
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ERRATA

db-mistakes@cs.cmu.edu

Creepy Request

Typo in SQL

Send Corrections: db-mistakes@cs.cmu.edu

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

ERRATA

db-mistakes@cs.cmu.edu

Creepy Request

Typo in SQL

Send Corrections: db-mistakes@cs.cmu.edu

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

ERRATA

db-mistakes@cs.cmu.edu

Creepy Request

Typo in SQL

Send Corrections: db-mistakes@cs.cmu.edu

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

ERRATA

db-mistakes@cs.cmu.edu

Creepy Request

Typo in SQL

Send Corrections: db-mistakes@cs.cmu.edu

2

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

6

IBM Starburst's stratified search approach.
→ Query Rewriting (QGM to QGM)
→ Plan Enumeration (QGM to STARs to LOLEPOPs)

One important aspect of Starburst is the
introduction of properties as first-class components
of a query plan and rules.
→ Relational: Tables and columns accessed
→ Physical: Tuple ordering, data location
→ Estimated: Cardinalities, execution cost

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write
the rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators

from physical rules and physical operators.

The implementation of the optimizer's pattern
matching method and transformation rules can be
independent of its search strategy.

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

EXODUS Optimizer Generator (1987)

Volcano Optimizer Generator (1994)

8

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS OPTIMIZER

Optimizer generator framework for the Wisconsin
EXODUS extensible DBMS project.

Rule-based approach that separates concerns
between optimization logic and data structures.
→ Translates algebraic transformation rules into executable

optimizer code.
→ Avoids exhaustive search by using dynamic programming

and branch-and-bound pruning.
→ Modifies search priorities based on past experience.
→ Bottom-up approach (forward chaining).

9

Graefe

The EXODUS optimizer generatorSIGMOD 1987

DeWitt

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://research.cs.wisc.edu/exodus/
https://dl.acm.org/doi/10.1145/38713.38734
https://dl.acm.org/doi/10.1145/38713.38734

SPECIAL TOPICS (SPRING 2025)

EXODUS: FIRST IMPLEMENTATION

Initially implemented rule-based optimizer using a
logic programming language (Prolog, LOOP).
→ Such PLs have built-in support for pattern matching and

include a search engine runtime.

Wisconsin DB team abandoned Prolog prototype:
→ Prolog's depth-first search was fixed and could not easily

be change dynamically at runtime.
→ Their Prolog interpreter was too slow.

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/LOOP_(programming_language)

SPECIAL TOPICS (SPRING 2025)

EXODUS: QUERY OPTIMIZER PIPELINE

11

Parser +
Binder

SQL Query

Physical
Plan

C Compiler
Linker

Model
Description
File Optimizer

Generator

Query
Optimizer

Database System
Generation Time

Query Execution Time

.c Files

.so File

Operator
Impl.

Logical Plan

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS: MODEL DESCRIPTION FILE

Operator definitions.

Access method definitions.

Rules for transforming query plans.

Rules for correspondence between operators and
methods.

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS: RULES

Transformation Rules (Logical to Logical):
→ Algebraic rules of expression equivalence (commutativity,

associativity).
→ Include hints to prevent reapplying the same rule to its

output to avoid infinite loops.
→ Example: JOIN(A,B) ! JOIN(B,A)

Implementation Rules (Logical to Physical):
→ Mapping of one or more logical operators to one or more

physical operators.
→ Supported bidirectional rules.
→ Example: JOIN(A,B) HASH_JOIN(A,B)

13

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS: SEARCH ALGORITHM

State Data Structures:
→ MESH: In-memory hash table that holds

remaining access plans for a query.
→ OPEN: Priority queue of transformations

to apply on MESH contents.

At the beginning of each round, the
optimizer chooses the transformation
rule it estimates will provide the
largest cost improvement.
→ Expected Cost Factor

14

while (OPEN is not empty):
Select a transformation rule
from OPEN

Apply transformation rule to
the correct node(s) in MESH

Apply implementation rules &
cost analysis for new nodes

Add newly enabled
transformations to OPEN

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS: EXPECTED COST FACTOR

If the query plan cost before a transformation is C
and the expected cost factor of the transformation
rule is f, then the query plan cost after applying the
transformation is C × f.
→ Predicate pushdowns will be f < 1
→ "Neutral" rules will be f = 1

The optimizer learns each rule's factor on its own
from past experiences via propagation adjustments.
→ Adjust the last two rules after an advantageous

transformation.

15

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXODUS: EXPECTED COST FACTOR

If the query plan cost before a transformation is C
and the expected cost factor of the transformation
rule is f, then the query plan cost after applying the
transformation is C × f.
→ Predicate pushdowns will be f < 1
→ "Neutral" rules will be f = 1

The optimizer learns each rule's factor on its own
from past experiences via propagation adjustments.
→ Adjust the last two rules after an advantageous

transformation.

15

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

EXODUS stores each logical operator with its
physical operator(s) together in MESH.
→ Had to duplicate logical operators for each unique physical

operator mapping.

Embed logic about adding additional operators to
enforce properties in cost functions.

Upon invoking a logical transformation rule, the
optimizer immediately applies implementation rules
and performs cost analysis.

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based
on equivalence rules on algebras.
→ Easily add new operations and equivalence rules.
→ Treats physical properties of data as first-class entities

during planning.
→ Same rule compilation pipeline as EXODUS.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Example: Academic prototypes, Calcite

18

The Volcano Optimizer Generator: Extensibility and Efficient SearchICDE 1993

Graefe

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1109/ICDE.1993.344061

SPECIAL TOPICS (SPRING 2025)

VOLCANO: OPTIMIZER DESIGN GOALS

Goal #1: Interoperable with existing DBMSs

Goal #2: Computational & storage efficient

Goal #3: Extensible physical properties

Goal #4: Extensible search guidance & pruning

Goal #5: Flexible cost model that supports
incomplete queries.

19

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: OVERVIEW

Uses two algebras (logical & physical) to map logical
expressions to physical expressions.

Each rule is independent. Rely on search engine to
find useful combinations of rules.
→ DBMS implementors should not manually combine rules.

Better to have fast search through compilation
versus runtime augmentation via interpretation.

20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: EXPRESSIONS

Logical Expressions:
→ Represent user queries as a directed tree of

one or more logical operators (e.g., select,
project, join).

Physical Expressions:
→ Represent query evaluation plans using

physical algorithms (e.g., sort-merge join,
hash join, nested loop join).

21

ARTIST APPEARS

ARTIST⨝APPEARS

HASH_JOIN(A1,A2)

SEQSCAN(ARTIST) IDXSCAN(APPEARS,idx1)

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: OPERATOR DEFINITIONS

Logical Operators
→ Properties: Schema, cardinality
→ Property Function

Physical Operators:
→ Properties: Sort-order, partitioning
→ Cost + Property Functions
→ Applicability Function: Whether it satisfies required

properties of its logical operator(s)

Enforcer Operators:
→ Property Function

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: ENFORCER OPERATORS

The optimizer can inject "virtual" physical operators
into a plan that make sure physical properties are
satisfied.
→ Similar to Starburst's Glue operators.

DBMS implementor provides Volcano with a
mapping of which properties an Enforcer operator
will handle.

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: RULES

Pattern matching function with an action function
to permute a query plan. Similar to EXODUS rules.
→ Parameterized conditionals based on operator types.

Volcano rules also support auxiliary functions for
conditional checks.
→ Procedural code that performs additional analysis of a

query plan after a rule's pattern matches.

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: COST FUNCTIONS

Represent cost as an abstract data type (ADT) that
supports basic arithmetic and comparison functions.

DBMS implementor must provide the cost function
calculation for each physical operator and enforcer.
→ Logical operators have no cost.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

VOLCANO: SEARCH ENGINE

Dynamic programming based on backward
chaining approach that supports general algebraic
query and request optimization.
→ Top-down, goal-oriented control strategy.

Maintain a hash table ("lookup table") with
expressions and equivalence classes.
→ Always check whether a logical or physical operator

already exists in the lookup table.
→ Allows optimizer to reuse cost calculations without

needing to re-analyze sub-trees.

26

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ARTIST APPEARS

ARTIST APPEARS

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Forward Chaining:
→ Start from query plan roots, trigger all

rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

→ Breadth-first Search.

Backward Chaining:
→ Start from the query result and works

backward to determine what operators to
add to the query plan to achieve result.

→ Depth-first Search.

27

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Logical Op

Physical Op

Choice #1

Choice #1 Choice #2 Choice #2Choice #1

On the Correct and Complete Enumeration of the Core Search SpaceSIGMOD 2013

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

SPECIAL TOPICS (SPRING 2025)

SEQSCAN(A1)

VOLCANO: SEARCH

29

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Enforcer rules require
input to have certain properties. ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

HASH_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

(A1⨝A2⨝A3)
ENFORCER: sort

SEQSCAN(A2)IDXSCAN(A1,id)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPTIMIZER PERFORMANCE

30

0.02

0.1

8.8
16.1

11.3
21.1

30.7

0.02

0.1

0.2
0.3

0.8
1.6

4.9

0.01

0.1

1

10

100

1 2 3 4 5 6 7

A
ve

ra
ge

 O
pt

im
iz

at
io

n
 T

im
e

pe
r

Q
u

er
y

(s
ec

on
ds

)

of Input Relations

EXODUS Volcano

Sun SPARCStation-1 (20mhz / 12 MIPS)
50 queries per complexity level

↓ Lower is Better

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://doi.org/10.1109/ICDE.1993.344061

SPECIAL TOPICS (SPRING 2025)

VOLCANO VS. STARBURST

Starburst grammar depends on hierarchy of
intermediate levels.
→ More challenging to introduce new rules that fit into this

complex hierarchy.

Volcano contends a single-level of rules reduces
engineering complexity.
→ Can still do heuristic rewrites by give logical

transformations a higher priority in the beginning of
optimization process.

31

Volcano - An Extensible and Parallel Query Evaluation SystemICDE 1994

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1109/69.273032
https://dl.acm.org/doi/10.1109/69.273032

SPECIAL TOPICS (SPRING 2025)

VOLCANO VS. STARBURST

Starburst grammar depends on hierarchy of
intermediate levels.
→ More challenging to introduce new rules that fit into this

complex hierarchy.

Volcano contends a single-level of rules reduces
engineering complexity.
→ Can still do heuristic rewrites by give logical

transformations a higher priority in the beginning of
optimization process.

31

Volcano - An Extensible and Parallel Query Evaluation SystemICDE 1994

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1109/69.273032
https://dl.acm.org/doi/10.1109/69.273032

SPECIAL TOPICS (SPRING 2025)

VOLCANO OPTIMIZER

Advantages:
→ Compile declarative rules to generate transformations.
→ Better extensibility with an efficient search engine. Reduce

redundant estimations using memoization.

Disadvantages:
→ All equivalence classes are completely expanded to generate

all possible logical operators before the optimization
search.

→ Not easy to modify predicates.

33

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Key problem with Volcano is it expands
equivalence classes to generate all possible
transformations before the traversing below the
search tree.

Volcano paper mentions that it may be possible to
reuse optimization results across multiple queries.

34

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Key problem with Volcano is it expands
equivalence classes to generate all possible
transformations before the traversing below the
search tree.

Volcano paper mentions that it may be possible to
reuse optimization results across multiple queries.

34

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Cascades!!!
→ Read Chapter 2 but do not submit a reading synopsis.

36

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: Optimizer Generators ft. Exodus + Volcano
	Slide 2: ERRATA
	Slide 3: ERRATA
	Slide 4: ERRATA
	Slide 5: ERRATA
	Slide 6: LAST CLASS
	Slide 7: OPTIMIZER GENERATORS
	Slide 8: TODAY’S AGENDA

	Exodus
	Slide 9: EXODUS OPTIMIZER
	Slide 10: EXODUS: FIRST IMPLEMENTATION
	Slide 11: EXODUS: QUERY OPTIMIZER PIPELINE
	Slide 12: EXODUS: MODEL DESCRIPTION FILE
	Slide 13: EXODUS: RULES
	Slide 14: EXODUS: SEARCH ALGORITHM
	Slide 15: EXODUS: EXPECTED COST FACTOR
	Slide 16: EXODUS: EXPECTED COST FACTOR
	Slide 17: OBSERVATION

	Volcano
	Slide 18: VOLCANO OPTIMIZER
	Slide 19: VOLCANO: OPTIMIZER DESIGN GOALS
	Slide 20: VOLCANO: OVERVIEW
	Slide 21: VOLCANO: EXPRESSIONS
	Slide 22: VOLCANO: OPERATOR DEFINITIONS
	Slide 23: VOLCANO: ENFORCER OPERATORS
	Slide 24: VOLCANO: RULES
	Slide 25: VOLCANO: COST FUNCTIONS

	Search Engine
	Slide 26: VOLCANO: SEARCH ENGINE
	Slide 27: FORWARD VS. BACKWARD CHAINING
	Slide 29: VOLCANO: SEARCH
	Slide 30: OPTIMIZER PERFORMANCE
	Slide 31: VOLCANO VS. STARBURST
	Slide 32: VOLCANO VS. STARBURST
	Slide 33: VOLCANO OPTIMIZER

	Conclusion
	Slide 34: PARTING THOUGHTS
	Slide 35: PARTING THOUGHTS
	Slide 36: NEXT CLASS

