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We present a non-intrusive approach to robust query processing that can be used on top of any SQL execution
engine. To reduce the risk of selecting highly sub-optimal query plans, we execute multiple plans in parallel.
Query processing finishes once the first of these plans finishes execution.

Plans are selected to be complementary in terms of the intermediate results they generate. This increases
robustness to cardinality estimation errors, making cost prediction hard, that concern a subset of candidate
results. We present multiple cost-based approaches to selecting plans for robust execution. The first approach
uses a simple cost model, based on diversity of intermediate results. The second approach features a probabilistic
model, approximating expected execution overheads, given uncertainty on true intermediate result sizes.
We present greedy and exhaustive algorithms to select optimal plans according to those cost models. The
experiments demonstrate that executing multiple plans in parallel is preferable over executing single plans
that are occasionally sub-optimal, as well as over several baselines.
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1 INTRODUCTION
Computer systems feature an increasing degree of parallelism (due, in part, to fundamental lim-
itations in increasing the clock speed of single CPUs). Database systems typically exploit this
parallelism to execute more queries or to process more data in parallel. This strategy is maximally
efficient, as long as query plans, chosen for those queries by the optimizer, can be assumed to
be near-optimal. However, in practice, query optimization is hard as it relies on accurate cost
predictions for alternative plan candidates. Cost estimation may fail for various reasons, including
data skew and correlations that make it hard to predict sizes of intermediate results. If so, the query
optimizer selects plans that are highly sub-optimal.
We therefore propose a novel strategy to exploit growing degrees of parallelism in current

computer systems. Instead of processing more data or executing more queries in parallel, we
propose to execute multiple plans for the same query. We can then terminate processing and return
a result to the user, once the first plan executed for a given query terminates. Clearly, this strategy
creates redundant work in cases where optimal plans are easy to find. On the other hand, if cost
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estimates are associated with high uncertainty, executing multiple plans works as an insurance. If
at least one of the corresponding plans is good, query optimization will terminate quite quickly.

Prior work shows that execution times for a few bad query plans can often dominate execution
times for an entire workload [27]. This is due to the fact that plan execution times for the same
query often vary by many orders of magnitude. Hence, overheads due to redundant plan executions
become quickly negligible, if they help to avoid even a few expensive optimizer mistakes. Beyond
that, exploiting large degrees of parallelism for executing single query plans is challenging for
many popular database management systems. If parallelization shows diminishing returns for a
single plan, executing more plans in parallel can be a better choice. Note that we focus on analytical
data processing by single users in this paper. This is a common scenario in which queries are
not submitted concurrently, making it impossible to exploit parallelism by executing multiple
queries concurrently. If multiple queries are submitted concurrently, it may be preferable to exploit
parallelism for executing plans for different queries. However, this is not the scenario we are
considering.

The proposed strategy has advantages over other approaches, introduced previously to increase
performance robustness in query evaluation. A popular line of research explores the potential of
machine learning to make cost estimation more reliable [24, 30, 31]. However, such methods suffer
from a cold-start problem in the case of a new database or in case of a dynamic query workload.
As shown in our experiments, this makes our approach preferable until large numbers of training
samples have been seen. Another popular line of work targets approaches for adaptive query
processing [1, 37, 41]. Here, instead of selecting a single query plan, the system switches between
different plan candidates (evaluating them based on run time feedback). Adaptive processing
typically requires changes to the database management system. Instead, the proposed method can
be implemented on top of any SQL engine1, without changing its code.

More precisely, we obtain alternative plans for the same query by issuing the query repeatedly
while changing the settings for the optimizer. This is similar to other recent work, restricting the
search for optimal plans by exploiting the traditional query optimizer. While such optimizers are
not reliable (motivating this work), they remain useful in pruning an overwhelmingly large space of
plan candidates to reasonable alternatives. By optimizing with different optimizer settings, we can
obtain a large number of plans for the same query. Executing all of them is prohibitively expensive.
This makes it crucial to select a small subset of plans for execution that is maximally efficient.

Starting from a large space of alternative plans, the initial filtering is done by the query optimizer,
narrowing the scope to plans that it generates for some optimizer settings. Still, due to the large
number of possible optimizer settings, the resulting plan set is still too large. We formulate the
problem of selecting an optimal subset of plans for execution as a combinatorial optimization
problem. As execution stops once the first parallel plan finishes, a subset of plans is as good as
the best plan in that set. This insight motivates specific utility functions, judging the quality of a
combination of plans for execution.

We consider multiple problem variants and associated optimization algorithms. First, we consider
a relatively simple utility function, counting the number of distinct intermediate results (considering
the structure of the query plan alone). Typically, bad plan choices derive from mistakes when
estimating the cardinality of intermediate results. Selecting plans that generate similar intermediate
results increases the risk of a single estimation error influencing many plans. Together with this
utility function, we propose an efficient optimization algorithm that guarantees near-optimal
plan sets. In addition, we propose an exhaustive algorithm, based on integer linear programming.

1We assume that the SQL engine supports a small set of standard operations for query planning that we discuss in more
detail in the following sections.
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This algorithm trades search overheads for guarantees optimal solutions. Second, we consider a
refined model that associates intermediate results with a probability distribution over possible
cardinality values. To initialize those probability distributions, we use the cardinality estimates by
the optimizer as a starting point. The quality of a plan set is then determined by the expected value
of the minimum execution cost over all selected plans (since execution terminates once the first
selected plan terminates). We propose greedy and exhaustive methods to select optimal plan sets,
according to these refined metrics.
In the experiments, we compare our approach to multiple baselines on multiple benchmarks,

using PostgreSQL as the underlying database management system. We use two benchmarks that
are based on real data, making query optimization hard due to skew and correlation. We compare
against the original PostgreSQL optimizer (selecting single plans executed with full degree of
parallelism), several simple baselines for multiplan selection, the plan bouquets approach [13],
adaptive query processing methods, as well as several variants of Bao [30], an approach to configure
the PostgreSQL optimizer via configuration parameters, based on reinforcement learning. The
experiments demonstrate that executing more plans in parallel, as opposed to executing single
plans with maximal degree of parallelism, ultimately pays off in terms of accumulated execution
overheads. Also, they show that learning-based approaches suffer from cold-start problems whereas
the proposed approach works “out of the box”. In summary, the original scientific contributions in
this paper are the following:
• We propose a non-intrusive optimization framework, executing complementary query plans
in parallel.
• We propose multiple utility models and multiple algorithms for selecting good sets of query
plans.
• We analyze the problem of multi-plan selection and the proposed methods formally.
• We compare the proposed method to multiple baselines in experiments, using multiple
benchmarks on real data.

The remainder of this paper is organized as follows. Section 2 gives an overview of the ROME
architecture and discusses implementation details. Section 3 introduces the formal problem model
and associated terminology. Section 4 introduces a simple utility model for selecting plan sets for
execution, as well as associated optimization algorithms. Section 5 introduces a more sophisticated
utility model, calculating expected execution costs for plan sets, as well as associated optimization
methods. Section 6 analyzes the problem as well as the proposed methods formally. Section 7
reports results of experiments while Section 8 discusses prior work.

2 ROME FRAMEWORK
We give an overview of ROME’s architecture in Section 2.1 and discuss implementation details in
Section 2.2.

2.1 Overview
Figure 1 shows an overview of our approach, executing complementary plans in parallel to reduce
the impact of optimizer mistakes. We will refer to this approach as ROME (short for Robust
Optimization by Multiplan Execution) in the following. ROME is a lightweight framework on top of
relational database management systems. ROME is completely non-intrusive and does not require
any changes to the underlying database management system. It is generically applicable and works
on any SQL processing engine, provided that the system offers parameters that influence query
plan choices. In our experiments, we will use ROME on top of PostgreSQL. However, the approach
is not specific to that system.
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Fig. 1. Overview of ROME.

ROME focuses on SQL queries. It is particularly beneficial in scenarios where query optimization
is difficult (e.g., due to skewed data), making it hard for the optimizer to identify near-optimal
plans reliably. In those cases, ROME provides insurance against bad optimizer choices by executing
multiple complementary plans in parallel. Execution terminates whenever the first of those plans
terminates.
As shown in Figure 1, SQL queries are sent to ROME (as opposed to sending them to the

underlying database management system directly). Given a query, ROME first generates a set of
interesting plan candidates. To do so, ROME optimizes the input query repeatedly but with different
optimizer settings. For instance, for Postgres, ROME manipulates flags that determine the set of
operator implementations considered by the optimizer. More precisely, it manipulates the same
parameters used in other recent work for optimizer steering [30]. By disabling subsets of operator
implementations, ROME effectively retrieves local optima for subsets of the query plan space
(using the optimizer of the underlying database system to identify those local optima). While those
local optima are never better than the global optimum, according to the cost model of the query
optimizer, they may turn out to be optimal in the presence of cost and cardinality estimation errors.
The approach for selecting plans to execute, described next, is our primary technical contribution
in this paper. It can be easily combined with other approaches for generating plan candidates.
ROME executes multiple locally optimal query plans in parallel. However, executing parallel

plans is costly and reduces the degree of parallelism that is available for each single plan execution.
Therefore, it is prohibitively costly to execute all plan candidates in parallel. Because of that,
ROME selects a small set of plans for execution. In the following, we refer to this step as multiplan
selection. We treat multiplan selection as a combinatorial optimization problem. Intuitively, our goal
is to select a set of plans that is as complementary as possible. This means that, ideally, incorrect
assumptions, influencing for instance size estimation for a subset of intermediate results, never
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affect all selected plans at the same time. In the following sections, we propose multiple utility
models to judge the quality of a particular plan set, as well as associated optimization algorithms.

After selecting plans, ROME executes those plans in parallel (by issuing the same query multiple
times via different sessions, varying the optimizer settings in each session to obtain the selected
plan). Once the first plan finishes, ROME terminates all parallel executions. This means that
execution time is effectively determined by the execution time of the fastest plan in the set. All
executed plans generate the same result. Therefore, the result generated by the first plan to finish
is returned to the user.
Note that ROME performs redundant work by executing multiple plans for the same query.

However, as we will see in the experiments, this approach pays off if it helps to avoid the occasional
(but very expensive) optimizer mistake, misleading the optimizer to select plans with an execution
cost far above the optimum.

2.2 Implementation Details
The implementation of ROME, evaluated in the experiments, is a Python framework on top of
PostgreSQL. Queries, along with access credentials for the associated PostgreSQL database, are
submitted to ROME. Upon receiving a new query, ROME generates plan candidates using opti-
mizer flags for PostgreSQL. More precisely, ROME considers optimizer configuration changes of
the form SET [flag] to [value]; where [flag] and [value] are placeholders. For instance,
enable_nestloop is one of the flags considered by ROME, and on and off are the two possible
values for this Boolean flag. In this plan generation stage, ROME submits to PostgreSQL SQL
scripts that concatenate one or multiple configuration parameter changes (of the aforementioned
type), followed by the input query, prefixed by PostgreSQL’s EXPLAIN command. The EXPLAIN
command has the effect that the following query is not executed. Instead, PostgreSQL merely
returns a description of the execution plan that the optimizer would pick for execution. The selected
plan depends on the preceding optimizer configuration changes as they may disable parts of the
plan space (by disabling specific operators). ROME tries all combinations of settings for optimizer
flags, generating one plan for each such combination. As query planning is very fast, compared to
executing queries, the time overhead of this plan generation stage is negligible.
After retrieving alternative plans from PostgreSQL, ROME parses those plans, focusing on the

join trees and the associated intermediate results. The approaches for plan selection, described
in the following sections, are based on the intermediate results that are generated during plan
execution. However, the parsed plans may contain other operators (e.g., aggregates) that do not
influence intermediate join results. Given one of the methods described in the following sections,
ROME selects a small subset of complementary plan candidates for parallel execution.

For each of the plans selected for parallel execution, ROME creates a sub-process. Each such sub-
process submits an SQL script to PostgreSQL. This SQL script contains the optimizer configuration
changes that led to the generation of the selected plan, followed by the input query. The only
difference to the script used during plan generation is the fact that the EXPLAIN keyword is not
used as a prefix to the input query. This means that the corresponding query is now executed, using
the plan described as output of the EXPLAIN command. ROME terminates all sub-processes once
the first such sub-process finishes, returning the query result. This query result is then returned to
the user.

3 FORMAL MODEL
Our technical contribution in this paper focuses on the multiplan selection problem (see Figure 1).
In the following, we introduce this problem and related terminology.
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ROME focuses on relational queries. ROME uses parser, optimizer, and execution engine of an
underlying database management system. Hence, in principle, ROME supports all queries supported
by the underlying SQL engine. Queries are mapped to one or multiple query plans for execution.

Definition 1 (Query Plan). We model query plans as join trees in the following. For most of this
paper, we implicitly assume binary join trees (i.e., the system uses binary join operators). However, the
approach is not limited to this scenario and could support non-binary join trees (e.g., if the underlying
system uses multiway joins) as well.

Whenmodeling query plans in the context of multiplan selection, we neglect other operators than
joins (e.g., aggregates, grouping, and sorting). However, while other operators are not considered for
multiplan selection, they may still appear in the original query plans. Therefore, our implementation
supports general SPJGA SQL queries without sub-queries. Query plans are associated with a set of
intermediate results that are generated during plan execution.

Definition 2 (Intermediate Result). We associate inner nodes within join trees representing
query plans with intermediate results. For a plan 𝑝 , we denote by I(𝑝) (to save space, we also use the
notation I𝑝 ) the set of intermediate results. Different plans may share intermediate results. If so, an
estimation error for one intermediate result may lead to incorrect cost estimates for multiple plans.

In the following, we will often identify intermediate results by a set of joined tables (e.g., 𝑅 
𝑆  𝑇 ). This notation assumes that all applicable predicates (including unary predicates as well as
join predicates) are applied as soon as possible (predicate push-down). Under this assumption, due
to the fact that we only compare plans for the same query, intermediate results are equivalent if
they join the same tables (e.g., 𝑅  𝑆  𝑇 and 𝑇  𝑆  𝑅 are considered the same intermediate
result in the following).
Difficulties in estimating the sizes of those intermediate results are often the reason for sub-

optimal plan choices.

Definition 3 (Size Estimates). During part of the paper, we assume that the underlying database
engine features a cost-based query optimizer. To perform cost-based query optimization, systems
generally need to estimate the sizes of intermediate results (based on data statistics, typically). ROME
obtains size estimates from the underlying optimizer. For an intermediate result 𝑖 , we denote byM(𝑖)
the size estimate by the optimizer size model.

The ultimate goal of ROME is to select a set of plans for parallel execution that minimize the
execution time of the fastest plan (since execution terminates once the first plan does). Of course, if
optimizer cost models were reliable, the first plan to finish would always be the one selected by the
optimizer by default. However, in practice, cost estimates are associated with uncertainty. Hence,
ROME selects a set of complementary plans as insurance against optimizer mistakes. This leads to
the following problem.

Definition 4 (Multiplan Selection). Given a set of plan candidates 𝑃 , a maximal number 𝑛 of
plans to execute, and a utility functionU : 𝑃 ↦→ R, mapping plan sets to real-valued utility values,
the goal of multiplan selection is to select a set 𝑃∗ ⊆ 𝑃 of plans with |𝑃∗ | ≤ 𝑛 that maximizes utility
among all plan sets with at most 𝑛 plans.

ROME generates candidate plans by repeatedly invoking the optimizer of the underlying system
with different configuration settings (thereby obtaining locally optimal plans, according to the
optimizer, in different plans of the plan space). The following sections introduce multiple utility
functions, based on purely structural plan properties or integrating estimates from an optimizer cost
model. The goal of the utility function is to serve as proxy for the overarching goal of minimizing
execution cost of the fastest executed plan.
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4 MAXIMIZING PLAN DIVERSITY
We introduce a first approach to plan selection that is purely based on the plan structure. Section 4.1
discusses a corresponding utility metric for plan sets. Section 4.2 describes how to map multiplan
selection with this utility metric to ILP. Section 4.3 analyzes the properties of the problem. This
analysis motivates a greedy algorithm, described in Section 4.4 that guarantees near-optimal results.

4.1 Utility Metric
Our goal is to select a set of plans that is robust to cardinality estimation errors. E.g., assume that
the actual size of one specific intermediate result deviates significantly from the optimizer estimate.
Ideally, this error only affects a subset of plans executed in parallel. If so, the remaining plans
(which are optimal within part of the plan space) will finish as expected. In this subsection, we
introduce a simple utility metric on plan sets as a proxy for robustness. More precisely, we evaluate
the utility of a plan set as the number of distinct intermediate results that appear in those plans.

Definition 5 (Plan Diversity). Given a set 𝑃 of alternative plans for the same query, we denote
byU(𝑃) = | ∪𝑝∈𝑃 I𝑝 | the (structural) plan diversity.

We give an intuitive explanation for why this utility metric is useful. Assume that plans 𝑃 with
|𝑃 | = 𝑛 are executed in parallel. Assume that those plans join 𝑙 + 1 tables (all plans refer to the same
query and must join the same number of tables). Denote by 𝑢 the plan diversity of the plan set.

Lemma 1. Each unique intermediate result appears in 𝑛 · 𝑙/𝑢 plans in average.

Proof. Plans correspond to binary trees with 𝑙 + 1 leaf nodes (for the joined tables). Hence, the
number of inner nodes (representing intermediate results) is 𝑙 for each plan. The plan diversity 𝑢 is
therefore between 𝑙 (i.e., all plans share the same intermediate results) and 𝑛 · 𝑙 (no intermediate
results are shared). Also, dividing 𝑛 · 𝑙 intermediate results across 𝑢 distinct results yields 𝑛 · 𝑙/𝑢
occurrences for each intermediate result in average. The same intermediate result can only occur
once per plan. Hence, the average number of occurrences is the average number of plans in which
the same result appears. □

Hence, by maximizing plan diversity, we minimize the expected number of plans that are affected
by one single cardinality estimation error.

4.2 Transformation to ILP
We show how to transformmultiplan selection, using the aforementioned utility metric, into integer
linear programming. After that transformation, we can apply existing solvers to find an optimal
solution.

4.2.1 Decision Variables. We aim to identify a set of plans that cover the maximum number of
intermediate results. Each plan is characterized by a specific set of intermediate results.We introduce
binary variables𝑚𝑝 to indicate whether a plan 𝑝 ∈ 𝑃 is selected. Similarly, we introduce binary
variables, denoted as 𝑟𝑖 , to indicate whether an intermediate result 𝑖 is chosen by any of the plans.
Note that we do not need to represent results associated with base tables or the final query result
(since both appear in any possible query plan).

4.2.2 Constraints. For each selected plan, all intermediate results covered by that plan must also be
selected. This requirement can be expressed through constraints of the form𝑚𝑝 ≤ 𝑟𝑖 for each plan
𝑝 ∈ 𝑃 and intermediate results 𝑖 ∈ I𝑝 . Additionally, in the case of a chosen intermediate result 𝑖 , it
is necessary to include at least one plan that incorporates 𝑖 . Consequently, we impose the following
constraints:


𝑝 :𝑖∈I𝑝 𝑚𝑝 ≥ 𝑟𝑖 . Furthermore, the total number of plans cannot exceed the maximally

allowed number of concurrent plans, 𝑛. Hence, we have the constraint


𝑝∈𝑃 𝑚𝑝 ≤ 𝑛.
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𝑅 𝑆 𝑇 𝑍

𝑅 ⊲⊳ 𝑆 𝑇 ⊲⊳ 𝑍

𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇 ⊲⊳ 𝑍

𝑝1

𝑅 𝑆 𝑇 𝑍

𝑅 ⊲⊳ 𝑆

𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇

𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇 ⊲⊳ 𝑍

𝑝2

𝑇 𝑍 𝑅 𝑆

𝑇 ⊲⊳ 𝑍

𝑇 ⊲⊳ 𝑍 ⊲⊳ 𝑅

𝑅 ⊲⊳ 𝑆 ⊲⊳ 𝑇 ⊲⊳ 𝑍

𝑝3

Fig. 2. Example of plan candidates: three query plans 𝑝1, 𝑝2, 𝑝3 joining tables 𝑅, 𝑆 , 𝑇 , 𝑍 . Each inner node
represents an intermediate result (results marked in red are relevant when maximizing plan diversity).

𝑚1 𝑚2 𝑚3

𝑟𝑅⊲⊳𝑆 𝑟𝑇 ⊲⊳𝑍 𝑟𝑅⊲⊳𝑆⊲⊳𝑇 𝑟𝑇 ⊲⊳𝑍⊲⊳𝑅

Fig. 3. Decision variables of ILP maximizing plan diversity, together with connecting constraints.

4.2.3 Objective Function. The objective function aims to maximize the sum of selected intermediate
results (“plan diversity”), denoted as (𝑖∈I(𝑃 ) 𝑟𝑖 ) − 𝜖 (


𝑝∈𝑃 𝑚𝑝 ). In order to prevent the inclusion

of a larger subset of plans with an equal number of covered intermediate results, we introduce
a penalty term. Here, 𝜖 represents a sufficiently small value (e.g., 0.001). This conveys our goal
of maximizing the number of distinct intermediate results covered by the chosen plans (while
avoiding selecting additional plans that do not add new intermediate results).

Example 1. Consider the three query plans represented in Figure 2. They represent alternative
plan candidates answering a query joining four tables: 𝑅, 𝑆,𝑇 , 𝑍 . To select an optimal plan subset
via ILP, we introduce three binary variables,𝑚1,𝑚2,𝑚3, associated with plan candidates, and four
binary variables for unique intermediate results (highlighted in red) denoted by 𝑟𝑅⊲⊳𝑆 , 𝑟𝑇 ⊲⊳𝑍 , 𝑟𝑅⊲⊳𝑆⊲⊳𝑇 ,
𝑟𝑅⊲⊳𝑇 ⊲⊳𝑍 . In Figure 3, we visualize those decision variables, along with the structure of the constraints
connecting them. Constraints are represented by connecting lines. Note the dependencies between
decision variables associated with plans and the variables associated with intermediate results of
those plans.

4.3 Problem Analysis
For the following analysis, we consider the utility model motivated in Section 4.1 (plan diversity).
We prove several properties of that utility function that inform the design of a greedy algorithm in
the following subsection.

Theorem 2. Plan diversity is non-negative and monotone.

Proof. Plan diversity is defined as a set cardinality (the cardinality of the set of intermediate
results). Hence, the minimal value is zero. Also, adding new plans to the set cannot reduce the
number of distinct intermediate results (i.e., it is | ∪𝑝∈𝑃 I𝑝 | ≤ | ∪𝑝∈𝑃 ′ I𝑝 | if 𝑃 ⊆ 𝑃 ′). □

Next, we show that plan diversity has diminishing returns. First, we define this property formally.
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Algorithm 1 Select subsets of plan candidates maximizing plan diversity.
1: // Given a set of plan candidates 𝑃 , select at most 𝑛 plans maximizing plan diversity for concurrent

execution.
2: function GreedyMPD(𝑃, 𝑛)
3: // Initialize set of executed plans
4: 𝑃∗ ← ∅
5: // Repeat adding plans to the optimal set
6: while |𝑃∗ | ≤ min(𝑛, |𝑃 |) do
7: // Select most complementary plan
8: 𝑝∗ ← argmax𝑝∈𝑃\𝑃∗ U(𝑃∗ ∪ {𝑝})
9: // Did the utility value increase?
10: if U(𝑃∗ ∪ {𝑝}) > U(𝑃∗) then
11: 𝑃∗ ← 𝑃∗ ∪ {𝑝}
12: else
13: break
14: end if
15: end while
16: return 𝑃∗

17: end function

Definition 6. A set function 𝑓 : 𝑆 ↦→ R is submodular if the following holds. If adding an
element 𝑠 ∈ 𝑆 to two sets 𝑆1 ⊆ 𝑆2 ⊆ 𝑆 then 𝑓 (𝑆1 ∪ {𝑠}) − 𝑓 (𝑆1) ≥ 𝑓 (𝑆2 ∪ {𝑠}) − 𝑓 (𝑆2).
Theorem 3. Plan diversity is submodular in the set of selected plans.

Proof. Consider two sets of plans 𝑃1 and 𝑃2. We assume that 𝑃1 ⊆ 𝑃2. Assume a new plan 𝑝

is added to both sets, 𝑃1 and 𝑃2. We denote by 𝐼1 and 𝐼2 the set of intermediate results of 𝑝 that
are not contained in 𝑃1 and 𝑃2 respectively. Thus, |𝐼 𝑗 | = U(𝑃 𝑗 ∪ {𝑝}) − U(𝑃 𝑗 ) ( 𝑗 = 1, 2). For any
intermediate result 𝑖 ∈ 𝐼2, it is also in 𝐼1. Otherwise, 𝑖 only appears in unique intermediate results of
𝑃1, which contradicts 𝑃1 ⊆ 𝑃2. Thus, 𝐼2 ⊆ 𝐼1, proving that |𝐼2 | ≤ |𝐼1 |. This proves that plan diversity
is submodular. □

4.4 Greedy Algorithm
Consider Algorithm 1. This algorithm selects plans greedily for execution. The input is a set of plans, together
with the maximal number of plans that can be executed concurrently. Starting from an empty set, the
algorithm iteratively adds the plan that maximizes utility in each iteration (here, utility represents plan
diversity). Iterations continue until the maximal number of plans has been selected (or no candidates remain to
be selected). Also, the algorithm terminates if no plan increases utility. This termination criterion is reasonable.
Due to submodularity, adding a plan to supersets of the currently selected plans cannot yield a higher increase
in utility. If no plan achieves an improvement in utility, no plan can increase utility in later iterations either.

Algorithm 1 is seemingly simple. Nevertheless, it guarantees near-optimal results, according to the following
theorem. Note that this theorem is based on the properties of the utility function, shown in the previous
subsection. By 𝑒 , we denote Euler’s number in the following theorems.

Theorem 4. Greedy plan selection achieves plan diversity within factor (1 − 1/𝑒) of the optimum.

Proof. We have shown that plan diversity is non-negative and monotone (Theorem 2) and submodular
(Theorem 3). According to Nemhauser [34], greedily adding a bounded number of elements with maximal
utility leads to a near-optimal result, within factor (1 − 1/𝑒) of the optimum. Note that terminating early in
case of non-increasing utility does not change the utility of the result, as justified previously. □

Wewill see in the experiments that the greedy algorithm realizes attractive tradeoffs between computational
overheads (of plan selection) and result quality.
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5 MINIMIZING EXPECTED COSTS
We introduce a more precise model to guide our selection of plans for parallel execution. Section 5.1 explains
how we associate intermediate results with a probability distribution, modeling cardinality. Section 5.2 shows
how we calculate expected execution costs for plan sets (assuming that execution finishes once the first plan
terminates). Section 5.3 introduces a greedy algorithm to find plans with near-optimal execution costs. Finally,
Section 5.4 describes a transformation to ILP, enabling us to use existing solvers to find optimal plan sets.

5.1 Modeling Intermediate Result Cardinality
Incorrect cardinality estimates are often at the root of costly query optimizer mistakes. Prior work [27]
demonstrates that the impact of erroneous cardinality estimates, due to factors such as data correlation and
skew, is significant. In the following, we present a model for selecting plans for parallel execution that takes
into account uncertainty in cardinality estimation.

Typically, query optimizers associate intermediate results with point size estimates. However, this neglects
uncertainty that arises, e.g., from simplifying assumptions made while estimating the selectivity of query
predicates (e.g., assuming that different predicates in the same query are uncorrelated). In addition, estimates
are based on data statistics that are typically coarse-grained and fail to take into account dependencies between
different columns in the database.

To account for all these types of uncertainty, we model the size of intermediate results as a probability
distribution in the following (rather than a point estimate). Intermediate results are created via joins between
other intermediate results (or base tables). Given known input sizes 𝑙 and 𝑟 (for the left and right join operand),
the maximal output size is 𝑙 · 𝑟 (i.e., the Cartesian product). Typically, Cartesian product joins are avoided,
meaning that join outputs are filtered by a join predicate. In the following, we denote the estimated selectivity
of that join predicate by 𝜎 . Query optimizers typically assume a point size estimate of 𝑙 · 𝑟 · 𝜎 on the join
output size. Instead, we model the join output size as a probability distribution.

We can associate each row 𝑗 in the Cartesian product with a random variable, 𝑜 𝑗 , with Bernoulli distribution
(it is 𝑜𝑖 = 1 if the corresponding row satisfies the join predicate). The output size is then given as the
sum over those random variables, i.e.,


𝑗 𝑜 𝑗 . Assuming independent and identically distributed variables,

the output distribution can be modeled by a Binomial distribution. However, the Binomial distribution is
inefficient to compute. Instead, we opt to approximate the output distribution by a Poisson distribution. The
Poisson distribution generally models the number of successes, given a large number of trials with a fixed
success probability. In our case, each trial corresponds to a row in the Cartesian product whereas a success
corresponds to a row satisfying the join predicate. The Poisson distribution is known to approximate the
Binomial distribution well in cases where the number of trials is large while the success probability is small,
e.g., starting from 1,000 trials with a success probability of at most 1% [28]. Given typical table sizes, the
selectivity of join predicates as well as the number of Cartesian product rows often satisfy those conditions.

The Poisson distribution is characterized by a single parameter 𝜆, representing the expected value as well
as the variance at the same time. To approximate the size of a join result, joining tables with sizes 𝑙 and 𝑟 and
using a join predicate of selectivity 𝜎 , we set 𝜆 = 𝑙 · 𝑟 · 𝜎 (i.e., we set it to the size estimate used by the query
optimizer).

An additional challenge in our context is the following. Different from the situation described previously,
we cannot assume that the sizes of join inputs are point estimates. Instead, we must assume that they are
associated with uncertainty as well. Even if input sizes follow a Poisson distribution as well, we cannot assume
that the output distribution can be modeled as a Poisson distribution in general. Instead of modeling the
output distribution analytically, we opt to approximate it by a fixed number of discrete values with associated
probabilities, a classical approach in the domain of robust query optimization [9].

For base tables, we assume that cardinality is known (even after applying filter predicates). This reflects the
fact that incorrect cardinality estimates are often due to correlations between different predicates [6, 27]. Hence,
we model their cardinality as a point estimate (i.e., a special case of a discrete probability distribution that
assigns a probability of one to the optimizer estimate). For a given plan, we calculate a probability distribution
for each intermediate result bottom-up. As we traverse the plan tree from the leaf nodes to the root, we can
calculate the cardinality distribution of an intermediate result, assuming that the cardinality distribution
of the associated join operands is already available. Our algorithm is inspired by the approach of Chu et
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al. [9]. More precisely, we assume that each distribution is approximated by a set of 𝑏 alternative cardinality
values with an associated probability (𝑏 is a tuning parameter, allowing to trade approximation precision
for computational overheads). Each cardinality value represents a bucket, containing a range of cardinality
values. Given cardinality values with associated probability values for each of the join inputs, we iterate over
all combinations of input sizes. For each combination of input sizes, we approximate the associated Poisson
distribution of the join output size (considering uncertainty in the selectivity of join predicates). Finally, we
approximate the joint output distribution (integrating all possible input sizes) by a set of 𝑏 representative
cardinality values with associated probability values again.

5.2 Modeling Execution Costs for Plan Sets
ROME executes sets of complementary plans in parallel, terminating once the first such plan finishes. In
Section 4, we introduce a simple proxy of plan diversity as a utility function for plan selections. However,
the previously introduced model neglects several relevant aspects of the problem. First, it does not take into
account the degree of uncertainty, associated with the sizes of specific intermediate results. As a tendency,
joining many tables and using various join predicates creates more opportunities for estimation errors to
propagate. Hence, selecting plans to safeguard against the most likely cardinality estimates is not possible with
the prior model. Also, the prior model does not distinguish intermediate results that are likely to influence
overall execution costs significantly from others. For instance, for small intermediate results, even a large
relative estimation error may still have a limited impact on plan execution time as a whole (if other intermediate
results in the same plan are significantly larger). We therefore propose a new model to guide plan selections.
This model is based on the metric that we are ultimately interested in (rather than a proxy).

Definition 7 (Expected cost). The expected (execution) cost of a plan set 𝑃 is defined as the expected value
of the minimal execution costs over all plans. More precisely, assume that the execution cost of plan 𝑝 ∈ 𝑃 is
modeled as random variable C𝑝 , we judge plan sets by the quantity E(min𝑝∈𝑃 C𝑝 ) (where E denotes expected
value). Note that cost variables of different plans are not necessarily independent as plans may share the same
intermediate results (meaning that an estimation error in one intermediate result affects multiple plans).

For the purpose of plan selection, we model the cost of plans using the simple 𝐶𝑜𝑢𝑡 cost model [10]. This
metric simply sums up the sizes of intermediate results. While simplifying, this model has been shown to
correlate well with cost functions of popular join operators [10], and experiments show that simple cost
models are sufficient to identify efficient query plans [27]. Whereas different systems implement different
operators, a cost model that is based on intermediate result sizes alone can be reused across a wide range
of relational database management systems. Note that we use the aforementioned cost model only to select
plans from plan candidates proposed by the query optimizer. On the other hand, the query optimizer uses a
typically more precise cost model to select plan candidates, specialized to the characteristics of the associated
execution engine.

We model the sizes of intermediate results as a discrete probability distribution. Hence, using the aforemen-
tioned cost metric, we can express the cost of plans as a discrete probability distribution as well. Our goal is to
model dependencies between different plans that share intermediate results. Hence, rather than considering
the cost of different plans independently, we must consider the executed combination of plans to calculate the
expected execution costs.

Algorithm 2 shows the corresponding pseudo-code. As input, it obtains a set of plans to execute in parallel
(𝑃 ), as well as approximated size distributions for a subset of intermediate results. The output is the expected
cost until the first plan in 𝑃 finishes execution.

The second input requires further explanations. We approximate the size distribution of each intermediate
result that appears in any plan using the method described in the previous subsection. However, when
calculating the expectation of the minimum execution cost over all plans, we need to consider all possible
combinations of intermediate result sizes. Even if the number of values per intermediate result is bounded by
𝑏 (as explained in the previous section), the number of combinations still grows exponentially in the number
of intermediate results we consider. To limit computational overheads, we introduce a second parameter that
determines the precision of the approximation. This parameter, called 𝑘 in the following sections, determines
the number of intermediate results whose size we model as a distribution. For other intermediate results, we

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 170. Publication date: June 2024.



170:12 Ziyun Wei & Immanuel Trummer

Algorithm 2 Calculating expected value on the execution cost of the fastest plan in a plan set,
executed in parallel.
1: // Calculate the expected cost of the fastest plan in 𝑃 , given size distributions𝐷 for a subset of intermediate

results.
2: function ExpectedCost(𝑃, 𝐷 = {⟨𝐵𝑖 , 𝑖⟩})
3: // Collect all intermediate results in plans
4: 𝐼 ← ∪𝑝∈𝑃I𝑝
5: // Initialize size with point estimates
6: 𝑆 ← ∅
7: for 𝑖 ∈ 𝐼 : ∄𝐵𝑖 : ⟨𝐵𝑖 , 𝑖⟩ ∈ 𝐷 do
8: 𝑆 ← 𝑆 ∪ {⟨𝑖,M(𝑖)⟩}
9: end for
10: // Create all combinations of sizes with associated probability
11: 𝐶 ← {⟨𝑆, 1⟩}
12: // Iterate over intermediate results with cardinality distribution
13: for ⟨𝐵𝑖 , 𝑖⟩ ∈ 𝐷 do
14: 𝐶′ ← ∅
15: // Iterate over size combinations for prior results
16: for ⟨𝑆, 𝑝⟩ ∈ 𝐶 do
17: // Iterate over possible sizes of current result
18: for ⟨𝑠𝑖 , 𝑝𝑖 ⟩ ∈ 𝐵𝑖 do
19: // Expand sizes by adding size for current result
20: 𝑆 ′ ← 𝑆 ∪ {⟨𝑖, 𝑠𝑖 ⟩}
21: 𝐶′ ← 𝐶 ∪ {⟨𝑆 ′, 𝑝 · 𝑝𝑖 ⟩}
22: end for
23: end for
24: 𝐶 ← 𝐶′

25: end for
26: // Sum minimum cost for each combination, weighted by probability
27: 𝑒 ← 0
28: for ⟨𝑆, 𝑝⟩ ∈ 𝐶 do
29: 𝑒 ← 𝑒 + 𝑝 ·min𝑝′∈𝑃 (


𝑖∈I𝑝′ 𝑆 [𝑖])

30: end for
31: return 𝑒

32: end function

model them as point estimates when estimating execution costs. The input to Algorithm 2 therefore contains
a set 𝐷 of size distributions, associated with a subset of intermediate results, that should be considered in our
approximation.

First, in Lines 6 to 9, Algorithm 2 iterates over all intermediate results for which no distribution is available.
For those intermediate results, the algorithm models the size as the estimate by the query optimizer model
(represented byM(𝑖) in the pseudo-code). The corresponding estimates are stored in variable 𝑆 , containing
tuples that connect intermediate results to their size estimate. Next, the algorithm considers all possible
combinations of intermediate result sizes. Those combinations will be stored in variable 𝐶 . This variable
contains tuples, pairing a size function (assigning intermediate results to size estimates) with a probability. The
variable is initialized in Line 11, containing sizes for intermediate results without associated size distribution
and a probability of one.

Next, Algorithm 2 considers intermediate results for which a size distribution is provided (as part of
the function input). For each such intermediate result, the algorithm iterates over all size values with their
associated probabilities. For each possible size value, the algorithm adds a new combination of size values
by expanding any previously added combination (which does not yet consider the current intermediate
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result). The probability for the expanded combination is calculated as the product between the probability
of the original combination and the probability of the new size value. Again, this approach is a compromise
between precision and computational overheads as it assumes that the sizes of different intermediate results
are independent. After finishing iterations in Line 25, variable 𝐶 contains a set of tuples, representing all
possible combinations of intermediate result sizes, together with the associated probability.

Finally, Algorithm 2 calculates the expected value. To do so, it iterates over possible size combinations. The
expression in Line 29 calculates the execution cost of each plan, given currently assumed sizes (𝑆 [𝑖] denotes
the size assigned by 𝑆 to intermediate result 𝑖). Then, it takes the minimal cost over all selected plans. The
final result is the sum of those minima, weighted by the probability of the corresponding size combination.
This value is returned as function result.

5.3 Greedy Plan Selection
We analyze the cost function introduced in the previous subsection. The purpose of adding more plans is to
save execution overheads due to sub-optimal plan choices. We formalize cost savings next.

Definition 8 (Cost Savings). Denote by 𝐶𝑜𝑠𝑡 (𝑃) the expected minimal plan execution cost for plans 𝑃 ,
calculated by Algorithm 2. We extend the definition of that function by assigning 𝐶𝑜𝑠𝑡 (∅) to a high constant
(higher than the execution cost of any plan). Then we can define cost savings 𝑆𝑎𝑣𝑒 (𝑃) of a plan set 𝑃 as the
improvement in execution cost, compared to the empty set: 𝑆𝑎𝑣𝑒 (𝑃) = 𝐶𝑜𝑠𝑡 (∅) −𝐶𝑜𝑠𝑡 (𝑃).

Due to the (expanded) definition of the cost function, it is clear that 𝑆𝑎𝑣𝑒 (𝑃) is non-negative. We prove
monotonicity and submodularity next.

Theorem 5. Cost savings are monotone.

Proof. Since 𝑆𝑎𝑣𝑒 (𝑃) = 𝐶𝑜𝑠𝑡 (∅) −𝐶𝑜𝑠𝑡 (𝑃), cost savings are monotone iff −𝐶𝑜𝑠𝑡 (𝑃) is monotone. Algo-
rithm 2 calculates the cost as a weighted sum over minima, taking the minimum over different plans. All
weights represent probability values and are therefore non-negative. Adding more plans can only decrease the
minimum over different plans. As we sum over minima with non-negative weights, the cost function as a
whole can only decrease when adding plans. This means that the negative of the cost function, −𝐶𝑜𝑠𝑡 (𝑃), can
only increase when adding plans. That implies that cost savings are monotone. □

Theorem 6. Cost savings are submodular.

Proof. Cost savings are submodular iff−𝐶𝑜𝑠𝑡 (𝑃) is submodular. It is−𝐶𝑜𝑠𝑡 (𝑃) = 
𝑠 𝑤𝑠 (−min𝑝∈𝑃 (C(𝑝, 𝑠)))

where𝑤𝑠 denotes the probability of size combination 𝑠 and C(𝑝, 𝑠) denotes the cost of plan 𝑝 , assuming sizes
𝑠 . Assume 𝑃 ⊆ 𝑃 ′ and 𝑝∗ is a plan with 𝑝∗ ∉ 𝑃 ∪ 𝑃 ′. Consider the function U(𝑃) = −min𝑝∈𝑃 C(𝑝, 𝑠)
for an arbitrary but fixed 𝑠 (assigning each intermediate result to a size value). It is min𝑝∈𝑃 C(𝑝, 𝑠) ≥
min𝑝∈𝑃 ′ C(𝑝, 𝑠) since 𝑃 ⊆ 𝑃 ′. If C(𝑝∗, 𝑠) ≥ min𝑝∈𝑃 C(𝑝, 𝑠) then adding 𝑝∗ will not change the minimal
value in any case, i.e., U(𝑃 ∪ {𝑝∗}) − U(𝑃) ≥ U(𝑃 ′ ∪ {𝑝∗}) − U(𝑃 ′) holds and U is submodular. If
min𝑝∈𝑃 ′ C(𝑝, 𝑠) ≤ C(𝑝∗, 𝑠) ≤ min𝑝∈𝑃 C(𝑝, 𝑠) then U(𝑃 ′ ∪ {𝑝∗}) − U(𝑃 ′) = 0 and U is submodular. If
C(𝑝∗, 𝑐) ≤ min𝑝∈𝑃 ′ C(𝑝, 𝑠) thenU(𝑃 ∪ {𝑝∗}) − U(𝑃) > 0 andU(𝑃 ′ ∪ {𝑝∗}) − U(𝑃 ′) > 0 butU is submod-
ular again due to min𝑝∈𝑃 C(𝑝, 𝑠) ≥ min𝑝∈𝑃 ′ C(𝑝, 𝑠) andU(𝑃 ∪ {𝑝∗}) = U(𝑃 ′ ∪ {𝑝∗}). A weighted sum over
submodular functions is submodular if the weights are positive. □

The properties of the cost savings function motivate a greedy algorithm that successively adds plans with
optimal cost reduction (until the maximal number of plans is reached). This algorithm is similar to Algorithm 1
and therefore omitted due to space restrictions. We prove guarantees on the result quality, produced by the
greedy algorithm.

Theorem 7. Greedy optimization achieves cost savings within factor (1 − 1/𝑒) of the optimum.

Proof. This follows immediately from the properties of the cost savings function (non-negative, monotone,
and submodular) and the properties of the greedy algorithm [34]. □

Finally, we discuss how to trade computational overheads for approximation precision. Algorithm 2 depends
on a set of intermediate results that are assumed to be variable (whereas the others are assumed constant). To
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limit computational overheads, we select a limited number (𝑘) of intermediate results to model via probability
distributions. Modeling size as a distribution matters more for intermediate results that have significantly
different sizes under different assumptions. Hence, after calculating an approximate probability distribution
for all intermediate results, we select the 𝑘 intermediate results with the largest gap between minimal and
maximal size, represented in the associated distribution. For those intermediate results, we pass the size
distribution as input to Algorithm 2.

5.4 Integer Linear Programming Approach
As an alternative to the greedy algorithm, we show how to transform plan selection into integer linear
programming. The transformation differs from the one presented in Section 4.2 due to a different optimization
objective. Now, our goal is to minimize expected costs. This influences the objective function as well as the
required variables and constraints. We model intermediate result sizes using the same techniques as before. In
particular, we assume that the size distribution of a bounded number of 𝑘 intermediate results is approximated,
using one discrete distribution per result with 𝑏 values. This implies 𝑏𝑘 possible combinations of intermediate
result sizes. We denote by 𝑠 one of those combinations in the following (we will also call them scenarios). By
𝑤𝑠 , we denote the associated probability. Note that the set of possible combinations does not depend on the
selected plans.

5.4.1 Variables. We introduce binary variables𝑚𝑝 for each plan 𝑝 ∈ 𝑃 . If𝑚𝑝 = 1 then the corresponding
plan is selected for execution. Our goal is to minimize the expectation of the minimum cost over all selected
plans (since query execution terminates once the first executed plan finishes). We introduce several auxiliary
variables to model our cost objective. First, we introduce variables 𝑧𝑠 for each size combination 𝑠 , representing
the minimal execution cost over all selected plans, assuming sizes 𝑠 . Second, we introduce binary variables 𝑦𝑝𝑠
(for each plan candidate 𝑝 and size combination 𝑠), indicating whether plan 𝑝 is the selected plan with minimal
execution cost, given sizes 𝑠 . More precisely, we set 𝑦𝑝𝑠 = 0 iff plan 𝑝 is the one with minimal execution cost in
scenario 𝑠 (and 𝑦𝑝𝑠 = 1 iff the plan is not the one with minimal execution cost). Third, we introduce auxiliary
variables 𝑣𝑝𝑠 , representing the effective cost of plan 𝑝 in scenario 𝑠 , integrating the cost of the plan in that
scenario as well as the decision whether the plan is executed in the first place. If the plan is not selected for
execution, it is assigned to a high cost constant (ensuring that it will not determine the value of the minimum
cost).

5.4.2 Constraints. At most 𝑛 plans should be executed in parallel. We express this constraint using the
following inequality:


𝑝∈𝑃 𝑚𝑝 ≤ 𝑛. Next, we show how to constrain auxiliary variables. Variables 𝑣𝑝𝑠 represent

the effective cost of plan 𝑝 in scenario 𝑠 . We set 𝑣𝑝𝑠 =𝑚𝑝 · C(𝑝, 𝑠) +𝐿 · (1−𝑚𝑝 ) where 𝐿 is a large constant (e.g.,
a multiple of the cost of the most expensive candidate plan in the worst scenario). This equation ensures that
the value of selected plans is set to their respective cost (in scenario 𝑠), whereas plans that are not selected for
execution are assigned to a high value (guaranteed not to become the minimum). Variables 𝑦𝑝𝑠 are set to zero
if plan 𝑝 finishes execution first in scenario 𝑠 (thereby determining the overall cost of execution). We ensure
that exactly one plan must be the first to finish, imposing


𝑝∈𝑃 𝑦

𝑝
𝑠 = |𝑃 | − 1 (we add one such constraint for

each scenario 𝑠).
Next, we link variables 𝑦𝑝𝑠 to variables 𝑧𝑠 . We set

𝑧𝑠 ≥ 𝑣
𝑝
𝑠 − 𝐿′ · 𝑦

𝑝
𝑠 (1)

, introducing one such constraint for each plan 𝑝 and scenario 𝑠 . Here, 𝐿′ is another large constant. The purpose
of those constraints is to lower-bound the cost of the fastest plan in scenario 𝑠 . If 𝑦𝑝𝑠 = 0 then plan 𝑝 is assumed
to be the fastest plan in scenario 𝑠 . In that case, execution costs in scenario 𝑠 are indeed lower-bounded by
the cost of that plan (expressed via variable 𝑣𝑝𝑠 ). We do not explicitly prevent 𝑦𝑝𝑠 from taking value zero for
plans not selected for execution. However, such value assignments do not optimize the objective discussed
in the next subsection. If 𝑦𝑝𝑠 = 1 then the corresponding plan is not the first to finish. In that case, the right
side of Equation 1 takes on negative values (for an appropriate choice of constant 𝐿′). Because of that, the
corresponding equation does not influence the lower bound on minimal plan cost.
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Fig. 4. Dependency graph of decision variables in ILP model via cardinality probabilistic model.

5.4.3 Objective Function. Our goal is to minimize the expected cost of parallel plan executions. Variables 𝑧𝑠
represent parallel execution cost (i.e., cost until the first plan finishes) in scenario 𝑠 . The expected value over
all scenarios is obtained by summing up those variables, weighted by the probability of the corresponding
scenario (which we denote by𝑤𝑠 ). Hence, we minimize the linear function


𝑠 𝑤𝑠 · 𝑧𝑠 .

Example 8. We re-use the situation depicted in Figure 2 to illustrate the ILP transformation. In this situation,
we have three candidate plans. Hence, we introduce three binary variables𝑚1,𝑚2, and𝑚3, indicating whether
the corresponding plan is selected. Assume that we associate one single intermediate result with a cardinality
distribution (i.e., 𝑘 = 1) and that we use two buckets for the approximation (i.e., 𝑏 = 2). In that case, we have
two possible scenarios in total. Hence, we introduce variables 𝑣11 to 𝑣

3
2 to represent the effective cost values of

the three plans in the two scenarios, as well as variables 𝑦11 to 𝑦
3
2 to indicate which of the three plans finishes

first in the corresponding scenario. We also introduce variables 𝑧1 and 𝑧2, representing parallel execution costs
in each scenario. Figure 4 illustrates the variables, as well as the constraints connecting them. For instance,
plan variables𝑚1 to𝑚3 are connected by constraints on the number of selected plans. Variables 𝑦11 to 𝑦

3
1 and

𝑦12 to 𝑦
3
2 are connected by constraints, making sure that only a single plan can finish first in each scenario.

Variables 𝑧1 and 𝑧2 are connected to other variables, representing plan cost and the relative ranking of plans
in the respective scenario.

6 COMPLEXITY ANALYSIS
We analyze the computational hardness of plan selection.

Theorem 9. Selecting plans to maximize the number of intermediate results is NP-hard.

Proof. We show NP-hardness by a polynomial-time reduction from maximum coverage. An instance of
maximum coverage is defined by a collection of sets 𝑆 = {𝑆1, 𝑆2, . . .}. The goal is to select at most 𝑛 sets
𝑆∗ ⊆ 𝑆 such that the union of their elements, ∪𝑠∈𝑆∗𝑠 has maximal cardinality. Given an instance of maximum
coverage, we introduce one plan for each set 𝑠 ∈ 𝑆 . Also, the intermediate results associated with the plan
represent the elements of the set 𝑠 . In our scenario, we are interested in selecting no more plans than necessary
(as doing so decreases the degree of parallelism per plan). This is expressed by a small penalty for each selected
plan. For the transformation, we set the penalty to zero. Then, the optimal set of plans represents a solution to
the original maximum coverage problem. □

Theorem 10. Selecting plans to minimize expected parallel execution costs is NP-hard.
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Proof. We use a polynomial-time reduction from maximum coverage again. Denote by 𝑆 = {𝑆1, 𝑆2, . . .} the
set of sets characterizing an instance of maximum coverage. Furthermore, denote by𝑈 = ∪𝑠∈𝑆𝑠 the universe
of all elements contained in 𝑆 . We associate each set 𝑠 ∈ 𝑆 with a candidate query plan. Also, we associate
each element in 𝑈 with one scenario, i.e., with a combination of intermediate result sizes (using a suitable
choice for the number of intermediate results and number of points for each cardinality distribution). For the
scenario associated with a specific element 𝑢 ∈ 𝑈 , we ensure that all plans associated with sets containing 𝑢
have a cost of zero in this scenario. All other plans have a cost of one in this scenario. Finally, we associate
each scenario with equal probability. We select plans to minimize the weighted sum of minimal plan costs
over all scenarios. The cost of each scenario is either zero (if at least one plan has cost zero in this scenario) or
one (if no plan has cost zero in this scenario). The number of scenarios with a cost of zero corresponds to the
number of elements covered. Selecting a set of 𝑛 plans minimizing expected costs is therefore equivalent to
selecting 𝑛 sets to maximize coverage. □

Next, we analyze complexity of the proposed algorithms. We denote by 𝑥𝑝 the number of candidate plans,
by 𝑥𝑖 the number of unique intermediate results, by 𝑥𝑙 the maximal number of intermediate results per plan,
and by 𝑛 the number of plans selected for execution. For the probabilistic model, time complexity depends
additionally on the number 𝑘 of intermediate results associated with a cardinality distribution, and on the
maximal number 𝑏 of points considered per distribution. First, we analyze how the number of variables and
constraints in the ILP formulation depends on the problem dimensions.

Theorem 11. The ILP representing plan selection for maximizing diversity has a number of variables in
𝑂 (𝑥𝑝 + 𝑥𝑖 ) and constraints in 𝑂 (𝑥𝑖 · 𝑥𝑝 ).

Proof. We introduce 𝑂 (𝑥𝑝 ) decision variables related to the selection of each plan. Also, we introduce
one variable for each intermediate result (in 𝑂 (𝑥𝑖 )). The number of constraints is dominated by constraints
connecting plans to their intermediate results. Their number is in 𝑂 (𝑥𝑝 · 𝑥𝑖 ). □

Theorem 12. The ILP representing plan selection for minimal expected costs uses a number of variables and
constraints in 𝑂 (𝑏𝑘 · 𝑥𝑝 ).

Proof. The number of scenarios (i.e., combinations of intermediate result sizes) is given by 𝑏𝑘 . The number
of variables is dominated by variables like 𝑣𝑝𝑠 and 𝑦𝑝𝑠 , introduced for each combination of plan and scenario.
Hence, the number of variables is in𝑂 (𝑏𝑘 ·𝑥𝑝 ). The number of constraints is equally dominated by constraints
on auxiliary variables that are introduced for each plan and scenario (e.g., calculating the values for auxiliary
variables 𝑧𝑝𝑠 ). Hence, the number of constraints is also in 𝑂 (𝑏𝑘 · 𝑥𝑝 ). □

Next, we analyze time complexity of the greedy algorithms.

Theorem 13. Greedy plan selection via maximizing unique intermediate results has time complexity in
𝑂 (𝑥𝑝 · 𝑛 · 𝑥𝑙 ).

Proof. The greedy algorithm performs up to 𝑛 iterations. In each iteration, it compares utility for up to
𝑥𝑝 plans to select the optimal candidate. To evaluate a single plan, the greedy algorithm has to compare
its intermediate results to the ones already covered by previously selected plans. We assume that covered
intermediate results are stored in a data structure that allows containment checks in 𝑂 (1) (e.g., a hash set
implementation). In that case, the overhead per iteration is in 𝑂 (𝑥𝑝 · 𝑥𝑙 ) (where 𝑛𝑙 denotes the maximal
number of intermediate results per plan). Multiplying by the number of iterations (𝑛) yields the postulated
complexity. □

The greedy algorithm described in Section 5.3 requires a pre-processing step, associating all relevant
intermediate results with a cardinality distribution (later, only a subset of those will be associated with a
distribution for cost estimation). We approximate the cardinality distribution of intermediate results by discrete
buckets and denote by 𝑏 the number of buckets used.

Theorem 14. Associating all intermediate results with cardinality distributions requires time in 𝑂 (𝑏3 · 𝑥𝑖 ).
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Proof. We calculate an output size distribution, given input size distributions. The number of value buckets
per distribution is limited to 𝑏. We iterate over all combinations of input buckets (𝑏2). For each combination, we
consider 𝑏 value buckets for the Poisson distribution associated with the combination of input sizes. Overall,
calculating the output distribution for one intermediate results has time complexity in 𝑂 (𝑏3). This algorithm
is invoked for each intermediate result. Hence, the total time complexity is 𝑂 (𝑏3 · 𝑥𝑖 ). □

During greedy selection, only 𝑘 intermediate results are associated with a distribution.

Theorem 15. Greedily selecting plans to minimize expected cost has time complexity in 𝑂 (𝑛2 · 𝑥𝑝 · 𝑏𝑘 · 𝑥𝑙 ).

Proof. The greedy algorithm iterates up to 𝑛 times. In each iteration, it compares up to 𝑛𝑝 plan candidates.
For each plan candidate, it calculates expected costs (Algorithm 2). Internally, the cost estimation algorithm
iterates over all possible scenarios. Their number is in 𝑂 (𝑏𝑘 ). For each scenario, the algorithm calculates the
cost minimum of up to 𝑛 plans. Calculating the cost of a plan requires summing over up to 𝑥𝑙 intermediate
results. Hence, the complexity of cost estimation is in 𝑂 (𝑏𝑘 · 𝑛 · 𝑥𝑙 ). Multiplying by the number of iterations
and cost comparisons per iteration yields complexity in 𝑂 (𝑛2 · 𝑥𝑝 · 𝑏𝑘 · 𝑥𝑙 ). □

Note that caching cost values can reduce time complexity, in exchange for added space complexity.

7 EXPERIMENTAL EVALUATION
We describe the experimental setup in Section 7.1. In Section 7.2, we analyze the performance of different
strategies for two benchmarks. In Section 7.3, we compare greedy algorithms against integer linear program-
ming (ILP). Section 7.4 analyzes the impact of tuning parameters on performance. Section 7.5 analyzes other
factors that contribute to ROME’s performance. Section 7.6 is a case study, showing how our approach makes
execution more robust for a specific query.

7.1 Experimental Setup
We use two benchmarks: join order benchmark (JOB) [27] and Stack. The database of the JOB benchmark
consumes 6.7 GB, and the one associated with Stack consumes 61 GB (we did not create any indexes beyond
the ones generated automatically by PostgreSQL). JOB is challenging to optimize due to skewed data. We
evaluate all 113 queries in the benchmark. The Stack benchmark is a new real-world datasets created by
Marcus et al. [30]. It contains over 18 million questions and answers from StackExchange websites (e.g.,
StackOverflow.com), collected over a period of ten years. In our experiments, we randomly select 10 queries
over 11 SPJ templates (out of 16 templates in total), resulting in 110 queries in total.

We compare algorithms in terms of per-query and per-benchmark run time (we use the average of three
runs), reporting 95% confidence bounds. We implement our approach on top of the PostgreSQL engine
(PostgreSQL 12.11). The approach is implemented in Python 3.8.10. We use Gurobi 10 as ILP solver. Unless
noted otherwise, we associate 𝑘 = 3 intermediate results with a cardinality distribution, approximate using
𝑏 = 10 buckets, and select 𝑛 = 3 plans. All experiments use a 24-core server (two 2.30 GHz 12-core Intel(R)
Xeon(R) Gold 5118 CPUs), running Ubuntu 20.04.4 LTS. The total DRAM size is 252 GB.

7.2 Comparison to Baselines
Figure 5 compares ROME to several baselines. All baselines use the same plan execution engine (Post-
greSQL 12.11 [36]). For baselines executing a single plan, we increase the maximal degree of parallelism that
can be exploited for execution to 24 (the number of cores on our target platform). We verified increasing the
degree of parallelism for those baselines improves performance, compared to PostgreSQL’s default settings,
indeed. We use a timeout of 60 seconds per query and baseline. Baseline PG executes the plan proposed by the
original PostgreSQL optimizer (i.e., this is the original PostgreSQL, exploiting full parallelism for single plans).
AQO [21] is a PostgreSQL extension. For each input query, AQO tries out a sequence of query plans until
convergence, using runtime statistics collected during the execution of prior plans to improve cardinality
models used to select the next plan. We report only the time required for executing the last plan in the sequence
in the following figures. This corresponds to an upper bound on the performance of similar baselines that
perform trial runs before selecting a query plan. BAO [30] uses reinforcement learning to select between plans,
suggested by the original query optimizer with different optimizer settings. To make the comparison fair, we
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Table 1. Number of timeouts for different methods on the JOB and Stack benchmarks (averages over three
runs).

PG PB/-3 BAO/-I/-R AQO LC-3 MPD PM

JOB 1 1/1 0.67/1/0.33 1 0 0 0

Stack 5.67 9/9 8/9/9 7 6 0 0

consider the same optimizer parameters and parameter values as BAO for ROME (i.e., both approaches select
from the same superset of plan candidates). BAO is trained at run time, based on the input queries (we do not
assume that prior queries on the benchmark database are available for training). Hence, the order in which
queries are observed may lead to different learned policies. Hence, we experiment with the original query
order (BAO), the inverse order (BAO-I), as well as a random query order (BAO-R). PB is a re-implementation
of the Plan Bouquets approach [13]. We use the pg_hint_plan tool2 to change the selectivity estimates for up
to three unary predicates, considering five uniformly spaced selectivity values per predicate and all associated
combinations. This prompts the PostgreSQL planner to generate different plans for the same query. As in
the original approach [13], we execute resulting plans, starting with the ones that assume low selectivity,
using a series of exponentially increasing timeouts. As a variant, among the plans generated with different
selectivity estimates, we execute the three plans with the lowest cost estimates in parallel (we verified that
executing all plans in parallel performs worse). This baseline is reported as PB-3. Baseline LC-3 considers the
same plan space as ROME, executing the three plans with the lowest cost estimates in parallel until the first
one finishes. Oracle designates a baseline that executes the optimal plan for each query, considering candidate
plans returned by the PostgreSQL optimizer for different configurations. We identify the optimal plan by
executing all candidate plans. MPD (maximizing plan diversity) refers to the greedy algorithm and the model
proposed in Section 4. PM (probabilistic model) refers to the greedy algorithm described in Section 5. We limit
the number of selected plans to (at most) three. Note that the set of plans selected by both ROME versions
does not necessarily include the default plan, selected by the original PostgreSQL optimizer.

Figure 5 compares the performance of all baselines for JOB and Stack. Compared to PostgreSQL (PG), PB
and PB-3 (which performs better among the two) improve performance significantly for Stack, reducing total
execution time for both benchmarks by approximately factor 2. BAO performs best in the original variant,
improving performance compared to PG for both JOB and Stack. This results in a total time improvement of
more than factor 2. AQO and LC-3 perform slightly better than BAO on Stack whereas improvements on JOB
are not statistically significant. For both benchmarks, MPD and PM perform better than all other baselines
except for the Oracle (which corresponds to the theoretical optimum). PM performs slightly better than MDP
in both cases, reducing execution time by 10% for JOB. Table 1 reports on the number of timeouts (query
execution time over 60 seconds), incurred by different approaches (we group different variants of the same
approach and separate associated results using “/”). Again, MPD and PM achieve the best results among all
approaches and are the only ones without timeouts for both benchmarks.

Figure 6 provides more details and reports speedups of PM, compared to BAO, for each query on the join
order benchmark. Speedups of PM over BAO reach up to a factor of 19X (whereas BAO realized speedups
of factor at most 2.4X over PM). Table 2 provides further details, reporting aggregate speedups for groups
of queries, linked by the number of non-equality unary predicates (e.g., LIKE expressions) where selectivity
estimation is particularly hard, especially considering correlations between predicates. Clearly, speedups
increase if queries contain many such predicates. Finally, we examine the performance gap between LC-3
and ROME (i.e., MDP and PM). We hypothesize that using the same execution approach as ROME, while
selecting plans with lowest cost, leads to less diverse plan sets (thereby increasing the risk of few cardinality
estimation errors impacting all plans). We use the total number of distinct intermediate results over all queries
as a measure of plan diversity. On JOB, we count 1804 for PM and 1625 for LC-3. On Stack, we count 1574 for

2https://github.com/ossc-db/pg_hint_plan/
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Table 2. Relative performance of ROME compared to BAO, broken down by the number of error-prone
predicates.

Nr. EP predicates 0 1 2 3

Avg. speedup 0.94 1.14 1.30 5.60

Nr. queries 17 23 68 5

PM and only 882 for LC-3, correlating with a larger performance gap on Stack. These results are consistent
with our hypothesis.

7.3 Comparing ROME Variants
We introduced a greedy algorithm and an ILP transformation for both problem models. In this subsection,
we compare both variants in terms of scalability and result quality. For that purpose, we consider additional
optimizer flags (thereby increasing the search space to test scalability). Specifically, we consider all value
combinations for six Boolean flags, influencing the behavior of the Postgres optimizer (specifically, we consider
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Fig. 8. Execution time, expected plan cost, and planning time when varying the number of selected plans for
the probabilistic model on JOB.

the flags enable_nestloop, enable_hashjoin, enable_mergejoin, enable_seqscan, enable_indexscan,
and enable_indexonlyscan). In total, we consider 64 value combinations. In the following experiments, we
vary the number of plans selected for execution. As we will see, this parameter has significant impact in
particular on optimization time.

Figure 7 compares greedy optimization to ILP for the utility model measuring the number of distinct
intermediate results. While varying the number of executed plans, the greedy algorithm has slightly higher
execution costs in average while the confidence bounds overlap (note that executing more than four plans in
parallel does not in general improve execution costs). On the other hand, ILP achieves consistently a higher
number of intermediate results. The gap grows in the number of selected plans. This means that ILP finds
better solutions but, due to the simplicity of the first model, those improvements do not reliably translate into
execution time gains. On the other hand, the greedy algorithm is significantly faster.

Figure 8 reports results for the probabilistic model (i.e., we minimize expected parallel execution costs).
In this scenario, ILP achieves statistically significant improvements in run time. This shows that, using a
more precise utility model, exhaustive optimization can yield advantages. Better execution times correlate
with a consistent quality advantage of ILP over greedy, measuring solution quality by the probabilistic model.
Planning time is significantly higher for ILP and increases as the number of selected plans increases.

In summary, ILP can be preferable over greedy when executing particularly expensive queries. However,
ILP should be combined with the second (more precise) model to leverage its potential for finding optimal
solutions.

7.4 Sensitivity Analysis
Our probabilistic model, described in Section 5, features two parameters, determining the precision at which
cardinality distributions are approximated. In this subsection, we analyze how result quality as well as planning
time depend on the settings for those parameters. More precisely, we consider the number of intermediate
results that are associated with a cardinality distribution (𝑘) and the number of buckets (𝑏), used to approximate
each distribution.

Figure 9 reports corresponding results. It reports planning time as “P-Time” and execution time as “E-time”.
Integrating more intermediate results into the approximation of the plan cost distribution (parameter 𝑘) has a
moderate but consistently positive effect on run time. On the other hand, increasing the number of buckets
above five has only a negligible impact on execution time. Planning time grows quickly in the number of
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intermediate results whose cardinality distribution is considered. It also grows significantly when increasing
the number of buckets.

In summary, the settings used in the previous experiments (𝑘 = 3 and 𝑏 = 10) offer a good tradeoff between
execution time and planning time.

7.5 Further Analysis
We analyze factors that contribute to ROME’s performance.

Compared to an Oracle, selecting the optimal plan within our plan space for each query, ROME performs
worse due to two factors. First, ROME may fail to select the optimal plan for parallel execution. Second, even
if the optimal plan is selected, its performance may worsen due to executing multiple plans in parallel (as
opposed to executing the optimal plan alone). Figure 10 quantifies both types of overheads. It compares the
performance of ROME to the performance of ROME without multiplan processing overheads (“no MPPO” in
the figure legend). We obtain results without multiplan processing overheads by executing each plan selected
by ROME alone (without executing other plans concurrently), then using the minimum of all plan execution
times for the same query. Finally, Figure 10 reports the time for executing the optimal plan (among all plans
considered by ROME) as well. Averaging over both benchmarks, comparing execution times for “PPO” and
“no PPO”, executing multiple plans in parallel leads to relative overheads of 35%. On the other hand, failing to
select optimal plans within ROME’s plan space accounts for relative overheads of only 16%. Overheads due to
parallel plan execution dominate.

Table 3 provides additional details on the impact of sub-optimal plan choices by ROME. It breaks down
speedups of ROME, compared to using the original Postgres optimizer, by whether or not ROME selects the
optimal plan within its plan space for execution (as one of up to three plans). For both benchmarks, ROME
selects the optimal plan within its search space for about half of the queries (see columns JOB-P and Stack-P,
reporting the percentage of queries for the corresponding benchmark). Average speedups (reported in columns
JOB-S and Stack-S) reduce for queries where ROME fails to select the optimal plan. Still, ROME achieves
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Table 3. Relative performance of ROME, broken down by whether or not the optimal plan is executed.

Optimal Plan JOB-P JOB-S Stack-P Stack-S

𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑 44.2% 2.0 53.6% 8.3

𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑 55.8% 1.3 46.4% 6.7

5 10

500
1,000
1,500
2,000

Ratio

Ti
m
e
(s
)

5 10
0
5
10
15

Ratio
N
r.
Ti
m
eo
ut
s

PG
PM

Fig. 11. Performance comparison of ROME and PostgreSQL when increasing the size of JOB.

itmiidxit2mi

3.0 M 0.5 M

1.1 M

1.1 M

0.7 M

8.1 M

1.9 M

t

kt

mc

ct

cn

Result

mc cn miidx it

0.1 M 0.5 M

0.08 M

0.03 M

0.1 M

0.1 M

ct

mi it2

3.0 M

t

kt

Result

Fig. 12. Plans for JOBQuery 13a with result sizes.

significant speedups in such cases as well, showing that even slightly sub-optimal plans can beat the optimizer
defaults.

Finally, we study the impact of data size on the performance of ROME. Figure 11 compares the performance
of ROME to the performance of PostgreSQL when increasing data size. More specifically, we duplicate rows
in each table of the database associated with JOB (except for values in primary key columns for which we
generate unique values when inserting rows). We increase the data size by up to one order of magnitude
(values on the x-axis indicate how often rows are duplicated). Note that query plans are not fixed across
scaling factors such that a larger amount of data does not necessarily result in higher processing overheads.
Instead, having larger tables can in some cases change optimizer statistics and lead to better plan selections.
For all data sizes, ROME achieves fairly stable speedups in the range between factors 1.5 and 2.1. This shows
that ROME’s speedups generalize to different data sizes.

7.6 Case Study
To illustrate the reason that our approach improves the selection of query plans, we consider Query 13a of
JOB. In Figure 12, we present the query graph for two plans, chosen by our multiplan selection approach (the
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left plan is, at the same time, the default plan selected by the PostgreSQL optimizer). In this visualization,
white rectangles correspond to base tables, each labeled with a table alias. The rectangles with numerical
labels represent join nodes. Blue rectangles indicate that the intermediate result is shared between plans. Red
and green ones represent intermediate results that are unique to the plan in which they appear.

Clearly, the multiplan selection approach succeeds in selecting a set of plans with diverse intermediate
results. Only a small number of intermediate results are shared across plans. Furthermore, the accumulated
number of intermediate result tuples (a proxy for execution costs, which are more difficult to attribute to
specific operators within the plan) differs significantly between the two plans. This happens despite the fact
that both plans are considered optimal by the optimizer in certain parts of the plan search space. However,
cardinality estimates for the plan on the left-hand side are overly optimistic, leading to the selection of
a highly sub-optimal plan. For the plan on the right side, estimates are significantly closer to real values.
This illustrates the benefit of diverse plan selections: using diverse intermediate results reduces the risk for
systematic estimation errors that concern all executed plans at the same time.

8 RELATEDWORK
ROME connects to a large body of prior work, aimed at making query optimization more robust. This includes
prior research that focuses on improving the accuracy of size and cost estimation, e.g., by constructing
histograms for selectivity estimation [7, 16, 23, 26], or learning size and cost models via machine learning [17,
24, 35, 38, 39, 43]. ROME does not aim at improving cost and size estimation. Instead, it relies on existing
models and accounts for their inherent unreliability by selecting plans for parallel execution. ROME leverages
plans proposed by the original optimizer, using different settings for optimizer configuration parameters. In
that, it connects to recent work that leverages plans proposed by the original optimizer but learns optimizer
hints via machine learning [11, 32], thereby biasing optimization towards subsets of the plan space. In contrast
to that, ROME trades single-plan parallelism for executing multiple plans in parallel. In exchange, ROME does
not require any prior training and no specialized hardware (e.g., prior work on learning-based optimizers often
assumes that a GPU is available on the database server). Adaptive processing has been proposed as a means to
make query execution more reliable. Corresponding approaches [1, 33, 41, 44] often use specialized execution
engines or require an extension of existing engines. In contrast to that, ROME is completely non-intrusive and
neither requires changes to the underlying engine nor access to its source code.

ROME selects complementary plans for parallel execution. In that, it relates to prior work on selecting plan
sets [5, 12, 13, 19, 20], rather than single plans. However, prior work selects a single plan for execution or
executes a sequence of plans for each query. ROME executes multiple plans in parallel and thereby exploits high
degrees of parallelism, typical for current hardware platforms. ROME connects to prior work that focuses on
robust query optimization [2, 3, 22]. The utility model presented in Section 5 relates to prior work associating
intermediate results with probability distributions [2, 8, 9, 29], as opposed to point estimates. ROME differs by
the way in which it uses those distributions, informing the selection of a plan set, rather than trying to select
one single, robust plan. Broadly, ROME connects to prior work exploiting parallelism for query execution
and optimization. This includes prior work on parallel query execution [4, 14, 18, 25] as well as parallel query
optimization [15, 40, 42]. ROME exploits parallelism not for optimization but for execution. However, ROME
does not parallelize the execution of a single plan. Instead, it executes alternative plans for the same query in
parallel.

9 CONCLUSION
ROME (Robust Optimization by Multiplan Execution) exploits increasing degrees of parallelism on modern
computing platforms to execute alternative plans in parallel. This approach may seem counter-intuitive since
it guarantees redundant work for each query. However, the experiments show that investing parallelism to
minimize the effects of costly optimizer mistakes pays off overall in scenarios where queries are not submitted
concurrently. The proposed optimization framework is non-intrusive, does not require any extensions of the
underlying database execution engine and avoids sequential evaluation of different plans (e.g., in the context
of an adaptive strategy).

In future work, motivated by our experiments from Section 7.5, we plan to devise more efficient execution
strategies for plan sets. This could lead to significant performance improvements, e.g., via work-sharing
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between alternative plans for the same query. Also, we plan to consider mechanisms for early termination of
plans that seem not promising, based on run-time statistics.
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