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ERRATA

db-mistakes@cs.cmu.edu
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LAST CLASS
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IBM Starburst's stratified search approach.
→ Query Rewriting (QGM to QGM)
→ Plan Enumeration (QGM to STARs to LOLEPOPs)

One important aspect of Starburst is the 
introduction of properties as first-class components 
of a query plan and rules.
→ Relational: Tables and columns accessed
→ Physical: Tuple ordering, data location
→ Estimated: Cardinalities, execution cost
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write 
the rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators 

from physical rules and physical operators.

The implementation of the optimizer's pattern 
matching method and transformation rules can be 
independent of its search strategy.
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TODAY’S AGENDA

EXODUS Optimizer Generator (1987)

Volcano Optimizer Generator (1994)
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EXODUS OPTIMIZER

Optimizer generator framework for the Wisconsin 
EXODUS extensible DBMS project.

Rule-based approach that separates concerns 
between optimization logic and data structures.
→ Translates algebraic transformation rules into executable 

optimizer code.
→ Avoids exhaustive search by using dynamic programming 

and branch-and-bound pruning.
→ Modifies search priorities based on past experience.
→ Bottom-up approach (forward chaining).
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Graefe

The EXODUS optimizer generatorSIGMOD 1987

DeWitt
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EXODUS: FIRST IMPLEMENTATION

Initially implemented rule-based optimizer using a 
logic programming language (Prolog, LOOP).
→ Such PLs have built-in support for pattern matching and 

include a search engine runtime.

Wisconsin DB team abandoned Prolog prototype:
→ Prolog's depth-first search was fixed and could not easily 

be change dynamically at runtime.
→ Their Prolog interpreter was too slow.
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EXODUS: QUERY OPTIMIZER PIPELINE
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EXODUS: MODEL DESCRIPTION FILE 

Operator definitions.

Access method definitions.

Rules for transforming query plans.

Rules for correspondence between operators and 
methods.
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EXODUS: RULES

Transformation Rules (Logical to Logical):
→ Algebraic rules of expression equivalence (commutativity, 

associativity).
→ Include hints to prevent reapplying the same rule to its 

output to avoid infinite loops.
→ Example: JOIN(A,B) ! JOIN(B,A)

Implementation Rules (Logical to Physical):
→ Mapping of one or more logical operators to one or more 

physical operators.
→ Supported bidirectional rules.
→ Example: JOIN(A,B)  HASH_JOIN(A,B)
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EXODUS: SEARCH ALGORITHM

State Data Structures:
→ MESH: In-memory hash table that holds 

remaining access plans for a query.
→ OPEN: Priority queue of transformations 

to apply on MESH contents.

At the beginning of each round, the 
optimizer chooses the transformation 
rule it estimates will provide the 
largest cost improvement.
→ Expected Cost Factor
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while (OPEN is not empty):
Select a transformation rule 
from OPEN

Apply transformation rule to 
the correct node(s) in MESH

Apply implementation rules & 
cost analysis for new nodes

Add newly enabled 
transformations to OPEN
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EXODUS: EXPECTED COST FACTOR

If the query plan cost before a transformation is C 
and the expected cost factor of the transformation 
rule is f, then the query plan cost after applying the 
transformation is C × f.
→ Predicate pushdowns will be f < 1
→ "Neutral" rules will be f = 1

The optimizer learns each rule's factor on its own 
from past experiences via propagation adjustments.
→ Adjust the last two rules after an advantageous 

transformation.
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OBSERVATION

EXODUS stores each logical operator with its 
physical operator(s) together in MESH.
→ Had to duplicate logical operators for each unique physical 

operator mapping.

Embed logic about adding additional operators to 
enforce properties in cost functions.

Upon invoking a logical transformation rule, the 
optimizer immediately applies implementation rules 
and performs cost analysis.
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based 
on equivalence rules on algebras.
→ Easily add new operations and equivalence rules.
→ Treats physical properties of data as first-class entities 

during planning.
→ Same rule compilation pipeline as EXODUS.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Example: Academic prototypes, Calcite
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The Volcano Optimizer Generator: Extensibility and Efficient SearchICDE 1993

Graefe
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VOLCANO: OPTIMIZER DESIGN GOALS

Goal #1: Interoperable with existing DBMSs

Goal #2: Computational & storage efficient

Goal #3: Extensible physical properties

Goal #4: Extensible search guidance & pruning

Goal #5: Flexible cost model that supports 
incomplete queries.
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VOLCANO: OVERVIEW

Uses two algebras (logical & physical) to map logical 
expressions to physical expressions.

Each rule is independent. Rely on search engine to 
find useful combinations of rules.
→ DBMS implementors should not manually combine rules.

Better to have fast search through compilation 
versus runtime augmentation via interpretation.
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VOLCANO: EXPRESSIONS

Logical Expressions:
→ Represent user queries as a directed tree of 

one or more logical operators (e.g., select, 
project, join).

Physical Expressions: 
→ Represent query evaluation plans using 

physical algorithms (e.g., sort-merge join, 
hash join, nested loop join).
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ARTIST APPEARS

ARTIST⨝APPEARS

HASH_JOIN(A1,A2)

SEQSCAN(ARTIST) IDXSCAN(APPEARS,idx1)

Logical Op

Physical Op
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VOLCANO: OPERATOR DEFINITIONS

Logical Operators
→ Properties: Schema, cardinality
→ Property Function

Physical Operators:
→ Properties: Sort-order, partitioning
→ Cost + Property Functions
→ Applicability Function: Whether it satisfies required 

properties of its logical operator(s)

Enforcer Operators:
→ Property Function
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VOLCANO: ENFORCER OPERATORS

The optimizer can inject "virtual" physical operators 
into a plan that make sure physical properties are 
satisfied.
→ Similar to Starburst's Glue operators.

DBMS implementor provides Volcano with a 
mapping of which properties an Enforcer operator 
will handle.
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VOLCANO: RULES

Pattern matching function with an action function 
to permute a query plan. Similar to EXODUS rules.
→ Parameterized conditionals based on operator types.

Volcano rules also support auxiliary functions for 
conditional checks. 
→ Procedural code that performs additional analysis of a 

query plan after a rule's pattern matches.
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VOLCANO: COST FUNCTIONS

Represent cost as an abstract data type (ADT) that 
supports basic arithmetic and comparison functions.

DBMS implementor must provide the cost function 
calculation for each physical operator and enforcer.
→ Logical operators have no cost.
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VOLCANO: SEARCH ENGINE

Dynamic programming based on backward 
chaining approach that supports general algebraic 
query and request optimization.
→ Top-down, goal-oriented control strategy.

Maintain a hash table ("lookup table") with 
expressions and equivalence classes. 
→ Always check whether a logical or physical operator 

already exists in the lookup table.
→ Allows optimizer to reuse cost calculations without 

needing to re-analyze sub-trees.
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ARTIST APPEARS

ARTIST APPEARS

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Forward Chaining:
→ Start from query plan roots, trigger all 

rules that match those operators, and adds 
their conclusion to the known facts. 
Repeats until full query is generated.

→ Breadth-first Search.

Backward Chaining:
→ Start from the query result and works 

backward to determine what operators to 
add to the query plan to achieve result.

→ Depth-first Search.
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ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Logical Op

Physical Op

Choice #1

Choice #1 Choice #2 Choice #2Choice #1

On the Correct and Complete Enumeration of the Core Search SpaceSIGMOD 2013
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SEQSCAN(A1)

VOLCANO: SEARCH
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ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Enforcer rules require
input to have certain properties. ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

HASH_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op

(A1⨝A2⨝A3)
ENFORCER: sort

SEQSCAN(A2)IDXSCAN(A1,id)
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OPTIMIZER PERFORMANCE
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VOLCANO VS. STARBURST

Starburst grammar depends on hierarchy of 
intermediate levels.
→ More challenging to introduce new rules that fit into this 

complex hierarchy.

Volcano contends a single-level of rules reduces 
engineering complexity.
→ Can still do heuristic rewrites by give logical 

transformations a higher priority in the beginning of 
optimization process.

31

Volcano - An Extensible and Parallel Query Evaluation SystemICDE 1994
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VOLCANO OPTIMIZER

Advantages:
→ Compile declarative rules to generate transformations.
→ Better extensibility with an efficient search engine. Reduce 

redundant estimations using memoization.

Disadvantages:
→ All equivalence classes are completely expanded to generate 

all possible logical operators before the optimization 
search.

→ Not easy to modify predicates.
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PARTING THOUGHTS

Key problem with Volcano is it expands 
equivalence classes to generate all possible 
transformations before the traversing below the 
search tree.

Volcano paper mentions that it may be possible to 
reuse optimization results across multiple queries.

34
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NEXT CLASS

Cascades!!!
→ Read Chapter 2 but do not submit a reading synopsis.
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