
OPTIMIZE!

OPTIMIZE!
SPRING 2025 PROF. ANDY PAVLOSPECIAL TOPICS IN DATABASES

Database Query Optimization

https://15799.courses.cs.cmu.edu/spring2025
https://15799.courses.cs.cmu.edu/spring2025
https://www.cs.cmu.edu/~pavlo/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

LAST CLASS

2

Course objectives and expectations.
→ I will assign note taking schedule tonight.

Motivation for why query optimization is
important and a hard problem.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

TODAY’S AGENDA

Background

Heuristics

Heuristics + Cost-based Search

3

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

10

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

10

11

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

PROCEDURE GET_ARTISTS_FOR_ALBUM;
BEGIN
 /* Declare variables */
 DECLARE ARTIST_RECORD ARTIST;
 DECLARE APPEARS_RECORD APPEARS;
 DECLARE ALBUM_RECORD ALBUM;

 /* Start navigation */
 FIND ALBUM USING ALBUM.NAME = "Mooshoo Tribute"
 ON ERROR DISPLAY "Album not found" AND EXIT;

 /* For each appearance on the album */
 FIND FIRST APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
 ON ERROR DISPLAY "No artists found for this album" AND EXIT;

 /* Loop through the set of APPEARS */
 REPEAT
 /* Navigate to the corresponding artist */
 FIND OWNER WITHIN ARTIST_APPEARS OF APPEARS_RECORD
 ON ERROR DISPLAY "Error finding artist";
 /* Display artist name */
 DISPLAY ARTIST_RECORD.NAME;
 /* Move to the next APPEARS record in the set */
 FIND NEXT APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
 ON ERROR EXIT;
 END REPEAT;
END PROCEDURE;

Retrieve the names of artists that appear
on the DJ Mooshoo Tribute mixtape.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

PROCEDURE GET_ARTISTS_FOR_ALBUM;
BEGIN
 /* Declare variables */
 DECLARE ARTIST_RECORD ARTIST;
 DECLARE APPEARS_RECORD APPEARS;
 DECLARE ALBUM_RECORD ALBUM;

 /* Start navigation */
 FIND ALBUM USING ALBUM.NAME = "Mooshoo Tribute"
 ON ERROR DISPLAY "Album not found" AND EXIT;

 /* For each appearance on the album */
 FIND FIRST APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
 ON ERROR DISPLAY "No artists found for this album" AND EXIT;

 /* Loop through the set of APPEARS */
 REPEAT
 /* Navigate to the corresponding artist */
 FIND OWNER WITHIN ARTIST_APPEARS OF APPEARS_RECORD
 ON ERROR DISPLAY "Error finding artist";
 /* Display artist name */
 DISPLAY ARTIST_RECORD.NAME;
 /* Move to the next APPEARS record in the set */
 FIND NEXT APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
 ON ERROR EXIT;
 END REPEAT;
END PROCEDURE;

Retrieve the names of artists that appear
on the DJ Mooshoo Tribute mixtape.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL

SPECIAL TOPICS (SPRING 2025)

THE DAWN OF THE RELATIONAL MODEL

CODASYL

In the late 1960s, early DBMSs
required developers to write queries
using procedural code.
→ Example: CODASYL

The developer had to choose access
paths and execution ordering based
on the current database contents.
→ If the database changes, then the

developer must rewrite the query code.

4

Retrieve the names of artists that appear
on the DJ Mooshoo Tribute mixtape.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://en.wikipedia.org/wiki/CODASYL

SPECIAL TOPICS (SPRING 2025)

RELATIONAL MODEL

Structure: The definition of the
database’s relations and their contents
independent of their physical
representation.

Integrity: Ensure the database’s
contents satisfy constraints.

Manipulation: Declarative API for
accessing and modifying a database's
contents via sets.

10

8

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://dl.acm.org/citation.cfm?id=362685

SPECIAL TOPICS (SPRING 2025)

RELATIONAL MODEL

Early relational DBMS implementations:
→ Peterlee Relational Test Vehicle – IBM Research (UK)
→ System R – IBM Research (San Jose)
→ INGRES – U.C. Berkeley
→ Oracle – Larry Ellison
→ Mimer – Uppsala University

EllisonGray Stonebraker

6

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
→ INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R (1970s), early IBM DB2

Choice #3: Stratified Search
→ IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

7

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators
to a physical plan without a cost model.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until early-1990s), MongoDB, most new DBMSs.

8

Query Processing In A Relational Database Management SystemVLDB 1979

Stonebraker

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://dx.doi.org/10.1109/VLDB.1979.718156
http://dx.doi.org/10.1109/VLDB.1979.718156

SPECIAL TOPICS (SPRING 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate
and transform a query plan into different forms
without effecting the correctness of its output.
→ This is how a heuristic-based optimizer identifies better

query plans without a cost model.

9

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Selections:
→ Perform filters as early as possible.
→ Breakup a complex predicate into conjunctive clauses and

push down to lowest part of plan as possible.

σp1∧p2∧…pn(R) = σp1(σp2(…σpn(R)))

Simplify complex predicates:
→(X=Y AND Y=3) → X=3 AND Y=3
→(X=1+1) → X=2
→(X=YEAR('1/15/2025') → X=2025

10

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Joins:
→ Commutative:

R⋈S = S⋈R
→ Associative:

(R⋈S)⋈T = R⋈(S⋈T)

The number of different join orderings for an n-
way join is a Catalan Number (≈4n)
→ Exhaustive enumeration will be too slow.

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://en.wikipedia.org/wiki/Catalan_number

SPECIAL TOPICS (SPRING 2025)

LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

SPECIAL TOPICS (SPRING 2025)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

13

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"

APPEARS ALBUM

×

ARTIST.NAMESELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

13

×
ARTIST APPEARS ALBUM

×

ARTIST.NAME
ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.NAME="Mooshoo Tribute"
APPEARS.ALBUM_ID=ALBUM.ID

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PREDICATE PUSHDOWN

Move the predicate to
the lowest point in the
plan after Cartesian
products.

14

ARTIST APPEARS ALBUM

×

ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID
ALBUM.NAME="Mooshoo Tribute"

APPEARS.ALBUM_ID=ALBUM.ID
×

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

REPLACE CARTESIAN PRODUCTS

Replace all Cartesian
Products with inner
joins using the join
predicates.

15

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PROJECTION PUSHDOWN

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

16

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"

IDARTIST.NAME,
APPEARS.ALBUM_ID

ID,NAME ARTIST_ID,
ALBUM_ID

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Mooshoo Tribute"

Query #1

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Mooshoo Tribute"

Query #1

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Mooshoo Tribute"

Query #1

SELECT APPEARS.ARTIST_ID INTO TEMP2
 FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Mooshoo Tribute"

Query #1

SELECT APPEARS.ARTIST_ID INTO TEMP2
 FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

SELECT APPEARS.ARTIST_ID
 FROM APPEARS
 WHERE APPEARS.ALBUM_ID=9999
 ORDER BY APPEARS.ARTIST_ID

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

SELECT ARTIST.NAME
 FROM ARTIST
 WHERE ARTIST.ARTIST_ID=123

SELECT ARTIST.NAME
 FROM ARTIST
 WHERE ARTIST.ARTIST_ID=456

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

INGRES OPTIMIZER

17

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

ARTIST_ID

123
456

NAME

O.D.B.

NAME

DJ Premier

Retrieve the names of people that appear on the DJ
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a

planning decision.
→ Nearly impossible to generate good plans when operators

have complex inter-dependencies.

18

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a

planning decision.
→ Nearly impossible to generate good plans when operators

have complex inter-dependencies.

18

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
→ INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R (1970s), early IBM DB2

Choice #3: Stratified Search
→ IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

19

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HEURISTICS + COST-BASED SEARCH

First evaluate static rules to perform initial
logical→logical optimizations.

Then enumerate plans using logical→physical
transformations to find best plan according to a cost
model.

Examples: System R, early IBM DB2, most open-
source DBMSs today.

20

Access Path Selection in a Relational Database Management SystemSIGMOD 1979

Selinger

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://dl.acm.org/citation.cfm?id=582099
http://dl.acm.org/citation.cfm?id=582099

SPECIAL TOPICS (SPRING 2025)

PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

21

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical
operators that implement it.
→ All combinations of join algorithms and access paths

If a block accesses multiple relations, iteratively
construct a join tree that minimizes the estimated
amount of work to execute the plan.

22

Access Path Selection in a Relational Database Management SystemSIGMOD 1979

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
http://dl.acm.org/citation.cfm?id=582099
http://dl.acm.org/citation.cfm?id=582099

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – SINGLE RELATION QUERIES

Access path selection for a single
relation query block is (relatively)
easy because they are sargable.

Pick the best access method
(sequential scan vs. index) using a
simple cost model.

23

Search
Argument
Able

xxx

val=123

id

SELECT id
 FROM xxx
 WHERE val >= 123
 AND val <= 456;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – SINGLE RELATION QUERIES

Access path selection for a single
relation query block is (relatively)
easy because they are sargable.

Pick the best access method
(sequential scan vs. index) using a
simple cost model.

23

Search
Argument
Able

CREATE TABLE xxx (
 id INT PRIMARY KEY,
 val INT,
 ⋮
);
CREATE INDEX ON xxx (val);

xxx

val=123

id

SELECT id
 FROM xxx
 WHERE val >= 123
 AND val <= 456;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – COST MODEL

The cost of an access method is the
summation of the expected number of
I/Os ("page fetches") and weighted
computational cost ("RSI calls").
→ Weight determines relative cost of I/O

versus CPU.

The DBMS estimates these values
based on the selectivity factor of
predicates derived from statistics for
each relation and its indexes.

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – COST MODEL

The cost of an access method is the
summation of the expected number of
I/Os ("page fetches") and weighted
computational cost ("RSI calls").
→ Weight determines relative cost of I/O

versus CPU.

The DBMS estimates these values
based on the selectivity factor of
predicates derived from statistics for
each relation and its indexes.

24

5

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.postgresql.org/docs/current/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – SELECTIVITY FACTOR

A selectivity factor of a predicate is
the expected faction of tuples that will
satisfy that predicate.

The optimizer uses formulas to
approximate each predicate's
selectivity factor.
→ Make several assumptions about

distribution of values in columns to
simplify the problem.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – SELECTIVITY FACTOR

A selectivity factor of a predicate is
the expected faction of tuples that will
satisfy that predicate.

The optimizer uses formulas to
approximate each predicate's
selectivity factor.
→ Make several assumptions about

distribution of values in columns to
simplify the problem.

25

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – INTERESTING ORDERS

For each query block, the DBMS extracts the
required ("interesting") ordering of its output.
→ Examples: ORDER BY, GROUP BY

It then compares the best access method that orders
the data versus the best unordered access method +
sort operator.

If there is no required ordering, then the DBMS
selects the access method with the lowest cost.

26

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – MULTIPLE RELATIONS

If a query block accesses multiple relations, then the
DBMS must determine the best ordering to join
those relations.
→ Also identify interesting orders based on join predicates.

Leverage domain knowledge to reduce the search
complexity by delaying or discarding plan choices.
→ Example: Only consider left-deep trees.

Join costs are estimated based on the number of
tuples processed in outer/inner relations.

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – MULTIPLE RELATIONS

Step #1: Choose the best access paths to each relation.

Step #2: Enumerate all join orderings for 1-relation
plans using best access path found in Step #1.

Step #3: For each subsequent pass, the algorithm
determines the best way to join the result of an n − 1
relation plan as the outer relation to the nth relation.

Algorithm does not need to remember anything at a
previous level explicitly as it's being remembered
implicitly by the nature of a bottom-up approach.

45

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – MULTIPLE RELATIONS

28

Step #1: Choose the best access paths to
each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – MULTIPLE RELATIONS

28

Step #1: Choose the best access paths to
each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – MULTIPLE RELATIONS

28

Step #1: Choose the best access paths to
each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

NL_JOIN(A1,A3) MERGE_JOIN(A1,A3) NL_JOIN(A2,A3) MERGE_JOIN(A2,A3) NL_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

NL_JOIN(A1,A3) NL_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

NL_JOIN(A1,A3) NL_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

NL_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) NL_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) NL_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

NL_JOIN(A1,A3) NL_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

NL_JOIN(A1⨝A3,A2) NL_JOIN(A2⨝A3,A1) NL_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

NL_JOIN(A2,A3)

NL_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – BOTTOM-UP SEARCH

29

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

NL_JOIN(A2,A3)

NL_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

The query has ORDER BY on
ARTIST.ID but the logical plans
do not contain sorting properties.

Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PLAN ENUMERATION

Approach #1: Generative / Bottom-Up
→ Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
→ Examples: System R, Starburst

Approach #2: Transformation / Top-Down
→ Start with the outcome that the query wants and then

transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

30

On the Correct and Complete Enumeration of the Core Search SpaceSIGMOD 2013

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins…

31

SELECT name FROM employee
 WHERE salary >(SELECT AVG(salary)
 FROM employee);

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins…

31

SELECT name FROM employee
 WHERE salary >(SELECT AVG(salary)
 FROM employee);

SELECT AVG(salary) FROM employee;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins…

31

SELECT name FROM employee
 WHERE salary >(SELECT AVG(salary)
 FROM employee);

SELECT AVG(salary) FROM employee;
AVG(salary)

100000

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

SYSTEM R – NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins…

31

SELECT name FROM employee
 WHERE salary >(SELECT AVG(salary)
 FROM employee);

SELECT AVG(salary) FROM employee;
AVG(salary)

100000

SELECT name FROM employee
 WHERE salary > 100000;

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HEURISTICS + COST-BASED SEARCH

Advantages:
→ Usually finds a reasonable plan without having to perform

an exhaustive search.

Disadvantages:
→ All the same problems as the heuristic-only approach.
→ Left-deep join trees are not always optimal.
→ Must take in consideration the physical properties of data

in the cost model (e.g., sort order).

32

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

PARTING THOUGHTS

Although the System R paper is over 40 years old, it
still provides a reasonable foundation for building a
modern query optimizer.
→ For two relation queries, it will find the optimal join

ordering quickly.

But many of its simplifying assumptions in its cost
estimates and selectivity factor cause problems in
the real-world.

33

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

NEXT CLASS

IBM Starburst Optimizer

34

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

SPECIAL TOPICS (SPRING 2025)

HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
→ INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R (1970s), early IBM DB2

Choice #3: Stratified Search
→ IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

35

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

	Introduction
	Slide 1: History of Query Optimizers feat. IBM System R
	Slide 2: LAST CLASS
	Slide 3: TODAY’S AGENDA

	Background
	Slide 4: THE DAWN OF THE RELATIONAL MODEL
	Slide 5: THE DAWN OF THE RELATIONAL MODEL
	Slide 6: THE DAWN OF THE RELATIONAL MODEL
	Slide 7: THE DAWN OF THE RELATIONAL MODEL
	Slide 8: THE DAWN OF THE RELATIONAL MODEL
	Slide 9: THE DAWN OF THE RELATIONAL MODEL
	Slide 10: RELATIONAL MODEL
	Slide 11: RELATIONAL MODEL
	Slide 12: HISTORY OF QUERY OPTIMIZERS

	Heuristics
	Slide 13: HEURISTIC-BASED OPTIMIZATION
	Slide 14: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 15: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 16: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 17: LOGICAL QUERY OPTIMIZATION
	Slide 18: SPLIT CONJUNCTIVE PREDICATES
	Slide 19: SPLIT CONJUNCTIVE PREDICATES
	Slide 20: PREDICATE PUSHDOWN
	Slide 21: REPLACE CARTESIAN PRODUCTS
	Slide 22: PROJECTION PUSHDOWN
	Slide 23: INGRES OPTIMIZER
	Slide 24: INGRES OPTIMIZER
	Slide 25: INGRES OPTIMIZER
	Slide 26: INGRES OPTIMIZER
	Slide 27: INGRES OPTIMIZER
	Slide 28: INGRES OPTIMIZER
	Slide 29: INGRES OPTIMIZER
	Slide 30: INGRES OPTIMIZER
	Slide 31: HEURISTIC-BASED OPTIMIZATION
	Slide 32: HEURISTIC-BASED OPTIMIZATION

	Heuristics + Cost-Based Search
	Slide 33: HISTORY OF QUERY OPTIMIZERS
	Slide 34: HEURISTICS + COST-BASED SEARCH
	Slide 35: PHYSICAL QUERY OPTIMIZATION

	System R
	Slide 36: SYSTEM R OPTIMIZER
	Slide 37: SYSTEM R – SINGLE RELATION QUERIES
	Slide 38: SYSTEM R – SINGLE RELATION QUERIES
	Slide 39: SYSTEM R – COST MODEL
	Slide 40: SYSTEM R – COST MODEL
	Slide 41: SYSTEM R – SELECTIVITY FACTOR
	Slide 42: SYSTEM R – SELECTIVITY FACTOR
	Slide 43: SYSTEM R – INTERESTING ORDERS
	Slide 44: SYSTEM R – MULTIPLE RELATIONS
	Slide 45: SYSTEM R – MULTIPLE RELATIONS
	Slide 46: SYSTEM R – MULTIPLE RELATIONS
	Slide 47: SYSTEM R – MULTIPLE RELATIONS
	Slide 48: SYSTEM R – MULTIPLE RELATIONS
	Slide 49: SYSTEM R – BOTTOM-UP SEARCH
	Slide 50: SYSTEM R – BOTTOM-UP SEARCH
	Slide 51: SYSTEM R – BOTTOM-UP SEARCH
	Slide 52: SYSTEM R – BOTTOM-UP SEARCH
	Slide 53: SYSTEM R – BOTTOM-UP SEARCH
	Slide 54: SYSTEM R – BOTTOM-UP SEARCH
	Slide 55: PLAN ENUMERATION
	Slide 56: SYSTEM R – NESTED QUERIES
	Slide 57: SYSTEM R – NESTED QUERIES
	Slide 58: SYSTEM R – NESTED QUERIES
	Slide 59: SYSTEM R – NESTED QUERIES
	Slide 60: HEURISTICS + COST-BASED SEARCH

	Conclusion
	Slide 61: PARTING THOUGHTS
	Slide 62: NEXT CLASS
	Slide 63: HISTORY OF QUERY OPTIMIZERS

