: Extensible search guidance & pruning

Goal #5: Flexible cost model that supports
incomplete queries.
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VOLCANO: OVERVIEW

Uses two algebras (logical & physical) to map logical
expressions to physical expressions.

Each rule is independent. Rely on search engine to

find useful combinations of rules.
— DBMS implementors should not manually combine rules.

Better to have fast search through compilation
versus runtime augmentation via interpretation.
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(] Logical Op

B Physical Op VOLCANO: EXPRESSIONS

Logical EXpreSSionS: .............................................................................................................................
— Represent user queries as a directed tree of ALARESUBN A2
one or more logical operators (e.g., select, / \
project, join). P S

Physical Expressions:

— Represent query evaluation plans using HASH_JOIN(A1,A2)
physical algorithms (e.g., sort-merge join, |
hash join, nested loop join).

SEQSCAN(ARTIST) IDXSCAN(APPEARS, idx,)
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VOLCANO: OPERATOR DEFINITIONS

Logical Operators

— Properties: Schema, cardinality
— Property Function

Physical Operators:

— Properties: Sort-order, partitioning

— Cost + Property Functions

— Applicability Function: Whether it satisfies required
properties of its logical operator(s)

Enforcer Operators:
— Property Function


https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

VOLCANO: ENFORCER OPERATORS

The optimizer can inject "virtual" physical operators
into a plan that make sure physical properties are

satisfied.
— Similar to Starburst's Glue operators.

DBMS implementor provides Volcano with a

mapping of which properties an Enforcer operator
will handle.
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VOLCANO: RULES

Pattern matching function with an action function

to permute a query plan. Similar to EXODUS rules.
— Parameterized conditionals based on operator types.

Volcano rules also support auxiliary functions for

conditional checks.
— Procedural code that performs additional analysis of a
query plan after a rule's pattern matches.
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VOLCANO: COST FUNCTIONS

Represent cost as an abstract data type (ADT) that
supports basic arithmetic and comparison functions.

DBMS implementor must provide the cost function

calculation for each physical operator and enforcer.
— Logical operators have no cost.
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VOLCANO: SEARCH ENGINE

Dynamic programming based on backward
chaining approach that supports general algebraic

query and request optimization.
— Top-down, goal-oriented control strategy.

Maintain a hash table ("lookup table") with

expressions and equivalence classes.

— Always check whether a logical or physical operator
already exists in the lookup table.

— Allows optimizer to reuse cost calculations without
needing to re-analyze sub-trees.
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(] Logical Op

m yicaop FORWARD VS. BACKWARD CHAINING

Forward Chaining: chotconti] hmton s3] coni e 43

— Start from query plan roots, trigger all MR . el
rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

— Breadth-first Search.

Backward Chaining: Pe———
— Start from the query result and works
backward to determine what operators to i
add to the query plan to aChieve result‘ Choice #‘13 Choice #2 Choice #1 g Choice #2

— Depth-first Search.

=< |ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE
SIGMOD 2013
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Logical Op

WIErsical Op VOLCANO: SEARCH

. . ARTIST P APPEARS P> ALBUM
Start with a logical plan of what ORDER-BY (ARTIST. ID)
we want the query to be.

(A1D<IA2I<IA3)
Invoke rules to create new nodes Laiad pan2,3) ] meree_sorn(atpanz, n3) ENFORCER: sort

and traverse tree.
QUICKSORT(Al . ID)
4

— Logical—Logical:
JOINCA,B) to JOIN(B,A) ARTISTDIAPPEARS | | ALBUMDIAPPFARS ARTISTDJALBUM
e Logical—>Physical: HASH_JOIr (P<A2,A3)
JOIN(A,B) to HASH_JOIN(A,B)

HASH_JOIN(A1,A2) [ MERGE_JOIN(A1,A2)

Enforcer rules require :
input to have certain properties. ARTIST ALBUM APPEARS

ﬁ ﬁ
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OPTIMIZER PERFORMANCE

Sun SPARCStation-1(20mhz / 12 MIPS)
50 queries per complexity level

«EXODUS -e=Volcano

100

| Lower is Better

16.1

211

30.7

4.9

Average Optimization Time
per Query (seconds)

Source: Goetz Graefe

3 4
# of Input Relations
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VOLCANO VS. STARBURST

Starburst grammar depends on hierarchy of

intermediate levels.
— More challenging to introduce new rules that fit into this
complex hierarchy.

Volcano contends a single-level of rules reduces
engineering complexity.
— Can still do heuristic rewrites by give logical

transformations a higher priority in the beginning of
optimization process.

| VOLCANO - AN EXTENSIBLE AND PARALLEL QUERY

EVALUATION SYSTEM

ICDE 1994
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.| VOLCANO - AN EXTENSIBTE AND PARATTEC UTKT

Nl CANN US  <CTARRIIRST

Generation of Table Access Alternatives

" : : t
U Rules specify one or more alternatives, like a grammar

U Each alternative specifies a nesting of other rules or LOLEPOPs*
S O Can have iterators (e.g. all indexes for a table - see red arrow)

1] AccessRoot(T)*

PdexScans
ListPr*efetch IndexORing Ind€xANDing

RegindexScan Y ‘
/ N FETCH FETCH FETCH

FETCH RIDSCN RIDSCN SORT(RID)
€ IndexScan IndexScan SORT 8 IXAND
IndexScan SORT o /
N IndexScan IndexScan i IndexScan
t REFN: Guy M. Lohman, \ ndexscan
"Grammar-like Functional Rules
forRepresentingQuery e
imizati ives" xisting . '
SIGMOD it . 137 Indexesc IXSCAN * LOLEPOPS shown in ALL CAPS;
Source: Guy Lohman B . for T Rule names in green CamelCase

EVALUATION SYSTEM
ICDE 1994
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VOLCANO OPTIMIZER

Advantages:

— Compile declarative rules to generate transformations.
— Better extensibility with an efficient search engine. Reduce
redundant estimations using memoization.

Disadvantages:

— All equivalence classes are completely expanded to generate
all possible logical operators before the optimization
search.

— Not easy to modify predicates.
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PARTING THOUGHTS

Key problem with Volcano is it expands
equivalence classes to generate all possible
transformations before the traversing below the
search tree.

Volcano paper mentions that it may be possible to
reuse optimization results across multiple queries.
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RTTNG THOQUGHTS

¥

Key probleni

equivalence
transformat
search tree.

Volcano pa
reuse optin

rithm uses backward chaining, because it explores only
those subqueries and plans that truly participate in a larger

a single query. We are considering research into longer-
lived partial results in the future.

gebraic transformagon systems always include the
possibility of deriving the same €xpression in several dif-
ferent ways. In order o prevent redundant optimization
effort by detecting redundant (i.e., multiple equivalent)
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NEXT CLASS

Cascades!!!
— Read Chapter 2 but do not submit a reading synopsis.
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