
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

ERRATA

db-mistakes@cs.cmu.ed

Charles Bachmann was the 8th Turing Award
winner in 1973, not the 3rd.

The number of different join orderings for an n-
way binary join is (n-1)! × C(n-1), where C(n-1) is the
(n-1)th Catalan number
→ n! different orders of leaf nodes (original relations)
→ C(n-1) possible shapes of a full binary tree with n leaves

Send Corrections: db-mistakes@cs.cmu.edu

2

Alexey Goncharuk

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
mailto:db-mistakes@cs.cmu.edu
https://www.querifylabs.com/blog/introduction-to-the-join-ordering-problem

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

3

System R had the first cost-based query optimizer
→ Used dynamic programming to choose optimal join

ordering.

System R selects each table's access method before
the join ordering.
→ It is better to choose a table's access method in conjunction

with the join method.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

DATABASE TRENDS IN LATE 1980s

object-relational impedance mismatch

triggers

Object-Oriented Databases
→ Emerging applications with data that did not easily fit into

the relational model.
→ See object-relational impedance mismatch.

Active Databases
→ Event-driven architecture where the DBMS automatically

responds to internal and external conditions.
→ See triggers.

4

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch
https://en.wikipedia.org/wiki/Active_database

SPECIAL TOPICS (SPRING 2025)

HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
→ INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R (1970s), early IBM DB2

Choice #3: Stratified Search
→ IBM Starburst (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades (early 1990s), now MSSQL + Orca

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
→ INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R (1970s), early IBM DB2

Choice #3: Stratified Search
→ IBM Starburst (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades (early 1990s), now MSSQL + Orca

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

5

O
pt

im
iz

er
G

en
er

at
or

s

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write
the rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators

from physical rules and physical operators.

The implementation of the optimizer's pattern
matching method and transformation rules can be
independent of its search strategy.

6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OPTIMIZER GENERATORS

Choice #1: Stratified Search
→ Planning is done in multiple stages (heuristics then cost-

based search).
→ Examples: Starburst, CockroachDB

Choice #2: Unified Search
→ Perform query planning all at once.
→ Examples: Volcano/Cascades, OPT++, SQL Server

7

On the Correct and Complete Enumeration of the Core Search SpaceSIGMOD 2013

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.youtube.com/watch?v=wHo-VtzTHx0&list=PLSE8ODhjZXjYPyrUG_YxqYPS7wjWY6gYN&index=4
https://pages.cs.wisc.edu/~navin/research/apg.html
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

SPECIAL TOPICS (SPRING 2025)

STRATIFIED SEARCH

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical
plan to a physical plan.

8

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

UNIFIED SEARCH

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates many transformations, so
it makes heavy use of memoization to reduce
redundant work.

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

IBM Starburst

Relational Calculus

Query Rewriting

Plan Enumeration

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

IBM DATABASE HISTORY

System R (1975-1979)

R* (1979)

SQL/DS (1981)

DB2 (1983)

Starburst (1985)

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/IBM_System_R
https://link.springer.com/chapter/10.1007/978-3-642-82375-6_2
https://en.wikipedia.org/wiki/IBM_SQL/DS
https://en.wikipedia.org/wiki/IBM_Db2
https://research.ibm.com/publications/starburst-is-born

SPECIAL TOPICS (SPRING 2025)

IBM STARBURST

DBMS designed to allow developers to extend the
system to support new workloads and data sets
without rewriting.

Supported extensions
→ Storage/Access Methods
→ Data types, user-defined functions
→ Query operators

Adding new runtime functionality requires changes
in the query optimizer.

12

Extensible Query Processing in StarburstSIGMOD RECORD 1989

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/66926.66962
https://dl.acm.org/doi/10.1145/66926.66962

SPECIAL TOPICS (SPRING 2025)

IBM STARBURST

DBMS designed to allow developers to extend the
system to support new workloads and data sets
without rewriting.

Supported extensions
→ Storage/Access Methods
→ Data types, user-defined functions
→ Query operators

Adding new runtime functionality requires changes
in the query optimizer.

12

Extensible Query Processing in StarburstSIGMOD RECORD 1989

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/66926.66962
https://dl.acm.org/doi/10.1145/66926.66962

SPECIAL TOPICS (SPRING 2025)

STARBURST: QUERY OPTIMIZER PIPELINE

13

Parser +
Binder

SQL Query

Physical
Plan

Plan
Refinement

Control Flow
Data Flow

Query
Execution
Plan

Query
Graph
Model

Query
Rewriter

Plan
Optimizer

Logical Plan

Physical Plan

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

We made a big deal about using a declarative
language instead of a procedural language to
query a database.

But relational algebra is procedural!
→ It defines an ordering of steps to execute a query.

Starburst's internal representation (query graph
model) is based on relational calculus…

14

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TUPLE RELATIONAL CALCULUS

A nonprocedural query language, where each query
is of the form: { t | P(t) }
→ It is the set of all tuples t such that predicate P is true for t

Definitions:
→ t is a tuple variable
→ t[A] denotes the value of tuple t on attribute A
→ t ∈ r denotes that tuple t is in relation r
→ P is a formula similar to that of the predicate calculus

15

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/w/index.php?title=Predicate_calculus
https://www.db-book.com/slides-dir/PPTX-dir/ch27.pptx

SPECIAL TOPICS (SPRING 2025)

TUPLE RELATIONAL CALCULUS

Retrieve the id and salary for all employees whose
salary is greater than $50,000.

Relational Calculus:
→ { t | ∃ s ∈ employees (

 t[id] = s[id] ∧
 t[salary] = s[salary] ∧
 s[salary] > 50000) }

Relational Algebra:
→ Πid,salary (σsalary>50000 (employees))

16

Database Systems Concepts

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.db-book.com/slides-dir/PPTX-dir/ch27.pptx

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

Internal representation of queries designed to
reduce the complexity of query optimization.
→ In-memory cache of catalog information on tables,

columns, and predicates and their relationships.
→ Based on tuple relational calculus.

QGM describes input/output tables and their
relationships in a query rather than operations.
→ Body: Quantifiers that perform an operation on inputs
→ Head: Meta-data about outputs and properties

17

Extensible/Rule Based Query Rewrite Optimization in StarburstSIGMOD RECORD 1992

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Stored Tables

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Iterators

Iterators
→ SetFormers: F
→ Quantifiers: ∀, ∃

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Qualifiers

Iterators
→ SetFormers: F
→ Quantifiers: ∀, ∃

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Iterators
→ SetFormers: F
→ Quantifiers: ∀, ∃

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Iterators
→ SetFormers: F
→ Quantifiers: ∀, ∃

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

QUERY GRAPH MODEL

18

SELECT
distinct=ENFORCE

partno descr suppno
=q1.partno =q1.descr =q2.suppno

distinct=TRUE

q1.partno=q2.partno q2.price=q4.priceq1.descr='engine'

q1(F) q2(F) q4(∀)

SELECT
distinct=PERMIT

price
=q3.price

distinct=FALSE

q2.partno=q3.partno

q3(F)

inventory quotations

partno,descr

partno,price

SELECT DISTINCT q1.partno, q1.descr, q2.suppno
 FROM inventory AS q1, quotations AS q2
 WHERE q1.partno = q2.partno
 AND q1.descr = 'engine'
 AND q1.price <= ALL(
 SELECT q3.price
 FROM quotations AS q3
 WHERE q2.partno = q3.partno);

Get the suppliers and parts information for which the
supplier's price is less than that of all other suppliers.

Hamid Pirahesh

Iterators
→ SetFormers: F
→ Quantifiers: ∀, ∃

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

OBSERVATION

The initial QGM produced by the parser/binder is
guaranteed to be valid but will split nested
subqueries into separate SELECT operators (boxes).

But removing subqueries will require the optimizer
to reason across multiple boxes.

Goal: Whenever possible, convert a multi-SELECT
QGM to a new QGM with a single SELECT operator.

19

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

IBM STARBURST: REWRITER

Rule-based rewriter to change one QGM
representation into another QGM.
→ Transform "procedural" queries into an equivalent query

that is more understandable by the optimizer.
→ Apply transformations that are known to always be a good

idea.

Does not need to consider plan costs at this stage.

20

Extensible/Rule Based Query Rewrite Optimization in StarburstSIGMOD RECORD 1992

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/141484.130294
https://dl.acm.org/doi/10.1145/141484.130294

SPECIAL TOPICS (SPRING 2025)

REWRITE RULES

High-level specifications of legal QGM alternatives.

Each rule is defined in terms of a matching
condition function and an action function.
→ Primitives for manipulating query graphs
→ Nested rule execution
→ Controllable rule evaluation ordering
→ Termination Guarantees

Keep track of rules applied to enable tracing the
origin of a query plan.

21

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RULE ENGINE

Control Strategies
→ Sequential (process rules sequentially)
→ Priority (higher priorities are evaluated first)
→ Statistical (next rule chosen randomly from a user-defined

distribution)

Given a budget for search. When budget exhausted,
rule processing stops at a consistent QGM.

22

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXAMPLE: SELECT MERGE

if (in a SELECT box (upper)
 a quantifier has type F
 AND ranges over a SELECT box (lower)
 AND no other quantifier ranges over lower
 AND (
 upper.head.distinct = TRUE
 OR
 upper.body.distinct = PERMIT
 OR
 lower.body.distinct != ENFORCE

) then {
 MERGE lower into upper
 if (lower.body.distinct = ENFORCE
 AND upper.body.distinct = != PERMIT) {
 upper.body.distinct = ENFORCE;
} }

23

CREATE VIEW iptv AS (
 SELECT DISTINCT itp.itemn, pur.vendn
 FROM itp JOIN pur
 ON itp.ponum = pur.ponum
 WHERE pur.odate > '2025'
);

SELECT itm.itmn, itpv.vendn
 FROM itm JOIN itpv
 ON itm.itemn = itpv.itemn
 AND item.itemn >= '01'
 AND item.itemn <= '20';

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

EXAMPLE: SELECT MERGE

if (in a SELECT box (upper)
 a quantifier has type F
 AND ranges over a SELECT box (lower)
 AND no other quantifier ranges over lower
 AND (
 upper.head.distinct = TRUE
 OR
 upper.body.distinct = PERMIT
 OR
 lower.body.distinct != ENFORCE

) then {
 MERGE lower into upper
 if (lower.body.distinct = ENFORCE
 AND upper.body.distinct = != PERMIT) {
 upper.body.distinct = ENFORCE;
} }

23

SELECT itm.itmn, itpv.vendn
 FROM itm JOIN (SELECT DISTINCT itp.itemn, pur.vendn
 FROM itp JOIN pur
 ON itp.ponum = pur.ponum
 WHERE pur.odate > '2025') AS itpv
 ON itm.itemn = itpv.itemn
 AND item.itemn >= '01'
 AND item.itemn <= '20';

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PLAN OPTIMIZATION

Convert a QGM into execution plan comprised of
physical operators using rules.

Rules transform higher-level QGM "non-terminal"
operations into "terminal" constructs.
→ Different than the rewriter rules.

Rules may produce multiple alternative constructs
for the optimizer to evaluate to determine its cost.

24

Extensible Query Processing in StarburstSIGMOD RECORD 1989

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/66926.66962
https://dl.acm.org/doi/10.1145/66926.66962

SPECIAL TOPICS (SPRING 2025)

PLANNER RULE GRAMMAR

Rules construct new operators from base operators
that operate on tables.

Specifying the conditions under which a rule is
applicable is (usually) harder than specifying a rule's
transformation.

Parameterized rules that allow for flexibility in what
matches a rule.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

STARBURST: LOLEPOP

LOw-LEvel Plan OPerator (LOLEPOP)

Database operator interpretable at runtime.

Extension of relational algebra operators that
includes additional functionality
→ Examples: ACCESS, STORE, SORT, SHIP

Each LOLEPOP takes in one or more tables as
inputs and produces a single table as its output.
→ Input tables can be stored tables or streams derived from

the output of other LOLEPOPs.

Parameters can also specify "flavor" of a LOLEPOP.

26

Grammar-like Functional Rules for Representing Query Optimization AlternativesSIGMOD RECORD 1988

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/971701.50204
https://dl.acm.org/doi/10.1145/971701.50204

SPECIAL TOPICS (SPRING 2025)

STARBURST: STAR

STrategy Alternative Rules (STAR)

High-level declarative specification of the legal
strategies for executing a query.

Each STAR is a named object that defines one or
more alternative definitions based one or more
LOLEPOPs or other STARs.
→ Describe how to build higher-level constructs from

primitive operators rather than transform primitive
operators.

27

Grammar-like Functional Rules for Representing Query Optimization AlternativesSIGMOD RECORD 1988

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/doi/10.1145/971701.50204
https://dl.acm.org/doi/10.1145/971701.50204

SPECIAL TOPICS (SPRING 2025)

PLAN PROPERTIES

Query plan meta-data the describes the
characteristics of data and the worked performed by
that plan's operators.
→ Relational: Tables and columns accessed
→ Physical: Tuple ordering, data location
→ Estimated: cardinalities, execution cost

The DBMS initially derives properties from base
tables or access methods referenced in plan.

They are then altered by LOLEPOPs when they are
added to a plan.

28

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

STARBURST: GLUE

Special STARs that find the cheapest plan satisfying
the required properties for a query.

If necessary, Glue STARs may add LOLEPOPs to a
plan to ensure they meet requirements.

29

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

Generation of Table Access Alternatives

AccessRoot(T)*

SCAN* AllIndexScans

RegIndexScan

IndexORing IndexANDingListPrefetch

FETCH

IndexScan

FETCH

RIDSCN

SORT

IndexScan
IndexScan

FETCH

RIDSCN

SORT

IndexScan

SORT

IndexScan

IndexScan
IndexScan

FETCH

SORT(RID)

IXAND

IXSCAN
Existing

Indexes

for T

† REFN: Guy M. Lohman,
"Grammar-like Functional Rules
for Representing Query
Optimization Alternatives",
SIGMOD 1988, pp. 18-27.

* LOLEPOPS shown in ALL CAPS;
Rule names in green CamelCase

❑ Rules specify one or more alternatives, like a grammar †

❑ Each alternative specifies a nesting of other rules or LOLEPOPs*
❑ Can have iterators (e.g. all indexes for a table – see red arrow)

Guy Lohman

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.linkedin.com/in/guy-lohman-5664151

SPECIAL TOPICS (SPRING 2025)

Generation of Join Alternatives
JoinRoot (S, L)*

JoinOrder(S,L) JoinOrder(L,S)

JoinChoices(outer, inner)

NestedLoopJoins MergeJoins HashJoins

HSJOIN

outer†

NLJOIN

MGJN (join-pred)

TEMP

inner†

outer innerouter inner

NLJOIN

outer inner

Outer

Orders

Join

Preds

NOTE: All rules were interpreted (read as data) in Starburst, but compiled in DB2 LUW!
REFN: Mavis Lee, Johann Christoph Freytag, Guy Lohman,

 “Implementing an Interpreter for Functional Rules in a Query Optimizer”,VLDB 1988: 218-229

* S = smaller set of quantifiers;
 L = larger set of quantifiers

† Plans are stored based upon
quantifiers (tables) accessed
(saves regenerating same plan)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dblp.org/db/conf/vldb/vldb88.html#LeeFL88
https://www.linkedin.com/in/guy-lohman-5664151

SPECIAL TOPICS (SPRING 2025)

SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost

than some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target

plan. Usually done per sub-plan/group.

Approach #4: Transformation Count
→ Stop after a certain number of rules/transformations have

been considered.

32

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

IBM Starburst is one of the first query optimizers
that represents query plans in a higher-level form to
make it easier to construct rules.

Also one of the first to perform rewriting before
optimizing query in cost-based search.

Many other interesting aspects in Starburst/DB2's
optimizer that we will discuss later..

33

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

IBM Starburst is one of the first query optimizers
that represents query plans in a higher-level form to
make it easier to construct rules.

Also one of the first to perform rewriting before
optimizing query in cost-based search.

Many other interesting aspects in Starburst/DB2's
optimizer that we will discuss later..

33

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://perspectives.mvdirona.com/2017/12/1187/

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

Unified Query Optimizers
→ Exodus
→ Volcano

34

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: IBM Starburst Query Rewriter + Optimizer
	Slide 2: ERRATA
	Slide 3: LAST CLASS
	Slide 4: DATABASE TRENDS IN LATE 1980s

	Optimizer Generators
	Slide 5: HISTORY OF QUERY OPTIMIZERS
	Slide 6: HISTORY OF QUERY OPTIMIZERS
	Slide 7: OPTIMIZER GENERATORS
	Slide 8: OPTIMIZER GENERATORS
	Slide 9: STRATIFIED SEARCH
	Slide 10: UNIFIED SEARCH
	Slide 11: TODAY’S AGENDA

	IBM Starburst
	Slide 12: IBM DATABASE HISTORY
	Slide 13: IBM STARBURST
	Slide 14: IBM STARBURST
	Slide 15: STARBURST: QUERY OPTIMIZER PIPELINE

	Relational Calculus
	Slide 16: OBSERVATION
	Slide 17: TUPLE RELATIONAL CALCULUS
	Slide 18: TUPLE RELATIONAL CALCULUS

	Query Graph Model
	Slide 19: QUERY GRAPH MODEL
	Slide 20: QUERY GRAPH MODEL
	Slide 21: QUERY GRAPH MODEL
	Slide 22: QUERY GRAPH MODEL
	Slide 23: QUERY GRAPH MODEL
	Slide 24: QUERY GRAPH MODEL
	Slide 25: QUERY GRAPH MODEL
	Slide 26: QUERY GRAPH MODEL
	Slide 27: QUERY GRAPH MODEL

	Query Rewriter
	Slide 28: OBSERVATION
	Slide 29: IBM STARBURST: REWRITER
	Slide 30: REWRITE RULES
	Slide 31: RULE ENGINE
	Slide 32: EXAMPLE: SELECT MERGE
	Slide 33: EXAMPLE: SELECT MERGE

	Plan Optimization
	Slide 34: PLAN OPTIMIZATION
	Slide 35: PLANNER RULE GRAMMAR
	Slide 36: STARBURST: LOLEPOP
	Slide 37: STARBURST: STAR
	Slide 38: PLAN PROPERTIES
	Slide 39: STARBURST: GLUE
	Slide 40
	Slide 41
	Slide 42: SEARCH TERMINATION

	Conclusion
	Slide 43: PARTING THOUGHTS
	Slide 44: PARTING THOUGHTS
	Slide 45: NEXT CLASS

