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LAST CLASS

Course objectives and expectations.
— [ will assign note taking schedule tonight.

Motivation for why query optimization is
important and a hard problem.
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TODAY’S AGENDA

Background
Heuristics
Heuristics + Cost-based Search
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THE DAWN OF THE RELATIONAL MODEL

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Example: CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— [f the database changes, then the
developer must rewrite the query code.

1973 ACM Turing
Award Lecture

The Turing Award ciiation read by Rickard G. Coming, chair-
e of the 1973 Turing Award Cammitee, af the preseniarion of
shis fecture o Awgust 28 ot ihe ACM  Annual Canference in
Atlarta:

A significant change in the computer fiekd in the last five 10
cight years has been made in the way we fecal and handle daia.
In the early days of our field, dats was intimately tied 1 the ap-
plication programs that scd ir. Now we see that we want 1o break
ihat e, We want data hat is independent of ihe applicaiion
programs that use it than i, data that is oegunized and strctured
10 serve many applications 3nd many users. What we seek is the
data base.

“This movement toward the data base s in its infancy. Even
50, it appears that here are naw between 1000 and 2000 true
data base management systems installed worldwide In ten years
very likely, there will be tens of thousands of such systems. Just
from the quantities of installed systems, the impact of data bases
promises 10 be huge

This year's recipient of he AM. Turing Award is one of the
real pioneers of data base technology. No other individual hus
had the infucnce that he has had upon this aspect of our fickd. |

Single owt three prime cxamples of what he has done. He was the
ereatoe and principal architect of the fint commercially available
data buse management system—the Integrated Data Store—orig-
inally develoged from 1961 10 1964+ 1-D-5 is today one of the
thee most widely used data base management sysiems, Also, he
was ome of the founding members of the conasvt. Data Base Task
Group, and served on that task group from 1966 1o 1968, The
specifications of that Lask group are being implemenicd by many
suppliees in various parts of the world " Indeed, eoreemtly these
specifications represean the oaly progosal of stature for a commen
architecture for data base management systems. 1t is ta his eredit
thur these specifications, afier extended debate and discussion,
cmbody much of the original thinking of the Integrated Data
Store. Thirdly, he was the creator of a powerful method fer dis-
playing data relationships—a 100l for data base designers as well
i apglcation system designers

His eontributions have thus represented the wnion of imagin-
ation and practicalty. The richness of his work has already had,
and will comtinue fo have, & substandial influence upon ous feld.

1 am very pleased to present the 1973 AM. Turing Award 10
Charles W. Bachman

The Programmer
as Navigator

by Charles W. Bachman

This year the whole world celcbrates the five-hun
dredth birthday of Nicolaus Copernicus, the famous
Polish astronomer and mathematician. In 1543, Coper-
nicus published his book, Concerning tie Revolutions of
Celestial Spheres, which deseribed a new theory about
the relative physical movements of the carth, the plan-
ets, and the sun. 1t was in direel contradiction with
the earth-centered theorics which had been established
by Prolemy 1400 years earlier

Copernicus proposed the heliocentric theory, that
planets revolve in & circular orbit around the sun. This
theory was subjected to tremendous and persistent
criticism. Nearly 100 years later, G:
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10 appear before the Inquisition in Rome and forced
to state that he had given up his belief in the Copernican
theory. Even this did not placate his inquisitors, and
he was sentenced to an indefinite prison term, while
Copernicus's book was placed upon the Index of Pro-
hibited Books, where it remained for another 200 years.

1 raise the example of Copernicus today to illustrate
a parallel that | bel n the computing or, more
properly, the information systems world, We have
spent the last 50 years with almost Prolemaic informa.
tion systems. These systems, and most of the thinking
about systems, were based on & *‘computer centercd”
concept. (I choose ta speak of 50 years of history rather
than 25, for | see today's information systems as dating
from the beginning of effective punched card equip-
ment rather than from the beginning of the stored
program computer.)

Just as the ancients viewed the carth with the sun
revolving around it, so have the ancients of our in-
formation systems viewed a tab machine or computer
with a sequential file Rowing through it. Each wes an

Communications November 1973
Valume 16
the ACM Number 11
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THE DAWN OF THE RE'AITANAL MODE

In the late 1960s, early DBMSS |
required developers to write queries

using procedural code.
— Example: CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.

— [f the database changes, then the
developer must rewrite the query code.

gator, let us enumerate his opportunities for record
access. These represent the commands that he
can give to the database system——singly, multiply or in
combination with each other.. as he picks his way
through the data 1o resolve an inquiry or to complete
an update.

1. He can start at the beginning of the database, or at
any known record, and sequentially access the ““pext”
record in the database unti] he reaches a record of
interest or reaches the end.

2. He can enter the database with a database key that
provides direct access to the physical location of a
record. (A database key is the permanent virtual
memory address assigned to a record at the time that it
was created.)

3. He can enter the database in accordance with the
value of a primary data key. (Either the indexed se-
quential or randomized access techniques will yield the
same result.)
4. He can enter the database with a secondary data key
value and sequentially access all records having that
particular data value for the field.

5. He can start from the owner of a set and sequentially
access all the member records, (This is equivalent tg
converting a primary data key into a secondary data
key.)
6. He can start with any member record of a set and
access either the next or prior member of that set.

. He can start from any member of a set and access
the owner of the set, thus converting a secondary data
key into a primary data key.
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THE DAWN OF THE RELATIANAL MODEL

gator, let us enumerate his opportunities for record
access. These represent the commands that he
can give to the database system——singly, multiply or in
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. He can start from any member of a set and access
the owner of the set, thus converting a secondary data
key into a primary data key.
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THE DAWN OF THE RELATIONAL MODEL

Retrieve the names of artists that appear

In the late 19603, early DBMSs on the D] Mooshoo Tribute mixtape.

PROCEDURE GET_ARTISTS_FOR_ALBUM;

required developers to write queries sEcIn

/* Declare variables */
DECLARE ARTIST_RECORD ARTIST;

uSIHg prOCEdural COde. DECLARE APPEARS_RECORD APPEARS;

DECLARE ALBUM_RECORD ALBUM;

— Example: CODASYL i3 Gt s

FIND ALBUM USING ALBUM.NAME = "Mooshoo Tribute"
ON ERROR DISPLAY "Album not found" AND EXIT;

The developer had to choose access 110 FLRST APPEARS NETHEN APPENRS ALBAM OF ALBNRECRD
R R ON ERROR DISPLAY "No artists found for this album" AND EXIT;
paths and execution ordering based o e ehe et or rpEs o
REPEAT

On the Current database Contents. /* Navigate to the corresponding artist */

FIND OWNER WITHIN ARTIST_APPEARS.OF APPFAR%TRECORD
— If the database changes, then the e s DR Errer g eraisey

developer must rewrite the query code. e Move to.the next APPEARS record in the set 3/

FIND NEXT APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
ON ERROR EXIT;
END REPEAT;
END PROCEDURE;
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THE DAWN OF THE RELATIONAL MODEL

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Example: CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— [f the database changes, then the
developer must rewrite the query code.

Retrieve the names of artists that appear
on the D] Mooshoo Tribute mixtape.

PROCEDURE GET_ARTISTS_FOR_ALBUM;
BEGIN
/* Declarg variables */

/* For each 3
FIND FIRST A CORD
pund for thi

ON ERROR AY "No art}

/* Loop thro
REPEAT
/* Naviga
FIND OWNER

END REPEAT;
END PROCEDURE;

pum" AND EXIT;
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THE DAWN OF THE RELATIONAL MODEL

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Example: CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— [f the database changes, then the
developer must rewrite the query code.

Retrieve the names of artists that appear
on the D] Mooshoo Tribute mixtape.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
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RELATIONAL MODEL

Structure: The definition of the
database’s relations and their contents
independent of their physical
representation.

Integrity: Ensure the database’s
contents satisfy constraints.

Manipulation: Declarative API for
accessing and modifying a database's
contents via sets.

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Coon
IBM Research Laboralory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application progroms should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for trestmg derivability, redundancy,
and consi of rel: di ed in Section
2. The network model, on the other hand, has spawned a
number of eunfumnz, not the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.
Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, o normal
form for data base relations, and the concept of @ universal
data sublanguage are infroduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.
KEY WORDS AND PHRASES: dota bonk, dota bese, doto structure, data
‘organization, hierarchies of dato, networks of data, relations, derivability,
redundancy, consistency, composition, foin, retrieval language, predicate
calculus, security, dato integrity
CR CATEGORES: 370, 3.73, 375, 420, 422, 429

1. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

In contrast, t.he pmblems treated here are those of data

of programs

and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
tinconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

the ions for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
) of ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.
1.2. Dara DEPENDENCIES IN PRESENT SystEMS
The provision of data description tables in recently de-
veloped information systems represents & major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank, However, the variety of
dau representmon characteristics which can be clunged
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.
12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely i with the hard: ined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of ) the

Communications of the ACM 377
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RELATIONAL MODEL

Early relational DBMS implementations:

— Peterlee Relational Test Vehicle — IBM Research (UK)
— System R - IBM Research (San Jose)

— INGRES - U.C. Berkeley

— Oracle - Larry Ellison

— Mimer - Uppsala University

Gray Stonebraker Ellison
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HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
— INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
— System R (1970s), early IBM DB2

Choice #3: Stratified Search
— IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
— Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
— Academics in the 1980s, current Postgres
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators

to a physical plan without a cost model.

— Perform most restrictive selection early

— Perform all selections before joins

— Predicate/Limit/Projection pushdowns

— Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until early-1990s), MongoDB, most new DBMSs.

QUERY PROCESSING IN A RELATIONAL DATABASE

~ | MANAGEMENT SYSTEM
fei-|VLDB 1979

Stonebraker
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RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate
and transform a query plan into different forms

without effecting the correctness of its output.
— This is how a heuristic-based optimizer identifies better
query plans without a cost model.
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RELATIONAL ALGEBRA EQUIVALENCES

Selections:

— Perform filters as early as possible.
— Breakup a complex predicate into conjunctive clauses and
push down to lowest part of plan as possible.

o.p1/\p2/\...p/7(R) - o.p1 <op2<"°opn(R) >)

Simplify complex predicates:

— (X=Y AND Y=3) » X=3 AND Y=3
— (X=1+1) » X=2

— (X=YEAR('1/15/2025") » X=2025



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

RELATIONAL ALGEBRA EQUIVALENCES 1

Joins:
— Commutative;
RS = SR

— Associative:

(RHKS)NWT = RW(SNWT)

The number of different join orderings for an n-

way join is a Catalan Number (=4")
— Exhaustive enumeration will be too slow.
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LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins
Projection Pushdown

Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

I

ARTIST.ID=APPEARS.ARTIST_ID AND
G APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"

I

X
/_/
X
NG

ARTIST APPEARS ALBUM
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

QQQ

ALBUM.NAME="Mooshoo Tribute"

X

)(/_/\
PR

ARTIST APPEARS ALBUM
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PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Move the predicate to
the lowest point in the
plan after Cartesian
products.

X
N

ARTIST

o)

’ l ARTIST.NAME

APPEARS . ALBUM_ID=ALBUM. ID

t
X

/ G ALBUM. NAME="Mooshoo Tribute"

G ARTIST.ID=APPEARS.ARTIST_ID

APPEARS ALBUM
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REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

Replace all Cartesian
Products with inner
joins using the join
predicates.

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Mooshoo Tribute"

ARTIST ID=APPEARS.ARTIST_ID

AN

ARTIST APPEARS ALBUM
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PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

ARTIST.NAME, D
APPEARS . ALBUM_ID

ARTIST.ID=
APPEARS.ARTIST_ID

' l I?AME

ARTIST

TC

’ l ARTIST.NAME

1

N APPEARS . ALBUM_ID=ALBUM. ID

\

G ALBUM.NAME="Mooshoo Tribute"

ARTIST_ID,
ALBUM_ID

APPEARS ALBUM
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D]
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D] Query #1
Mooshoo Tribute mixtape ordered by their artist id. Yy

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Mooshoo Tribute"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS. ALBUM_ID=ALBUM. ID Query #2
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID SELECT ARTIST.NAME
FROM ARTIST, APPEARS, TEMP1
Step #1: Decompose into single-value queries LHERE ARTLET . LOSHFREARS  ARTLE LD
AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D]
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Mooshoo Tribute"

Query #2

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, TEMPT
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D] Query #1
Mooshoo Tribute mixtape ordered by their artist id. Yy

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Mooshoo Tribute"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBHM_ID=ALBUM:ID " (2uefjl#3
AND ALBUM.NAME="Mooshoo Tribute
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1

Step #1: Decompose into single-value queries WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ARTIST_ID

Query #4
SELECT ARTIST.NAME

FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D] Query #1
Mooshoo Tribute mixtape ordered by their artist id. Yy

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Mooshoo Tribute"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM. ID Query #3
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
Step #1: Decompose into single-value queries L3S A 2o SN E DA SN Sl T
ORDER BY APPEARS.ARTIST_ID
Step #2: Substitute the values from Query #4
Query#1 - Query #3 - Query #4
SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D]
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4

ALBUM_ID

9999

SELECT APPEARS.ARTIST_ID
FROM APPEARS

WHERE APPEARS.ALBUM_ID=9999

ORDER BY APPEARS.ARTIST_ID

Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D]
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4

ALBUM_ID
9999
ARTIST_ID

123
456 l‘\

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=123

FROM ARTIST

SELECT ARTIST.NAME ‘/
WHERE ARTIST.ARTIST_ID=456
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INGRES OPTIMIZER

Retrieve the names of people that appear on the D]
Mooshoo Tribute mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4

ALBUM_ID
9999
123
456
‘ 0.D.B. \
‘ DJ Premier \
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HEURISTIC-BASED OPTIMIZATION

Advantages:

— Easy to implement and debug.
— Works reasonably well and is fast for simple queries.

Disadvantages:
— Relies on magic constants that predict the efficacy of a

planning decision.
— Nearly impossible to generate good plans when operators
have complex inter-dependencies.


https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025

HEURISTIC-BASED OPTIMIZATION

Advantages:
— Easy to implement and debug.

— Works reasonably well and is fast

Disadvantages:

— Relies on magic constants that pre¢

planning decision.

— Nearly impossible to generate goc
have complex inter-dependencies

Stonebraker gave the story of the query optimizer as an exam-
ple. Relational queries were often highly complex. Let's say you
wanted your database to give you the name, salary, and job title of
everyone in your Chicago office who did the same kind of work as
an employee named Alien. (This example happens to come from Or-
acle's 1981 user guide.) This would require the database to find infor-
mation in the employee table and the department table, then sort the
data. How quickly the database management system did this de-
pended on how cleverly the system was constructed. "If you do it
smart, you get the answer a lot quicker than if you do it stupid,
Stonebraker said.

He continued. "Oracle had a really stupid optimizer. They did
the query in the order that you happened to type in the clauses. Basi-
cally, they blindly did it from left to right. The Ingres program
looked at everything there and tried to figure out the best way to do
it." But Ellison found a way to neutralize this advantage, Stone-
braker said. "Oracle was really shrewd. They said they had a syntac-
tic optimizer, whereas the other guys had a semantic optimizer. The
truth was, they had no optimizer and the other guys had an opti-
mizer. It was very, very, very creative marketing. . . . They were very

good at confusing the market."

"What he's using is semantics himself," Ellison said. Just be-
cause Oracle did things differently, "Stonebraker decided we
didn't have an optimizer. [He seemed to think] the only kind of
optimizer was his optimizer, and our approach to optimization
wasn't really optimization at all. That's an interesting notion, but
I'm not sure I buy that."
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HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
— INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
— System R (1970s), early IBM DB2

Choice #3: Stratified Search
— IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
— Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
— Academics in the 1980s, current Postgres
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HEURISTICS + COST-BASED SEARCH

First evaluate static rules to perform initial
logical—logical optimizations.

Then enumerate plans using logical>physical
transformations to find best plan according to a cost
model.

Selinger

Examples: System R, early IBM DB2, most open-
source DBMSs today.

ACCESS PATH SELECTION IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM

= SIGMOD 1979
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PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into

physical operators.

— Add more execution information

— Select indexes / access paths

— Choose operator implementations

— Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.
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SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical

operators that implement it.
— All combinations of join algorithms and access paths

[f a block accesses multiple relations, iteratively
construct a join tree that minimizes the estimated
amount of work to execute the plan.

ACCESS PATH SELECTION IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM

= SIGMOD 1979
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SYSTEM R - SINGLE RELATION QUERIES

Search
Access path selection for a single  —~Argument
relation query block is (relatively)[ Able
easy because they are sargable.

Pick the best access method
(sequential scan vs. index) using a
simple cost model.

SELECT id
FROM xxXx

WHERE val >= 123
AND val <= 456;

t
TC:c

I
Gval=123

00K
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SYSTEM R - SINGLE RELATION QUERIES

Search

Access path selection for a single
relation query block is (relatively)

easy because they are sargable.

Pick the best access method
(sequential scan vs. index) using a

simple cost model.

Argument
Able

SELECT id
FROM xxXx

WHERE val >= 123
AND val <= 456;

CREATE TABLE xxx (
id INT PRIMARY KEY,
val INT,

.
.
),

TC:¢
]

Gval=1 23

CREATE INDEX ON xxx (val);

7 ok
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SYSTEM R - COST

The cost of an access method is the
summation of the expected number of
I/Os ("page fetches") and weighted

computational cost ("RSI calls").

— Weight determines relative cost of I/O
versus CPU.

The DBMS estimates these values
based on the selectivity factor of
predicates derived from statistics for
each relation and its indexes.

MODEL

The OPTIMIZER examines both the predi-
cates in the query and the access paths
available on the relations referenced by
the query, and formulates a cost prediction
for each access plan, using the follouing
cost formula:

COST = PAGE -FETCHES + W * (RSI CALLS).
This cost is a weighted measure of I/0
(pages fetched) and CPU utilization
(instructions executed). W is an adjusta-
ble weighting factor between 1/0 and CPU. '
RSI CALLS is the predicted number of tuples
returned from the RSS. Since most of
System R's CPU time is spent in the RSS,
the number of RSI calls is a good approxi-
mation for CPU utilization. Thus the
choice of a minimum cost path to process a
query attempts to minimize total resources
required.
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SYSTEM R —CN<T MANF]

The cost of an access method is
summation of the expected nun
I/Os ("page fetches") and weigh;

computational cost ("RSI calls")

— Weight determines relative cost of
versus CPU.

The DBMS estimates these valy
based on the selectivity facto

predicates derived from statisti

17.6.2. Planner Cost Constants

Note: Unfortunately, there is no well-defined method for determining ideal values for the

family of "cost" variables that appear below. You are encouraged to experiment and share
your findings.

random_page cost (floating point)

Sets the planner's estimate of the cost of a nonsequentially fetched disk page. This is
measured as a multiple of the cost of a sequential page fetch. A higher value makes it more

likely a sequential scan will be used, a lower value makes it more likely an index scan will be
used. The default is four.

cpu_tuple cost (floating point)

Sets the planner's estimate of the cost of processing each row during a query. This is
measured as a fraction of the cost of a sequential page fetch. The default is 0.01.

cpu_index_tuple cost (floating point)

Sets the planner’s estimate of the cost of processing each index row during an index scan.
This is measured as a fraction of the cost of a sequential page fetch. The default is 0.001.

Cpu_operator cost (floating point)

Sets the planner's estimate of the cost of processing each operator in a WHERE clause. This is
measured as a fraction of the cost of a sequential page fetch. The default is 0.0025.

each relation and its indexes.

(HINDX(L) + NCARD) + W ¥ RSICAED

(HINDX(I) + TCARD) + W * RSICARD if
°r this number fits in the System R buffer

Mon=clustered index I not
matching any boolean factors

* RD
Segment scan TCARD/P + W ¥ RSICAI



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2025
https://www.postgresql.org/docs/current/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS

SYSTEM R - SELECTIVITY FACTOR

A selectivity factor of a predicate is
the expected faction of tuples that wi
satisfy that predicate.

The optimizer uses formulas to
approximate each predicate's

selectivity factor.

— Make several assumptions about
distribution of values in columns to
simplify the problem.

column = value

columnl =

colunn > value (or any other open-ended comparison}

column BETWEEN valuel AND v

column IK

TABLE 1 SELECTIVITY FACTORS

= 1 7/ ICARD(column index) if there is an indax on column
This assumes an even distribution of tuples among the index key
values.
F o= 1710 otheruise

column?
F = 1/MAX(ICARD(columnl index), ICARD(column2 index))
if there are indexes on both columni and column2
This assumes that each Key value in the index with the smaller
cardinality has a matching value in the other index.
¥ 1/1CARD(column-i index) if there is only an index on column-i
F o= 1710 otheruise

¥ = (high key value - value) # (high key value - low key value)’
Linear interpolation of the value within the range of key values
yields F if the column is an arithmetic type and value is knpun at
access path selection time.

F = 1/3 otherwise (i.e. column not arithmetic)

There is no significance to this number, other than the fact that
it is less selective than the guesses for equal predicates for
which there are no indexes, and that it is less than 142, We
nypothesize that feu queries use predicates that are satisfied by
more than half the tuples.

alue2
F = (value? - valuel) / (high key value - low key value)

X ratio of the BETWEEN value range to the entire key value range is
used a e selectivity factor if column is arithmetic and both
valuel and valueZ are knoun at access path selection.

F = 1/4 otheruise .

Again there is no significance to this choice except that it is
betueen the default selectivity factors for an equal predicate and
a range predicate.

(list of values)

= (number of items in list) * (selectivity factor for column =
value)
This is allowed to be no more than 1-2.

columnAk IN subguery

= (expected cardinality of the subquery result)

(product of the cardinalities of all the relations in the
subquery's FROM-list).
The computation of guery cardinality will be discussed below.
This formula is derived by the following argument
Congider the simplest case, where subguery is of the form "SELECT
columnB FROM relationC ...". Assume that the sat of all columnB
values in relationC contains the set of all columnA values. ' If all
the tupl of relationC are selected by the subquery, then the
predicate is always TRUE snd F = 1. 1{ the tuples of the subquery
are restricted by a selectivity factor F', then assume that the set
of unique values in the subquery result that match columnA values
is proportionately restricted, i.e. the ectivity factor for the
predicate should be F'. F' is the product of all the subquery's
selectivity factors, namely (subquery cardinality) / (cardinality
of all possible subguery answers). With a littles optimism, we can
extend this reasoning to include sibqueries which are joins and
subqueries in which columnB is replaved by an arithmetic expression
invelving column names. This leads to the formula given above

(pred expressionl) OR (pred expressionl)

= F(pred1) + F(pred2) = Flpredl) ¥ Flpred2)
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SYSTEM R - SELECTIVITY FACTOR

A selectivity factor of a predicate is
the expected faction of tuples that wi
satisfy that predicate.

TABLE 1 SELECTIVITY FACTORS

column = value
N = 1 7/ ICARD(column index) if there is an indax on column
This assumes an even distribution of tuples among the index key
values.
F o= 1710 otheruise

columnl = column2
F = 1/MAX(ICARD(columnl index), ICARD(column2 index))
if there are indexes on both columni and column2
This assumes that each Key value in the index with the smaller
cardinality has a matching value in the other index.
F = 1/ICARD(column-i index) if there is enly an index on column-i
F o= 1710 otheruise

column > value (or any other open-ended comparison)
F = (high key value - value) / (high key value - low key valu
Linear interpolation of the value within the range of key values
yields F if the column is an arithmetic type and value is knoun at
access path selection time.
F = 1/3 otherwise (i.e. column not arithmetic)
significance to this number. other than the fact that
equal predicates for

The optimizer u
approximate ea

F f 1 7 ICARD{column index)
This ASSumes an even
values,

F =110 otherwise

; 1f there s
distribution of t

an index on column
Urples ' among the

selectivity factor.

— Make several assumptions about
distribution of values in columns to
simplify the problem.

colunn IK (1ist of values

index key

F = (number of items in list) * (selectIvity Y

value)
This is allowed to be no more than 1-2.

columnh IN subguery
= (expected cardinality of the subquery result)

(product of the cardinalities of all the relations in the
subquery's FROM-list).
The computation of guery cardinality will be discussed below.
This formula is derived by the following argument
Consider the simplest case, where subquery is of the form "SELECT
columnB FROM relationC ...". Assume that the sat of all columnB
values in relationC contains the set of all columnA values. ' If all
the tuples of relationC are selected by the subquery, then the
predicate is always TRUE snd F = 1. 1{ the tuples of the subquery
are restricted by a selectivity factor F', then assume that the set
of unique valu in the subquery result that match columnA values
is proportionately restricted, i.e. the selectivity factor for the
predicate should be F'. F' is the product of all the subquery's
selectivity factors, namely (subquery cardinality) / (cardinality
of all possible subquery answers). With a little optimism. we can
extend this reasoning to include sibqueries which are joins and
subqueries in which columnB is replaved by an arithmetic expression
invelving column names. This leads to the formula given above

(pred expressionl) OR (pred expression2}
= Fpred1) + F(pred2) - Fipred1) * F(pred2)
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SYSTEM R - INTERESTING ORDERS

For each query block, the DBMS extracts the

required ("interesting") ordering of its output.
— Examples: ORDER BY, GROUP BY

[t then compares the best access method that orders
the data versus the best unordered access method +
sort operator.

[f there is no required ordering, then the DBMS
selects the access method with the lowest cost.
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SYSTEM R - MULTIPLE RELATIONS

[f a query block accesses multiple relations, then the
DBMS must determine the best ordering to join

those relations.
— Also identify interesting orders based on join predicates.

Leverage domain knowledge to reduce the search

complexity by delaying or discarding plan choices.
— Example: Only consider left-deep trees.

Join costs are estimated based on the number of
tuples processed in outer/inner relations.
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SYSTEM R - MULTIPLE RELATIONS

Step #1: Choose the best access paths to each relation.

Step #2: Enumerate all join orderings for 1-relation
plans using best access path found in Step #1.

Step #3: For each subsequent pass, the algorithm
determines the best way to join the result of ann — 1
relation plan as the outer relation to the nth relation.

Algorithm does not need to remember anything at a
previous level explicitly as it's being remembered
implicitly by the nature of a bottom-up approach.
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SYSTEM R - MULTIPLE RELATIONS

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ARTIST: Sequential Scan

FROM ARTIST, APPEARS, ALBUM APPEARS : Sequential Scan
WHERE ARTIST.ID=APPEARS.ARTIST_ID ALBUM: Index Look-up on NAME
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to
each table
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SYSTEM R - MULTIPLE RELATIONS

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to

each table

Step #2: Enumerate all possible join
orderings for tables

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D] APPEARS D ALBUM
APPEARS D ALBUM D] ARTIST
ALBUM D] APPEARS D] ARTIST
APPEARS D ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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SYSTEM R - MULTIPLE RELATIONS

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to

each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering

with the lowest cost

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D] APPEARS D ALBUM
APPEARS D ALBUM D] ARTIST
ALBUM P APPEARS P ARTIST
APPEARS DX ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM o
ALBUM ARTIST ARTIST

NL_JOIN(A1,A3)

MERGE_JOIN(A1,A3) NL_JOIN(A2,A3) MERGE_JOIN(A2,A3) NL_JOIN(A3,A2)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) ICICIK]

ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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(] Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM o
ALBUM ARTIST ARTIST

NL_JOIN(A1,A3)

NL_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST.ID=APPEARS.ARTIST_ID \

MERGE_JOIN(A3,A2) ICICIK]

/ APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

_— S~

NL_JOIN(A1D<IA3,A2) |MERGE_JOIN(A1><A3,A2)| NL_JOIN(A2D<IA3,A1) |MERGE_JOIN(A2D<A3,A1)| NL_JOIN(A3D<IA2,A1) |MERGE_JOIN(A3I<IA2,A1)

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM o
ALBUM ARTIST ARTIST

NL_JOIN(A1,A3)

NL_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST.ID=APPEARS.ARTIST_ID \

MERGE_JOIN(A3,A2) ICICIK]

/ APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

/

NL_JOINCATD<IA3,A2)

NL_JOINCA2D<IA3,A1) NL_JOIN(A3D<IA2,A1)

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM o
ALBUM ARTIST ARTIST

NL_JOIN(A1,A3)

NL_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST.ID=APPEARS.ARTIST_ID \

MERGE_JOIN(A3,A2) ICICIK]

/ APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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(] Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

NL_JOINCA2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

NL_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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(] Logical Op

meiao, SYSTEM R - BOTTOM-UP SEARCH

ARTIST P4 APPEARS P<{ ALBUM

The query has ORDER BY on
NL_JOINCA2D<A3, A1) ARTIST. ID but the logical plans
do not contain sorting properties.

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

NL_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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PLAN ENUMERATION

Approach #1: Generative / Bottom-Up

— Start with nothing and then iteratively assemble and add
building blocks to generate a query plan.
— Examples: System R, Starburst

Approach #2: Transformation / Top-Down

— Start with the outcome that the query wants and then
transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

— Examples: Volcano, Cascades

=< |ON THE CORRECT AND COMPLETE ENUMERATION

OF THE CORE SEARCH SPACE

SIGMOD 2013
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SYSTEM R - NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins...

SELECT name FROM employee
WHERE salary >(SELECT AVG(salary)
FROM employee);
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SYSTEM R - NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins...

SELECT name FROM employee
WHERE salary >(SELECT AVG(salary)
FROM employee);

\ 4

SELECT AVG(salary) FROM employee;
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SYSTEM R - NESTED QUERIES

The DBMS treats nested queries as
separate queries.

The optimizer executes an inner
query before it begins planning an
outer query so that it can substitute
values into it or materialize its results
to a temporary table.

We will have an entire lecture on
rewriting nested queries into joins...

SELECT name FROM employee

-]

WHERE salary >(SELECT AVG(salary)
FROM employee);

\ 4

SELECT AVG(salary) FROM

100000 \
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SYSTEM R - NESTED QUERIES

The DBMS treats nested queries as SR e L el

Separate queries. WHERE salary >(SELECT AVG(salary)
FROM employee);

The optimizer executes an inner ‘
query before it begins planning an SELECT AVG(oalar) FROMm
outer query so that it can substitute ‘ 100000
values into it or materialize its results /
to a temporary table. SELECT name FROM employ::y

WHERE salary > 100000;

We will have an entire lecture on
rewriting nested queries into joins...
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HEURISTICS + COST-BASED SEARCH

Advantages:

— Usually finds a reasonable plan without having to perform
an exhaustive search.

Disadvantages:

— All the same problems as the heuristic-only approach.

— Left-deep join trees are not always optimal.

— Must take in consideration the physical properties of data
in the cost model (e.g., sort order).
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PARTING THOUGHTS

Although the System R paper is over 40 years old, it
still provides a reasonable foundation for building a

modern query optimizer.

— For two relation queries, it will find the optimal join
ordering quickly.

But many of its simplifying assumptions in its cost
estimates and selectivity factor cause problems in
the real-world.
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NEXT CLASS

[BM Starburst Optimizer
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HISTORY OF QUERY OPTIMIZERS

Choice #1: Heuristics
— INGRES (1970s), Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
— System R (1970s), early IBM DB2

Choice #3: Stratified Search
— IBM STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
— Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
— Academics in the 1980s, current Postgres
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