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ABSTRACT
Over a decade ago, Microsoft introduced Parallel Data Warehouse
(PDW), a massively parallel processing system to manage and
query large amounts of data. Its optimizer was built by reusing
SQL Server’s infrastructure with minimal changes, which was an
effective approach to bring cost-based query optimization quickly
to PDW. Over time, learnings from production as well as architec-
tural changes in the product (such as moving from an appliance
form factor to the cloud, separation of compute and storage, and
serverless components) required evolving the query optimizer in
Fabric DW, the latest offering from Microsoft in the cloud data
warehouse space. In this paper we describe the changes to the
optimization process in Fabric DW, compare them to the earlier
architecture used in PDW, and validate our new approach.
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1 INTRODUCTION
Over a decade ago there was a major trend in the data warehouse
industry towards the wide adoption of Massively Parallel Process-
ing systems (MPP) for managing large amounts of data [3, 6, 12,
20, 23, 25, 26]. MPP systems use multiple independent nodes with
their own software stack and memory, connected by a high-speed
network. Microsoft SQL Server Parallel Data Warehouse (PDW)
was a shared-nothing MPP appliance introduced in 2010. It came
in a number of hardware configurations, with the necessary soft-
ware preinstalled and ready to use. PDW had a control node that
managed a number of backend nodes. The distributed engine in
the control node provided the external interface to the appliance,
and was responsible for parsing input queries, creating distributed
execution plans, issuing plan steps to backend nodes, tracking the
execution steps of the plan, and assembling the individual pieces of
the final results into the single returned result set. Backend nodes
provided the data storage and the query processing backbone of
the appliance. Both control and backend nodes had an instance of
SQL Server RDBMS running on them, and user data was stored in
hash-partitioned or replicated tables across the backend nodes.

A few years later, with cloud providers taking the stage, PDW
evolved into Synapse Data Warehouse (or Synapse DW). Synapse
DW transformed the appliance-based engine into a fully managed
PAAS offering. The main building blocks remained the same, with
the control node hosting the distributed engine and a local front-
end SQL Server instance, and backend nodes hosting SQL Server
instances. Some architectural changes included the decoupling of
compute and storage, which provided flexible resource scaling, and
a multi-layered data caching model with prefetching of column-
store data for large workloads.

Over time, the architecture of Synapse DW began evolving from
a simple port of an on-premise system to a cloud-native scale-
out service. This transition started with Synapse Serverless SQL
Pool [14], based on the highly available Polaris framework [1]. Po-
laris follows a stateless architecture, requiring backend nodes to
hold no state information (e.g., data, transactional logs and meta-
data) other than transient caches for performance. This allows
the engine to partially restart execution of queries in the event of
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compute node failures or online changes of the cluster topology.
Additionally, global resource-aware scheduling and fine-grained
scale-out execution based on directed acyclic graphs provide extra
flexibility and performance during query execution. This evolution
continues nowwith the introduction of Microsoft Fabric [16], an all-
in-one solution that covers data movement, data science, real-time
analytics, and business intelligence. Fabric offers various tools and
services, including Fabric Data Warehouse (or Fabric DW), which
is also based on Polaris and converges the world of data lakes and
warehouses. Fabric DW stores data in the Parquet file format [9]
and published as Delta Lake Logs [7], enabling ACID transactions
and cross-engine interoperability that can be leveraged through
other components such as Spark and Power BI [2].

As part of this architectural transformation and based on learn-
ings from a decade of experience with various distributed form
factors, the query processor of Fabric DW evolved as well. In this
paper we explore this evolution from the point of view of query
optimization. In Section 2 we review the compiler architecture of
the PDW system. In Section 3 we summarize some learnings from
deploying PDW and Synapse DW in production, as well as some
limitations we encountered as we evolved the overall architecture
of the system. In Section 4 we describe the new architecture of
Fabric DW from the point of view of compilation, and the changes
in query optimization required to evolve the compiler to this new
architecture. We report some initial results in Section 5, review
related work in Section 6, and conclude in Section 7.

2 PDW COMPILER ARCHITECTURE
We now summarize the architecture of the earlier PDW compiler
by describing the various steps involved in evaluating input queries
(see Figure 1 and refer to [20] for more details):

(1) The input query is submitted to the PDW distributed en-
gine, where it is parsed, validated, and sent to the frontend
SQL Server Engine (which is collocated with the distributed
engine in the control node).

(2) The SQL Server Frontend Engine maintains a shell database,
which defines all metadata and global statistics about tables
(whose data is actually partitioned on backend nodes) as
well as information about users and privileges. From the
compilation point of view, the shell database is indistinguish-
able from one that contains actual data. The query is then
parsed, algebrized, and transformed into a logical relational
tree, which is simplified and optimized. Optimization uses
transformation rules to explore the space of equivalent alter-
natives, costs these alternatives, and returns the one that is
expected to be the most efficient. Note that this optimization
does not take into account the distributed nature of the data,
but instead explores all centralized plans, as if all the data was
actually associated with that server. While the output of the
traditional SQL Server optimizer is the best execution plan,
the frontend SQL Server optimizer returns the whole search
space along with statistical information for each alternative.
This is done because simply parallelizing the best centralized
plan can result in suboptimal plans [20]. The search space
(or MEMO as discussed in Section 4.1) is serialized and sent
back to the distributed engine.

(3) The distributed engine deserializes the MEMO and starts a sec-
ond stage of optimization using a distributed query optimizer,
or DQO. A bottom-up strategy similar to that of System-
R [19] enumerates distributed execution strategies by intro-
ducing appropriate data movement operators in the MEMO.
DQO considers distributions as interesting properties analo-
gous to sort orders in System-R, and thus reduces the search
space using the classical dynamic programming approach. It
then costs alternatives and obtains the distributed execution
plan that minimizes data movement. This distributed plan
is transformed into an executable format. The result of this
procedure is a linearized sequence of steps. Each step cor-
responds to an operator tree whose root and leaf nodes are
connected to other steps by data movement operators.

(4) The distributed plan is sent to the scheduler/executor in
the distributed engine. At that point, steps are executed in
sequence. The execution subplan of each step is transformed
into SQL and sent to backend nodes, along with instructions
on how to move the resulting data across those nodes (e.g.,
shuffling the result on a subset of columns).

(5) Each backend node receives a standard SQL statement over
the data slice it owns, plus a data move directive on the result.
Parsing, algebrization and a new round of optimization are
done on the received query, and the resulting execution plan
is passed to the execution engine in the backend node.

(6) The plan is executed in the backend node as if it was obtained
from a regular input query.

(7) The result of execution is moved across backend nodes by
using temporary landing tables as the backing storage. Meta-
data information about each result is sent back to the execu-
tor in the distributed engine, so that subsequent steps are
executed correctly against temporary tables. For the last step,
the actual results are sent back to the distributed engine.

(8) The final results from all backend nodes are aggregated and
sent back to the client.

In short, the frontend engine maintains a shell database with
global statistical information on tables, and backend nodes maintain
a slice of the global database with actual data. Query compilation
involves three different optimization calls: the centralized optimiza-
tion in the frontend engine that produces the full logical search
space, the distributed optimization in the distributed engine that
minimizes data movement, and a third round of fragment optimiza-
tions in the backend nodes for each distributed step.

Example 2.1. Consider two tables 𝑇 (𝑇𝑎,𝑇𝑏) and 𝑆 (𝑆𝑎, 𝑆𝑏), both
distributed using a round-robin scheme, and the following query:

SELECT DISTINCT T.tb
FROM T INNER JOIN S ON T.Ta = S.Sa
WHERE S.Sb > 3

The query eventually reaches the frontend SQL Server engine
and is optimized (e.g., considering different join orders, optionally
pushing a partial distinct operator below the join) and the search
space is sent back to the PDW distributed engine, where various
distribution strategies are compared and the best distributed plan
is generated (see Figure 2(a)). In turn, Figure 2(b) shows the graph
associated with the best distributed plan, where each node (or step)

19



UnifiedQuery Optimization in the Fabric Data Warehouse SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Backend SQL Server Engine(s)Backend SQL Server Engine(s)Backend SQL Server Engines (SQL BE)

Query Results

Frontend SQL Server (SQL FE)

Parser
Algebrizer

Optimizer (UQO)
Plan Generator

Shell DB

Execution
Wrapper

Cached DBExecution 
Engine

Polaris Distributed Compute Platform (DCP)

Workload Management
Task Scheduler

Distributed Query Processor (DQP)

1

2

3 4

5

6

Remote Storage

Backend SQL Server Engine(s)

Query Results

Frontend/Control SQL Server Engine

Parser
Algebrizer
Optimizer

Search Space Serializer

Shell 
DB

Parser
Algebrizer
Optimizer

Plan Generator

Sharded 
DB

Execution 
Engine

PDW Distributed Engine

Parser
Validator

SQL Generator

Memo Parser
Optimizer (DQO)
D-Plan Generator

Scheduler
Executor

1

2 3

4

5

6

7

8

Figure 1: Life of a query in the original Parallel Data Warehouse system.

corresponds to a SQL template and edges represent data movement.
The SQL templates in the figure are defined as follows:

Q1: SELECT sa FROM S WHERE sb > 3

Q2: SELECT T.tb
FROM TempTable1 AS TT1 INNER JOIN T
ON TT1.sa = T.ta
GROUP BY T.tb

Q3: SELECT tb FROM TempTable2
GROUP BY tb

The distributed plan is evaluated one step at a time, by sending
the SQL fragments to the backend nodes, where they are optimized
and executed. First 𝑄1 is sent and evaluated in multiple backend
nodes, reading fragments of table 𝑆 and filtering tuples that satisfy
𝑠𝑏 > 3. The result is estimated to be small enough that a replicated
join strategy is chosen, so the intermediate results are broadcast
to all nodes using 𝑇𝑒𝑚𝑝𝑇𝑎𝑏𝑙𝑒1 as the backing store. Fragment
𝑄2 is then sent to the backend nodes, where fragments of 𝑇 are
joined with the replicated𝑇𝑒𝑚𝑝𝑇𝑎𝑏𝑙𝑒1 and locally aggregated. The
results are then shuffled by the distinct column 𝑡𝑏 and stored in
𝑇𝑒𝑚𝑝𝑇𝑎𝑏𝑙𝑒2. Finally, fragment 𝑄3 is evaluated in all nodes, the
global distinct operator is applied to all fragments (since data is
partitioned by column 𝑇 .𝑡𝑏) and results are sent back to the client.

3 LEARNINGS FROM PRODUCTION
Developing an industrial-strength query optimizer from scratch is a
major undertaking. Enumerating execution alternatives adequately
requires an understanding of relational algebra and its properties,
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Figure 2: Distributed execution plan for a simple query.

as well as deriving and identifying desirable execution plans. Effec-
tive plan selection requires careful modeling of data distributions
and cost estimation and should go beyond simply parallelizing the
best serial plan. The PDW optimizer went beyond simple predi-
cate pushing and join reordering, and incorporated a number of
advanced query optimization techniques, including contradiction
detection, redundant join elimination, subquery unnesting, and
outerjoin reordering [20].

For a commercial product, time to market is a critical dimension
to consider. Rather than starting from scratch, the PDW query opti-
mizer reused technology developed for SQL Server, which has been
tuned and tested over a number of releases. This choice shortened
the time to build a cost-based optimizer for PDW and was an ef-
fective approach to quickly bring cost-based query optimization to
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the appliance, leveraging SQL Server infrastructure with minimal
changes to existing components. Ultimately, it effectively incorpo-
rated state-of-the-art query optimization techniques in PDW.

Over time, however, we identified a number of shortcomings in
the original approach. This was coupled with new architectural
changes that made us revisit some initial design choices. We next
mention some issues we encountered, mainly centered around
the separation of query optimization into three interdependent
sub-optimizers (see Figure 1), and the internal representation of
information passed across the various components.

For large queries, it is infeasible to do an exhaustive search over
the plan space. The optimizer in SQL Server relies on heuristics
to restrict the exploration of the search space, and progressively
expands this space via stages and timeouts. This infrastructure,
however, is not integrated with the generation of distributed plans,
because that logic is in a separate component. For that reason, the
frontend optimizer must evaluate a larger portion of the search
space, since the ultimate cost of plans is not known during the initial
centralized optimization stage. The full search space of alternatives
must be copied between the frontend and distributed engines. This
can take a large amount of memory, since the required space in the
worst case is exponential in the number of joins in the query.

During distributed optimization, the cost-based decisions for the
distributed plan only consider the data movement cost. In some
cases, however, it is important to also consider the execution per
node. This shortcoming has come up a few times, such as during
implementation of materialized views. It is possible that evaluating
a query over base tables does not require any data movement due
to data collocation, while the use of a materialized view introduces
some data movement but it processes much less data. A unified cost
model also enables the use of optimizer-driven physical schema
recommendations, such as indexes, and materialized views.

Over the years, SQL Server developed a set of tools that go all the
way from graphical plans and progress reporting to query stores
and plan forcing [15, 17]. In PDW, physical execution plans are
known only incrementally as distributed plans are optimized and
executed in backend nodes. This difference in compilation prevents
reusing SQL Server supportability mechanisms.

Additionally, execution plans in different distributions might
be different, as they are optimized from SQL based on local sta-
tistics. While this mechanism provides additional flexibility via
adaptive query execution and could improve performance in the
backend nodes, it greatly increases the complexity of debugging
performance issues or, in general, understanding execution plans.
Conversely, backend optimization might lack some global infor-
mation on intermediate results (e.g., unique constraints) that is
known during frontend optimization but not carried over in the
temp tables created as result of intermediate data movement. This
lack of information further affects the optimality of backend plans.

Finally, the SQL decoding of plans from the distributed engine to
the backend nodes was initially important to avoid deeper changes
in the SQL Server codebase. However, in general it is problematic to
rely on this mechanism for two reasons. First, it is rather difficult to
translate internal execution plans back into SQL since the former has
more expressive power via constructs that are not available in the
SQL language (for instance , 𝑄2 in Example 2.1 should be a partial
aggregate, but there is no SQL construct to express this modality).

Second, it is not possible to guarantee plan idempotence across
decoding/optimizing steps. To illustrate these points, consider tables
𝑅(𝑟𝑎) and 𝑆 (𝑠𝑏), and the deceptively simple query below:

SELECT (SELECT sb FROM S) FROM T

The query processes each row of 𝑇 and follows one of three
cases, depending on the result of evaluating the subquery on table
𝑆 . Specifically, if exactly one row is returned from the subquery,
such value is used in the outer query. If no rows are returned from
the subquery, then NULL is used. Finally, if more than one row is
returned from the subquery, a runtime error is generated [13]. For
that reason, execution must somehow validate that 𝑆 has at most
one value and fail otherwise. Figure 3(a) shows a possible plan
that SQL Server generates to evaluate this query assuming, for
simplicity, that data is not distributed. The plan does a left outer
join between𝑇 and the subplan that (i) reads 𝑆 , (ii) performs a scalar
aggregation with aggregates e1 = count(*) and e2 = any(S.sb),
and (iii) asserts (via a special operator) that 𝑒1 <= 1 before spooling
the result of 𝑒2 so that this computation is done only once.

Suppose now that we need to transform this plan back to SQL,
to send it to backend nodes. Conceptually, the simplest way is
to return the original query, but that requires arbitrarily complex
global analysis of plans. Instead, PDW uses the QRel programming
framework [8], which encapsulates the knowledge of mapping
relational trees to query statements. While the produced queries
in most cases are similar to the original query fragments, some
cases are difficult to handle. In our example, we need to somehow
decode the Assert operator, which does not have a counterpart in
SQL (a smaller secondary problem is that the ANY aggregate function
is not currently supported in PDW’s SQL dialect). For the tree in
Figure 3(a), QRel generates the following SQL query:
SELECT t2.col AS sb
FROM T LEFT OUTER JOIN

(SELECT CASE WHEN (t3.col > 1)
THEN (SELECT t5.asrt

FROM (VALUES (0), (0)) AS t5(asrt))
ELSE t3.col1 END AS col

FROM (SELECT count(0) AS col, max(t4.sb) AS col1
FROM S AS t4) AS t3) AS t2

ON 0 = 0

Specifically, it decodes the Assert operator by creating a sub-
query that would return the same result (including runtime failures)
as the original query. For that purpose, it first gets the number of
elements in 𝑆 (count(0) AS col) and the maximum value of 𝑆.𝑠𝑏
(max(sb) as col1), which, for the case of a single value, has the
same semantics as the ANY aggregate. Then, it projects from this
single-row result a CASE statement that checks whether the col <=
1, in which case returns 𝑐𝑜𝑙1, or else returns a subquery with two
rows (using the VALUES clause in the query). This two-row subquery
is part of a scalar context (the THEN clause of a CASE statement) so
it would require checking that it has at most one row, failing in the
same cases as the original query. In addition to being complex to
understand, the resulting SQL, when optimized, results in the plan
of Figure 3(b), which is clearly different from the original one.

We note that in most common scenarios we do have idempotence
of plans modulo SQL decoding, but as shown in Figure 3 this is not
always the case. Moreover, other plan constructs (especially those
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(a) Original plan for a simple query.

(b) Reoptimized plan after SQL decoding.

Figure 3: Plans before and after a decoding/optimizing roundtrip.

using advanced Update or Merge clauses) are significantly harder
to decode than the example above. Over time, the SQL decoder grew
in complexity to capture all possible execution plans, carefully
selecting SQL constructs in cases that there were multiple ways
of expressing the same query, and sometimes using private SQL
extensions on backend nodes (e.g., hints) to express subtle operator
semantics. A large testing effort complemented this approach, using
random data/query generators and carefully crafted test cases.

4 QUERY OPTIMIZATION IN FABRIC DW
We next describe the query processing architecture in Fabric DW
by summarizing how input queries are evaluated. This architecture
is built on top of that of Synapse Serverless SQL pools, powered by
the Polaris framework. Next, we dive deep into details on how this
is supported from the point of view of query optimization. Figure 4
shows the steps for evaluating input queries (it might be useful to
contrast this workflow with that of Figure 1).

(1) The input query is sent directly to the Frontend SQL Server
Engine (SQL FE). The initial stages of compilation are sim-
ilar to those in Figure 1, using the Shell Database as the
source of metadata, table statistics, and authentication. A
unified query optimizer (UQO) combines the work done by
multiple optimizations in the previous architecture, and gen-
erates a distributed plan (see Section 4.2). From the point of
view of SQL Server, the resulting plan consists of a single
ExternalComputation operator, which encodes the actual
distributed plan. The distributed plan is similar to that in Fig-
ure 1 with some differences. Unlike PDW, which linearizes
the plan into a fixed sequence of steps, Polaris treats dis-
tributed plans as directed acyclic graphs to leverage indepen-
dent parallelism of tasks. Also, tasks in the execution graph
are not decoded back into SQL, but kept as physical plans.

(2) The distributed plan is sent to a thin execution wrapper in
the SQL FE, which serves as an intermediate between the
client and the distributed computation platform (DCP).

(3) The distributed plan arrives to the Polaris DCP [1, 2], which
performs distributed workloadmanagement, scheduling, and
execution (DQP), sending work to Backend SQL Server in-
stances (SQL BE).

(4) Plans received by SQL BE nodes are directly executed with-
out the additional round of optimization of the previous
architecture1.

(5) Results of backend executions are moved according to the
data move directives among SQL BE nodes, and execution
metadata is sent back to the DCP. For the last step, results
are sent to the SQL FE.

(6) SQL FE aggregates results and sends them back to the client.
In summary, the SQL FE is the entry point to the system, and

the three complementary optimizations were consolidated into a
single unified component. We next describe the various changes
required to achieve this goal.

4.1 The Cascades Framework
The Cascades Optimization Framework [10] was developed in the
mid-nineties and it is used as the foundation for both industrial
(e.g., the SQL Server engines discussed in this work [11] and Tan-
dem’s NonStop SQL [5]) and academic (e.g., Columbia [4]) query
optimizers. We next provide a high level overview of the Cascades
framework followed by a focused description of the components
that are relevant to this work.

The Cascades Optimization framework results in top-down trans-
formational optimizers that produce efficient execution plans for

1Some decisions are still late-bound, such as memory grants for individual operators.
Although not currently used, the architecture allows for mixing logical and physical
operators in the plans sent to backend nodes, to enable progressive optimization
scenarios that take into account local statistics.
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Figure 4: Life of a query in the Fabric Data Warehouse.

input declarative queries. These optimizers work by manipulating
operators, which are the building blocks of operator trees and used to
describe both the input declarative queries and the output execution
plans. Consider the simple SQL query:

SELECT *
FROM R, S, T
WHERE R.x = S.x AND S.y = T.y

Figure 5(a) shows a tree of logical operators that specify, in an
almost one-to-one correspondence, the relational algebra repre-
sentation of the query above. In turn, Figure 5(c) shows a tree of
physical operators that corresponds to an efficient execution plan
for the above query. The goal of a query optimizer is to transform
the original logical tree into an efficient physical tree. For that pur-
pose, Cascades-based optimizers rely on two components: the MEMO
data structure (which keeps track of the explored search space) and
optimization tasks (which guide the search strategy).

4.1.1 The MEMO Data Structure. The MEMO data structure in Cas-
cades provides a compact representation of the search space of
plans. In addition to enabling memoization (a variant of dynamic
programming), a MEMO provides duplicate detection of operator
trees, cost management, and other supporting infrastructure needed
during optimization. A MEMO consists of twomutually recursive data
structures, which we call groups and groupExpressions. A group rep-
resents all equivalent operator trees producing the same output.
Note that a group does not explicitly enumerate all its operator
trees. Instead, it implicitly represents them by using groupExpres-
sions. A groupExpression is an operator that has groups (rather than
operators) as children. As an example, Figure 5(b) shows a MEMO for
the simple query above, in which logical operators are shaded and
physical operators have white background. In the figure, group 3

contains all equivalent expressions for 𝑅 ⊲⊳ 𝑆 . Note that groupEx-
pression 3.1, 𝐽𝑜𝑖𝑛(1, 2), represents all operator trees whose root is
𝐽𝑜𝑖𝑛 and two children that belong to groups 1 and 2, respectively.
A MEMO compactly represents a very large number of operator trees.
Also note that the children of physical groupExpressions point to
the most efficient groupExpression in the corresponding groups. For
instance, groupExpression 3.8 represents a hash join operator whose
left-hand-child is the second groupExpression in group 1 and whose
right-hand-child is the second groupExpression in group 2.

The MEMO also manages groupExpression properties, which them-
selves can be logical or physical. Logical properties are, by definition,
shared across all groupExpressions in a group and associated with
the group itself (e.g., the cardinality or key columns in the query
fragment encoded in a group). Physical properties are specific to
physical groupExpressions and vary within a group (e.g., the order
of tuples and cost of a physical groupExpression).

4.1.2 Optimization Tasks. Optimization in Cascades is broken into
several tasks, which mutually depend on each other [10]. Intuitively,
the optimization of a query starts by copying the logical operator
tree describing the input query into the initial MEMO (see Figure 5(b)).
Then, the optimizer schedules the optimization of the group corre-
sponding to the root of the original query tree (group 5 in the figure).
This task triggers the optimization of smaller operator sub-trees
and eventually returns the most efficient execution plan for the
input query. This execution plan is copied out from the final MEMO
and passed to the execution engine where it is evaluated. Figure 6
shows a simplified version of OptimizeGroup that incorporates rele-
vant portions of the remaining optimization tasks. It takes as inputs
a group𝐺 , required physical properties 𝑅𝑃 , and a cost upper-bound
UB, and returns the most efficient physical groupExpression that
satisfies 𝑅𝑃 and costs under 𝑈𝐵 (or NULL if it cannot find one).
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contains all columns in the schema, including a –possibly
artificial– key (used for round-robin distributed tables).

Wildcard : Data can be distributed in any way but Replicated.
Table 1 shows implication rules for distribution properties. Recall

that if data is distributed by columns 𝐶 , then it must be that any
two rows that agree on 𝐶 belong to the same partition. For that
reason, if data is distributed by 𝐶 , it is also distributed by 𝐶′ ⊃ 𝐶

(but not the other way around). In the figure, 𝐷1 =⇒ 𝐷2 means
that plans that satisfy 𝐷1 are included in plans that satisfy 𝐷2. For
instance, 𝐻𝑎𝑠ℎ({𝑎}) =⇒ 𝐴𝑛𝑦 ({𝑎, 𝑏}) and therefore a plan that
delivers 𝐻𝑎𝑠ℎ({𝑎}) satisfies a requirement 𝐴𝑛𝑦 ({𝑎, 𝑏}).

Table 1: Distribution implication rules.

Distribution D1 Distribution D2 such that 𝐷1 =⇒ 𝐷2

Serial Serial, Wildcard
Control Control, Wildcard
Replicated Replicated
Any(C) Any(C’) : C’ ⊇ C, Wildcard
Hash(C) Hash(C), Any(C’) : C’ ⊇ C, Wildcard
Wildcard Wildcard

Distributions are used as a derived property to determine how
data is distributed during the execution of a groupExpression, and
as a required property to request during the OptimizeGroup task of
Figure 6. Derived properties are precise, so they cannot be𝑊𝑖𝑙𝑐𝑎𝑟𝑑 .

4.2.2 Intermediate Interesting Properties. Consider table 𝑇 (𝑎, 𝑏, 𝑐)
hash-partitioned on columns {𝑎, 𝑏} and the following query:

SELECT * FROM T T1 INNER JOIN T T2
ON T1.a = T2.a AND T1.b = T2.b AND T1.c = T2.c

For correctness, if we are evaluating the join in a distributed
way, we need to ensure that any two rows that would join (i.e.,
that have the same values for columns 𝑎, 𝑏, and 𝑐) belong to the
same partition. This can be achieved by requiring the inputs to the
join to be distributed by 𝐻𝑎𝑠ℎ({𝑎, 𝑏, 𝑐}). However, this is not the
only option. In fact, requiring the join inputs to be distributed on
any subset of {𝑎, 𝑏, 𝑐}, the result would be correct. For instance,
a hash distribution on column 𝑎 satisfies that any pair of rows
that agree on column 𝑎 are together, so obviously two columns
that agree on columns {𝑎, 𝑏, 𝑐} are together as well. Since in our
example table 𝑇 is already distributed on 𝐻𝑎𝑠ℎ({𝑎, 𝑏}), a better
choice is to require that partitioning scheme, so that the whole
query is evaluated without actual data movement.

It is tempting to require the inputs of the join to be distributed
by 𝐴𝑛𝑦 (𝑎, 𝑏, 𝑐) since then, any distribution on subsets of {𝑎, 𝑏, 𝑐}
would satisfy the request (and this is a good choice for a unary
operator like GroupBy). However, join inputs must be distributed
in the same way to prevent wrong results. Suppose that the join
above is between tables 𝑇 and 𝑈 , and table 𝑈 is distributed by
𝐻𝑎𝑠ℎ({𝑐}). In this case, a request of 𝐴𝑛𝑦 ({𝑎, 𝑏, 𝑐}) to both inputs
to the join would be satisfied separately by T with 𝐻𝑎𝑠ℎ({𝑎, 𝑏})
and 𝑆 with 𝐻𝑎𝑠ℎ({𝑐}). However, the results of such distributed
join would be incorrect! This example illustrates why join requests
must be fully specified (i.e., we cannot use𝐴𝑛𝑦 distribution requests.
However, there is an exponentially large number of possibilities to

consider (i.e., each subset of the join columns). For our query, the
choice of {𝑎, 𝑏} is interesting because the tables below are already
hash distributed on {𝑎, 𝑏}. Also, the choice of {𝑎, 𝑏, 𝑐} is interesting
because it results in the lowest risk of data skew (if the number of
distinct values of column subsets is too low). Any other choice will
be less efficient than the best of the two options identified above.

In general, we need to identify a set of interesting distributions
to consider as requirements for any given operator. Interesting
distributions are those that might be free of data movement since
another operator below (or the base tables themselves) are already
distributed in the right way. We implement interesting distributions
as another logical property of groupExpressions. The interesting
distributions of an operator 𝑂𝑝 are defined as the union of the
interesting distributions of 𝑂𝑝’s children4, plus the specific inter-
esting distributions that 𝑂𝑝 itself might deliver. A few examples of
interesting distributions are summarized in Table 2.

Table 2: Interesting distributions for common operators.

Operator Interesting distribution

Scan(T) 𝑇 ’s distribution (e.g., 𝐻𝑎𝑠ℎ(𝑐𝑜𝑙𝑠) if 𝑇 is
hash distributed on 𝑐𝑜𝑙𝑠). Round-robin
tables do not return any distribution.

GroupBy𝑐𝑜𝑙𝑠,𝑎𝑔𝑔𝑠 (P) Any(cols).
Join𝑝𝑟𝑒𝑑 (L, R) Any(join keys in 𝑝𝑟𝑒𝑑).
Union(L, R) Any(cols in the output schema).

4.2.3 Rules and property propagation. We now describe how we
extend implementation rules to consider required distributions.
These rules leverage a primitive Intersect, shown in Figure 7,
which returns the most general distribution 𝐷 that implies both
input distributions 𝐷1 and 𝐷2 (or NULL if there is none). If either
𝐷1 or 𝐷2 isWildcard, we return the other one in lines 1-2. Other-
wise, it depends on the type of distribution of 𝐷1. Lines 3-4 handle
the serial, control, and replicated cases, and lines 8-15 handle the
distributed cases (i.e., 𝐴𝑛𝑦 and 𝐻𝑎𝑠ℎ). For that purpose, we find the
set of columns that would be visible in the output (given contextual
properties 𝑃 of an operator) and belong to both 𝐷1 and 𝐷2 modulo
column equivalences. If either 𝐷1 or 𝐷2 is 𝐻𝑎𝑠ℎ distributed, then
we do not allow column subsets (lines 13-14) and return NULL.

Using Intersect as a primitive, we show how to implement
operators and propagate required distributions to their inputs. To
understand the various algorithms that follow, we assume that the
statement Generate Op<D𝑖> represents the calling of the original
implementation rule (e.g., generating a hash-based or stream-based
group-by alternative for Op = GroupBy) for which we pass down 𝐷𝑖

as the required distribution property to 𝑂𝑝’s 𝑖-𝑡ℎ input.

Group-By. Figure 8 shows the relevant portion of implementing
a group by operator given a required distribution. Specifically, if 𝐺
is a local/partial aggregate, we generate the appropriate physical
operator in lines 1-2 and propagate down the distribution request
(since those aggregates do not require specific input distributions
4Technically, some interesting distributions of the children are not propagated through
an incompatible operator. We do this using an extension of the Intersect mechanism
discussed in the next section and shown in Figure 7.
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Intersect (D1, D2: Distribution, P: Properties)
returns distribution D such that

D =⇒ D1 and D =⇒ D2
or NULL if there is none.

1 if (D1 = Wildcard [respectively, D2 = Wildcard])
2 return D2 [respectively, D1])
2 switch(D1)
3 case {Serial, Control, Replicated}:
4 return (D1 = D2) ? 𝐷1 : NULL
5 case {Any(C1), Hash(C1)}:
6 if (D2 ∉ {Any(C2), Hash(C2)})
7 return NULL
8 hasHash = D1 is Hash(C1) or D2 is Hash(C2)
9 C = ∅

10 for each 𝑐1 ∈ 𝐶1:
11 if (∃ c ∈ P.visible, c2 ∈ C2 such that

P.equivalent(c, c1, c2))
12 C = C ∪ {c}
13 else if (hashHash)
14 return NULL
15 return hasHash ? Any(C) : Hash(C)

Figure 7: Intersecting distribution properties.

for correctness). We do the same if the required distribution is
one of 𝑆𝑒𝑟𝑖𝑎𝑙 , 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 , or 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 in lines 4-5. For 𝐴𝑛𝑦 (𝐶) or
𝐻𝑎𝑠ℎ(𝐶) required distributions, we attempt two strategies. First, we
intersect the required distribution with a manufactured distribution
𝐴𝑛𝑦 (𝑘𝑒𝑦𝑠) where 𝑘𝑒𝑦𝑠 are the grouping columns (lines 10-11). For
instance if the grouping columns are {𝑎, 𝑏, 𝑐} and the required
distribution if𝐴𝑛𝑦 (𝑐, 𝑑) it will propagate𝐴𝑛𝑦 (𝑐) to its input. Second,
we attempt the same strategy by further intersecting the previous
alternative with each of the interesting distributions from the input
to the group by. Finally, for a required distribution of𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑 ,
we generate a serial distribution in line 7 and either return if the
grouping keys are empty (e.g., a scalar aggregate) or fall through
the treatment of 𝐴𝑛𝑦/𝐻𝑎𝑠ℎ otherwise.

GenerateGBs (GB: GroupBy, D: required distribution)
1 if (GB is local/partial aggregate)
2 Generate GB<D> and return
3 switch(D):
4 case {Serial, Control, Replicated}:
5 Generate GB<D> and return
6 case Wildcard:
7 Generate GB<Serial>
8 if (GB.keys = ∅) return

// fallthrough
9 case {Any(C), Hash(C)}:

// (a) based on keys
10 D𝐾 = Intersect(D, Any(GB.keys), GB.props)
11 if (D𝐾 != NULL) Generate GB<D𝐾>

// (b) based on interesting distributions
12 for each D𝐼 ∈ GB.input.IDs
13 D𝐼 ’ = Intersect(D𝐼 , D𝐾 , GB.props)
14 if (D𝐼 ’ != NULL) Generate GB<D𝐼 ’>

Figure 8: Generating Group-By operators.

GenerateUnions (U: Union[All], D: reqd distribution)
1 switch(D):
2 case {Serial, Control, Replicated}:
3 Generate U<D> and return
4 case Wildcard:
5 Generate U<Serial>
6 if (U.UnionAll) Generate U<Any(U.columns)>

// fallthrough
7 case {Any(C), Hash(C)}:

// (a) based on keys
8 D𝐾 = Intersect(D, U.columns, U.props)
9 if (D𝐾 != NULL) Generate U<D𝐾>

// (b) based on interesting distributions
10 for each D𝐼 ∈ ∪𝑖 U.input𝑖.IDs
11 D𝐼 ’ = Intersect(D𝐼 , D𝐾 , U.props)
12 if (D𝐼 ’ != NULL) Generate U<D𝐼 ’>

Figure 9: Generating Union and UnionAll operators.

Union/UnionAll. Figure 9 shows the algorithm to generate n-
ary Union and UnionAll operators. It is similar to the algorithm of
Figure 8 for group-by operators with the following difference. For
a UnionAll operator 𝑈 , we generate an alternative that requests
𝐴𝑛𝑦 (𝑈 .𝑐𝑜𝑙𝑢𝑚𝑛𝑠) in line 6. Due to the semantics of UnionAll, results
are correct even if the inputs are distributed by different columns.
In that case, the derived distribution property UnionAll could be
any of those of its inputs (we pick an arbitrary one). We also slightly
abuse the notation and write Generate U<𝐷> when we require
distribution 𝐷 from each input of the Union[All] operator.

Joins. Figure 10 shows the algorithm to generate distributed-
aware joins. For simplicity, we restrict our attention to inner and
outer join variants, but the cases for semi- and anti-joins are derived
analogously. As with the previous operators, required distributions
𝑆𝑒𝑟𝑖𝑎𝑙 ,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 and 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 simply implement the join and prop-
agate the required distribution to its inputs (lines 2-3). For 𝐴𝑛𝑦 (𝐶)
and 𝐻𝑎𝑠ℎ(𝐶) we attempt two strategies (except for full outer joins,
which only implement serial alternatives). First, we generate an
alternative based on the full join keys (line 8). Second, we try all in-
teresting distributions coming from both inputs (lines 9-12). For that
purpose, we use the GenerateJoinsHelper method shown in Fig-
ure 10 which, given a required distribution 𝐷 , generates distributed
and replicated alternatives. Specifically, lines 1-2 normalize right
outer joins into left outer joins to simplify subsequent processing.
Line 5-7 generate replicated joins whenever appropriate (e.g., left
joins cannot replicate the left side). Lines 8-12 generate distributed
joins by (a) obtaining the intersection of 𝐷𝐿 and 𝐴𝑛𝑦 ( 𝑗𝑜𝑖𝑛.𝑘𝑒𝑦𝑠) in
line 8, (b) downgrading the intersection to 𝐻𝑎𝑠ℎ so that the input
requests are fully specified in line 10, (c) mapping the distribution
to the join right side using the left- and right-key columns in line
11, and (d) generating the distributed join in line 12.

4.2.4 Enforcers. The Cascades framework supports enforcers, or
glue operators, which are special implementation rules that match
arbitrary input trees and insert physical operators with the objec-
tive of satisfying required properties that otherwise would generate
no plans. The most common enforcer is the order enforcer which
inserts a physical Sort operator to satisfy a required order, and itself
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GenerateJoins (J: Join, D: required distribution)
1 switch(D):
2 case {Serial, Control, Replicated}:
3 Generate Join<D, D> and return
4 case Wildcard:
5 Generate Join<Serial, Serial> and fallthrough
6 case {Any(C), Hash(C)}:
7 if (J.type ≠ FULL)

// (a) based on keys
8 GenerateJoinsHelper(J, D)

// (b) based on interesting distributions
9 for each D𝐼 ∈ J.left.IDs ∪ J.right.IDs
10 D𝐼 ’ = Intersect(D, D𝐼 , J.props)
11 if (D𝐼 ’ ≠ NULL)
12 GenerateJoinsHelper(J, D𝐼 ’)

GenerateJoinsHelper (J: Join, D: required distribution)
requires D ∈ {Wildcard, Any(C), Hash(C)}
1 if (J.type) = RIGHT
2 Commute J so that it becomes a LEFT join
3 D𝐿 = Intersect(D, Any(J.left.columns))
4 D𝑅 = Intersect(D, Any(J.right.columns))

// Try replicated alternatives
5 Generate Join<D𝐿, Replicated>
6 if (J.type = INNER)
7 Generate Join<Replicated, D𝑅>
8 D𝐾𝐿 = Intersect(D𝐿, Any(J.key𝑙𝑒 𝑓 𝑡), J.props)
9 if (D𝐾𝐿 != NULL)

// Try distributed alternative
10 if (D𝐾𝐿 = Any(C’)) D𝐾𝐿 = Hash(C’)
11 D𝐾𝑅 = map D𝐾𝐿 using {J.key𝑙𝑒 𝑓 𝑡 → J.key𝑟𝑖𝑔ℎ𝑡}
12 Generate J<D𝐾𝐿, D𝐾𝑅>

Figure 10: Generating join operators.

requires no order from its input. Analogously, we implement a new
enforcer for distribution properties that inserts a physical Redis-
tribute operator, which performs data movement and guarantees
that the required properties are satisfied. The distribution enforcer
kicks in whenever the required distribution is not𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑 , places
a specific data move variant from the source to a target distribution,
and requires𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑 distributions from its input.

Different possibilities of redistribute operators are shown in Fig-
ure 3. For instance, to go from a serial distribution (in a backend
node) to the control node we use an 𝑆𝑁 (Single Node Move) opera-
tion that moves data from one node to another. Other redistribute
operations include𝑀 (Merge Move) which coalesces all data that
resides in multiple distributions into a single node, 𝐵 (Broadcast
Move) which transfers data from each source distribution into all
the target nodes,𝐻 (Hash Move) which hashes all data in the source
distributions and sends them to the appropriate target distributions,
𝑇 (Trim Move) which locally hashes a replicated distribution and
keeps the relevant portion of data in the target distributions, and 𝐴
(Any Move) which is implemented as 𝐻 for a target of 𝐴𝑛𝑦 (𝐶) of a
round-robin move for 𝐴𝑛𝑦 (∗).

Distribution column sets vs. multisets. In this work we treat dis-
tribution columns as sets to simplify the presentation. In reality, we

Table 3: Different enforcers from source to target distribu-
tions, where SNM = Single Node, BM = Broadcast, HM = Hash,
MM = Merge, TM = Trim, and AM = Any.

From\To Serial Control Replicated Any(Y) Hash(Y)

Serial N/A SN B A H
Control SN N/A B A H
Replicated SN SN N/A A T
Any(X) M M B A H
Hash(X) M M B A H

need to treat them asmultisets to avoid subtle wrong behavior. Con-
sider tables 𝑇1(𝑎, 𝑏, 𝑐), hash-partitioned by {𝑎, 𝑏}, and 𝑇2(𝑎, 𝑏, 𝑐),
hash-partitioned by {𝑎}. Suppose we have the following query:

SELECT a, b, COUNT(*)
FROM (SELECT a FROM T1 WHERE a=b)
INNER JOIN T2
ON T1.a=T2.a

Recall that table𝑇1 is distributed by𝐻𝑎𝑠ℎ({𝑎, 𝑏}). After the filter
𝑎 = 𝑏 the compiler can canonicalize columns picking 𝑎 as the rep-
resentative of the equivalence set {𝑎, 𝑏}. If we consider distribution
columns as sets, we would say that the output of the filter is dis-
tributed by 𝐻𝑎𝑠ℎ({𝑎, 𝑎}) = 𝐻𝑎𝑠ℎ({𝑎}). This, in turn might cause
the join to be evaluated without any data move operation, since
both inputs are hash-distributed in the same way modulo column
equivalences. This plan, however, is not correct.

A distribution𝐻𝑎𝑠ℎ({𝑎, 𝑏}) is not equivalent to𝐻𝑎𝑠ℎ({𝑎}) when
𝑎 = 𝑏. The former would hash the same value twice and combine the
hashes, which in general produces a different result than hashing
the value once. In reality, using multisets for distribution columns,
we see that the distribution of 𝑇1 is 𝐻𝑎𝑠ℎ({𝑎 : 1, 𝑏 : 1}). After the
filter 𝑎 = 𝑏 this is transformed into𝐻𝑎𝑠ℎ({𝑎 : 2}) which is different
from 𝐻𝑎𝑠ℎ({𝑎 : 1}), so a redistribute operator on 𝐻𝑎𝑠ℎ({𝑎 : 1})
would be inserted before the join.

4.2.5 Plan transfer. As shown in Figure 4, SQL FE obtains the dis-
tributed execution plan from UQO and sends it over to the DCP. For
that purpose, it uses a serialization format similar to Substrait [22].
Consider as an example the query below:

SELECT T.a, COUNT(*) AS C
FROM T INNER JOIN S
ON T.a = S.b
GROUP BY T.a

Assuming that 𝑇 .𝑎 is a key of 𝑇 , a possible distributed plan for
this query, which pushes the aggregation below the join, is shown in
Figure 11(a). SQL FE sends this plan to the distributed engine, where
is transformed into a graph of steps. Conceptually, this is done
by partitioning the distributed plan across data move operations
(keeping the move operation in both sides) and (i) replacing the
producing side of a data move operation with an annotation on how
data should bemoved, and which distributed temporary table would
hold the result, and (ii) replacing the consuming side of a data move
operation with a Scan over such temp table. This transformation is
illustrated in Figure 11(b).

27



UnifiedQuery Optimization in the Fabric Data Warehouse SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Beyond the simple transformation around data move operations,
the distributed engine does not need to understand the seman-
tics of the plans, which are sent directly to backend nodes. This
mechanism addresses the shortcomings illustrated in Figure 3 by
eliminating decoding/optimizing intermediate steps. By sending
plans instead of SQL statements, backend nodes are guaranteed to
execute the same plan that UQO obtained. For the example in Sec-
tion 3, the distributed engine sends precisely the plan in Figure 3(a),
which includes operators that are complex to represent in SQL (e.g.,
Assert) or impossible without extensions (e.g., Merge statements).

⨝a=b

HashMove(a)

Scan T

GroupByb, c=sum(c)

HashMove(b)

GroupByb, c=count(*)

Scan S

⨝a=b

Scan(Tmp1)

Scan T

GroupByb, c=sum(c)

GroupByb, c=count(*)

Scan S

Scan(Tmp2)

Hash(a) → Tmp1 Hash(a) → Tmp2

 (a) Distributed plan                                               (b) Distributed execution graph  (a) Distributed plan. (b) Distributed execution graph.

Figure 11: From distributed plans to a execution graphs.

4.2.6 Other improvements. We next mention capabilities that are
possible due to our unified treatment of query optimization.

Optimization stages and timeouts: Since the unified opti-
mizer knows distributed plan costs, it leverages existing
SQL Server’s infrastructure that progressively increases the
search space based on the cost of the best plan found so
far. In contrast, the absence of a unified cost model in the
original PDW approach required the frontend optimization
to cover portions of the search space that could have been
pruned with additional cost information.

Distribution-aware join reordering: Queries with tens of
joins cannot be fully explored, so optimizers typically re-
sort on heuristics to prune the search space. If exhaustive
exploration is not feasible, SQL Server locally explores join
orders around some initial seeding plans in the MEMO. Having
knowledge about table distributions during UQO allows us
to generate new heuristic starting points that would have
not been necessarily explored otherwise for large queries.

Better placement of local aggregation: Local aggregation
can be pushed below joins. In principle, there can be multi-
ple levels of intermediate aggregation between the local and
global operators. The space of alternatives is so large that
optimizers typically choose some alternatives in a heuristic
manner. These heuristics can make more informed decisions
if considering plan generation and distribution placement
at the same time, which is harder to do in the earlier PDW
compilation process.

5 EXPERIMENTAL RESULTS
In this section we report initial results for the new unified op-
timization framework in Fabric DW. We used the TPC-DS and
TPC-H benchmarks [24] with a scale factor of 10TB. For TPC-H
we partitioned lineitem and orders by column orderkey and
left the other tables as round-robin. For TPC-DS we partitioned ta-
bles item, inventory, store_sales, catalog_sales, web_sales,
catalog_returns, store_returns, and web_returns by column
item_sk and left the other tables as round-robin. For the evaluation,
we used a DW-15000c cluster with 30 compute nodes. Overall, our
approach resulted in an 8.3% improvement in latency and 8.9% im-
provement in geometric mean for TPC-H, and a 10.7% improvement
in latency and 11.1% improvement in geometric mean for TPC-DS.

Figure 12 reports results for individual queries in the bench-
marks. Each bar in the figure compares the latency of a single query
with and without our new unified optimization framework5. The
magnitude of each bar represents the absolute latency improve-
ment of the new Fabric optimizer compared to the previous one.
Thus, positive values are improvements, while negative values are
regressions. Overall, around two thirds of the workload queries
have comparable latency in both frameworks. This is a favorable
outcome since both TPC-H and TPC-DS have been carefully tuned
over the years in the PDW optimizer. The remaining third of the
workload improves from 15% to 40% when using our approach.

For large queries, the initial distribution-aware join ordering
produces better plans. Additionally, queries with heavy aggrega-
tion benefit from a more systematic placement of local grouping
operators. Finally, some queries that reuse sets of columns in mul-
tiple joins and aggregation benefit from intermediate interesting
properties and avoid some amount of data movement altogether.
Additionally, the optimization process itself is faster. The most
dramatic example is query Q64 in TPC-DS, which joins 18 tables
together. The PDW compiler takes a long time traversing the search
space with rather limited pruning capabilities (see Section 4.2.6). We
see that PDW creates 2,526 groups, explores 22,050 logical groupEx-
pressions, and implements 10,384 physical groupExpressions before
timing out. In contrast, the unified optimizer creates 291 groups
(11% of those in PDW), explores 546 groupExpressions (2.5% of those
in PDW), and implements 8,468 physical groupExpressions (81% of
those in PDW, but in this case optimization finishes without timing
out and therefore obtains a better overall plan). The query compiles
14 times faster and produces a better-quality plan.

In addition to faster compilations and better-quality execution
plans, we found other qualitative benefits of the new approach.
First, we were able to leverage SQL Server native tools (e.g., more
detailed plan visualizations). We also found improved development
agility due to a consolidated framework. In the past, we had to
carefully orchestrate new features that spanned over multiple opti-
mization phases, and API changes were slow to ship. The overall
code complexity was reduced, mostly by avoiding going back to
intermediate SQL fragments and having a unified search strategy
and cost models. Finally, the resulting unified optimization frame-
work allowed other incubations and initiatives within Microsoft to
leverage the new optimizer with fewer dependencies.

5The aim of this figure is to compare both executions but not to show absolute perfor-
mance numbers. We therefore omit the y-axis legends on the figures.
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Figure 12: Latency improvements using the unified query optimizer.

6 RELATEDWORK
The last decade has witnessed the emergence of new MPP offerings
that store and manage large amounts of distributed data [3, 6, 12, 18,
20]. Query optimization and execution strategies have evolved since
then to cope with new challenges in such distributed environments.

Some systems fully delay some plan decisions until execution
time. In BigQuery [12], query execution plans can dynamically
change during runtime based on statistics collected during query
execution. For example, BigQuery starts processing hash joins by
shuffling data on both sides. If one side finishes fast and is below
a broadcast data size threshold, it cancels the second shuffle and
executes a broadcast join instead. Snowflake [6] reduces the plan
space by postponing choices like the type of data distribution for
joins until execution time, to increase robustness at the cost of a
loss in peak performance. In SingleStore [18], when join conditions
or group-by columns match the tables’ shard keys, execution is
pushed to individual partitions avoiding data movement. Otherwise,
SingleStore redistributes data during query execution, performed as
a broadcast or reshuffle operation. Redshift [3] leverages the under-
lying distribution keys of participating tables to avoid unnecessary
data movement. For instance, if a join key matches the underlying
distribution keys of both participating tables, then the chosen plan
avoids any data movement by processing the join locally for each
data partition. While partitioning choices can be leveraged by sub-
sequent operators in an opportunistic manner by Redshift, there is
no global view of the query plan which would allow picking shuffle
strategies that are useful to multiple operators in the plan. The
dynamic schemes of these systems are useful to adapt plans during
execution and avoid bad alternatives statically chosen based on
bad cardinality estimates. At the same time, adaptive strategies are
orthogonal to the choice of the initial plan. Our approach attempts
to find such best initial alternative based on a global analysis of
the query. Given reliable estimates, this approach performs better
than pure dynamic alternatives that change plans at runtime. This
adaptivity, however, can be used after the initial plan is chosen to
correct decisions that were found to be suboptimal at runtime.

A different line of work, which is closer to our approach, at-
tempts to model distributions explicitly during compilation, and
find the optimal expected plan, looking holistically at the whole

query. Examples of earlier work in this area include the Scope sys-
tem [26] and the Orca modular optimizer [21] 6. Similar to our
approach, these systems model distributions via required and de-
rived properties, and use enforcers to glue together plans that have
mismatched distribution properties. The main contribution of our
work, compared to these alternatives, is the notion of interesting
intermediate distribution properties. This approach can identify the
smallest set of partition requirements that need to be considered
and avoids both brute-force enumeration of alternatives (which
can be prohibitively expensive for complex queries) or heuristic
approaches (which can miss optimal solutions). Our techniques are
especially useful for optimizing complex query plans that combine
multiple operations (e.g., joins or aggregates). These plans typically
share portions of the required distribution keys across operators,
which can benefit from a careful placement of shuffle operators.

7 CONCLUSIONS
The MPP data warehouse offering at Microsoft underwent several
evolutions throughout the last 15 years. It was initially launched
with an appliance form-factor (PDW), transformed to a cloud of-
fering (Synapse DW) and later into a stateless all-in-one solution
that converges data lakes and warehouses (Fabric DW). The origi-
nal query optimizer was built on top of the (virtually unmodified)
SQL Server optimizer, which was a pragmatic choice that quickly
resulted in a sophisticated cost-based optimizer for PDW. Over
time, architectural changes in the product and lessons learned from
production required that the optimizer itself evolve as well. We
showed how we unified separate query optimizers into a unified
framework that can reason with distribution properties and allows
implementing improvements that span across the original compo-
nent boundaries of the original system. This new architecturemakes
the optimizer simpler to reason with, more efficient at optimizing
queries, and produces better-quality plans than its predecessor. It
also opens the door for exciting new opportunities that were not
possible or unnatural to design in the old architecture, such as a
better handling of common subexpressions and distributed bitmap
filters, or fine-grained control on resource management.

6Interestingly, both Scope and Orca are also based on the Cascades framework.
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