
Testing the Accuracy of Query Optimizers

Zhongxian Gu
University of California Davis

zgu@ucdavis.edu

Mohamed A. Soliman
Greenplum/EMC

mohamed.soliman@emc.com

Florian M. Waas
Greenplum/EMC

florian.waas@emc.com

ABSTRACT
The accuracy of a query optimizer is intricately connected with a
database system performance and its operational cost: the more ac-
curate the optimizer’s cost model, the better the resulting execution
plans. Database application programmers and other practitioners
have long provided anecdotal evidence that database systems differ
widely with respect to the quality of their optimizers, yet, to date
no formal method is available to database users to assess or refute
such claims.

In this paper, we develop a framework to quantify an optimizer’s
accuracy for a given workload. We make use of the fact that op-
timizers expose switches or hints that let users influence the plan
choice and generate plans other than the default plan. Using these
implements, we force the generation of multiple alternative plans
for each test case, time the execution of all alternatives and rank
the plans by their effective costs. We compare this ranking with the
ranking of the estimated cost and compute a score for the accuracy
of the optimizer.

We present initial results of an anonymized comparisons for sev-
eral major commercial database systems demonstrating that there
are in fact substantial differences between systems. We also sug-
gest ways to incorporate this knowledge into the commercial devel-
opment process.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query Processing

General Terms
Design, Measurement, Performance

Keywords
Optimizer, Accuracy, Testing, Ranking, Plan

1. INTRODUCTION
Comparing query optimizers objectively is a difficult undertak-

ing. Benchmarks developed for assessing the query performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest 2012, May 21, 2012, Scottsdale, AZ, U.S.A.
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of databases test the system as a whole end-to-end, e.g., TPC-
H. However, to date no benchmark is available that conclusively
tests a query optimizer in isolation and thus enables the compari-
son of optimizers of different database systems. Probably the most
performance-critical element in a cost-based optimizer is the ac-
curacy of its cost model as it determines how prone to misesti-
mates, and thus bad plan choices, an optimizer is. The lack of
such a benchmark may appear surprising given that the develop-
ment of an optimizer is usually one of the most costly elements in
the construction of a database system. Also, the optimizer is one of
the most performance-sensitive components as differences in query
plans may result in several orders of magnitude of difference in
query performance–significantly more than any other contributing
factor.

Being able to compare the accuracy of optimizers across differ-
ent products independently is highly desirable. In particular be-
cause:

• Systems with more accurate optimizers outperform other sys-
tems. This effect is often magnified substantially by complex
analytics queries.

• Inaccuracy leads to heightened effort required to make a sys-
tem perform well. Often described as query tuning, this con-
stitutes a significant contribution to the total cost of owner-
ship for a system.

• During development measuring the accuracy helps guide the
development process and may prevent regressions.

Objective assessment of the optimizer’s accuracy can be used as a
guidance to help customers make purchase decisions for one or the
other database system.

There is no standard way to test an optimizer’s accuracy. The
cost units used in the cost model and displayed with the plan do not
reflect anticipated wall clock time but are used only for comparison
of alternative plans pertaining to the same input query. Comparing
this cost value with the actual execution time does not permit con-
clusions about the accuracy of the cost model. Moreover, the op-
timization results are highly system-specific and therefore defy the
standard testing approach where results are compared to a reference
or baseline to check if the optimizer finds the "correct" solution: the
optimal query plan for System A may widely differ from that for
System B because of implementation differences in the query ex-
ecutors and the optimizers. These differences can lead to choosing
radically different plans.

In this paper we develop TAQO a framework for Testing the Ac-
curacy of Query Optimizers that compares the accuracy of different
optimizers with regards to their plan choices. Using the basic prin-
ciple of Plan Space Analysis [11], we compare optimizers based on

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2304510.2304525&domain=pdf&date_stamp=2012-05-21

the costs they assign to all or a sample of the alternatives they con-
sider. To force different plans, we use a set of hints or switches that
optimizers expose in the query language. For example, nearly all
commercial database systems have means to enable or disable cer-
tain features such as particular join implementations or aggregation
techniques. For the purpose of our assessment, the actual nature of
the switches does not matter so long as they can be used to gener-
ate different plans. We compare the ranking of plans with regards
to actual execution cost to the ranking corresponding to their es-
timates and compute an accuracy score for each query of the test
workload.

Roadmap. The remainder of this paper is organized as follows.
In Section 2, we survey related work and discuss alternative ap-
proaches. In Section 3, we present the details of our approach and
score function. We discuss the architecture of our framework in
Section 4. In Section 5, we present preliminary results obtained by
testing several commercial database systems. Section 6 concludes
this paper and outlines possible directions for future work.

2. RELATED WORK
Testing and quality assurance have a long-standing tradition in

database development. Few other general purpose software sys-
tems satisfy similarly high quality standards. And while rarely
documented, all database vendors have heavily invested in qual-
ity assurance over the past decades as evidenced by publications in
major conferences (e.g., [5, 1]) as well as previous editions of the
DBTest workshop series [3]. However, testing optimizers in partic-
ular has received much less attention than one should expect given
the high number of research publications about optimization tech-
nologies. As far as we can tell from conversations with colleagues
in the industry, testing query optimizers is regarded one of the most
challenging problems in optimizer development to date, see also
[2, 7, 8, 9], and no generally agreed upon benchmark is available
that assesses the abilities of an optimizer and enables competitive
comparison.

The most common practice in optimizer testing is focusing on
the default plan, that is, the plan produced by the optimizer relying
on a cost model and usually highly sophisticated enumeration and
plan selection algorithms. In case the default plan is suspected to
be sub-optimal, it is manually inspected by a subject matter expert
and opportunities for improvement are investigated. This method
is often used in connection with regression tests and can be effec-
tive when sub-optimality can easily be detected by comparing the
current query run time with previously measured executions. On
the other hand, this method does not proactively identify problems
nor does it assess the quality of an optimizer. Due to its reliance
on manual inspection, this approach cannot be automated and is
confined to small instances only.

Haritsa et al. have developed several introspective methods for
optimizer testing that provide synopses for optimizer behavior in
the form of functions of changing query parameters [4, 5]. Its re-
sulting visualization helps developers to investigate suspicious op-
timizer behaviors. This method is generally applicable as it does
not rely on specific optimizer implementations. While generally
highly insightful, this method does not identify "bad" optimizer de-
cisions per se but helps developers spot and subsequently focus on
peculiarities of the optimizer.

Our approach is an extension of [11] where authors proposed a
test methodology called Plan Space Analysis (PSA). PSA provides
an early warning system to detect potential plan regressions dur-
ing the course of a development cycle. PSA relied on the ability
to sample uniformly from the space of all plans the optimizer con-
siders. To the best of our knowledge, only one commercial system

is equipped with the necessary technology to implement this ap-
proach. In TAQO we overcome the system lock-in and provide a
generally useful and applicable method for the assessment of cost-
based optimizers.

3. MEASURING ACCURACY
We cannot expect the cost model to predict exactly the wall clock

time for the execution of a plan, as the cost model is usually cali-
brated using dedicated lab equipment, and so the calibration almost
never carries over to the hardware platform on which the system is
eventually installed. Rather, we can define accuracy as the cost
model’s ability to order any two given plans correctly, i.e., the plan
with the higher estimated cost will indeed run longer.

3.1 Approach
Given a query Q, let pi and p j be two plans in the search space

considered when optimizing Q. Let pi’s estimated cost be denoted
by ei, and pi’s actual execution cost be denoted by ai. We can
declare an optimizer to be perfectly accurate if the following holds:

∀i, j : ei ≤ e j ⇐⇒ ai ≤ a j

Note that a perfectly accurate optimizer will always choose the op-
timal plan. The converse need not hold.

Using this concept we can determine the cost model’s accuracy
by costing and executing all plans the optimizer considers when
optimizing a given query. However, this approach is impractical
because of the following 2 problems:

• The search space is exponential in size; hence, evaluating
the cost and timing the execution of each single plan in the
search space is infeasible, in general.

• When evaluating a commercial database system, the query
optimizer is a black box that does not permit generating all
plans of the search space.

These limitations can be overcome by sampling plans uniformly
from the search space using mechanisms like the one presented
in [10]. Unfortunately, the ability of the optimizer to produce a
uniform sample of the plan space cannot be generally assumed.
While a uniform sample is certainly preferable, we observe that
accuracy must also hold for biased samples. This observation is
key to our approach. Almost all commercial optimizers provide
certain controls that let users or administrators influence the plan
choice for any given query. These controls are often referred to as
hints, knobs, or switches in the literature. Typical examples include
enabling and disabling of certain optimizations or use of specific
implementations such as hash join or sort-based aggregation. Our
approach exploits the existence of such controls to force a number
of plan alternatives. Consider Figure 1 which depicts a sample plan
space of a query in the form of a scatter plot. A plan pi is repre-
sented as a point (ai,ei), where ai and ei are the actual cost and the
estimated cost of pi, respectively.

In practice, no optimizer achieves perfect accuracy for non-trivial
queries. Hence, instead of checking whether or not an optimizer is
perfectly accurate, we will develop a metric that allows us to mea-
sure accuracy in a nuanced way. In other words, given a query Q
and a sample SQ = {p1, . . . , pn} of plans from the plan space, our
goal is to compute a correlation score between the ranking of plans
in SQ based on estimated costs and their ranking based on actual
costs. Actual and estimated plan costs encompass quantitative in-
formation that can be utilized to better evaluate the accuracy of the
optimizer. We consider the following factors for such a correlation
metric:

C
os

t e
st

im
at

e

Actual execution time

P2

P1

P4

P3

Figure 1: Scatter plot for plan alternatives
Discordance of plan pairs. The metric penalizes discordant

pairs of plans, i.e., pairs whose ordering according to estimates
does not reflect their actual ordering according to execution time.
This can be achieved using a statistical standard tool such as Ken-
dall’s Tau or Spearman’s Rank Coefficient.

Relevance of plan. The metric penalizes ranking errors involv-
ing important plans, i.e., close to the optimal plan, more than those
involving insignificant plans. In our example in Figure 1, p1 and
p2 are the most significant plans. When the optimizer makes a
ranking error involving one of these important plans, the accuracy
drops more than it would drop when making ranking errors involv-
ing non-important plans.

Pairwise distance. If the actual execution cost for two plans
is very close, we might not be able to order them conclusively in
an experiment. In this case, a ranking mistake for two plans should
not be weighted the same as if they were two distant points. For
example in Figure 1, incorrectly ranking plan pair (p1, p2) is less
significant than getting pair (p3, p4) wrong.

3.2 Rank Correlation Metric
We now assemble these components into a proper metric. With-

out loss of generality, we assume a1 ≤ a2 ≤ . . . ≤ am for a set of
plans SQ = {p1, . . . , pn}. We use Kendall’s Tau rank correlation as
the basis for our metric [6]:

τ = ∑
i< j

sgn(e j− ei) (1)

To penalize the incorrect ranking of bad plans over good plans, we
add the weight of plans to the metric. We define weight of a plan
relative to the optimal as:

wm =
a1

am
(2)

This assigns the optimal plan in SQ weight 1. Plans with greater
actual costs have lower weights. Next, in order to incorporate the
notion of distance into the metric, we define the pairwise distance
Di j for any two plans pi, p j as normalized Euclidean distance:

di j =

√(
a j−ai

an−a1

)2
+

(
e j− ei

maxk(ek)−mink(ek)

)2
(3)

Plans with closer estimate and actual costs have lower pairwise dis-
tances, thus the penalties for incorrectly ranking them will be less.
The final rank correlation score is computed as:

s = ∑
i< j

wiw jdi j · sgn(e j− ei) (4)

This metric fulfills the previously outlined desiderata for a mea-
sure of accuracy. The lower the value of the metric, the higher the
accuracy of the optimizer.

3.3 Normalization Across Systems
Remember that our goal is to create a portable metric that allows

us to compare the accuracy of different query optimizers. As the
above equations show, we already normalize both the plan weight
and pairwise distance to [0,1]. However, the factor not taken into
account is the actual number of plans an optimizer considers: in its
current shape the overall score depends on the size of the sample.
Moreover, a number of good rankings can make up for egregious
mistakes. Therefore, we must ensure to use the same sample size
for every system.

As will become clear when we discuss the architecture of our
framework in the next section, the number of plans we can get ac-
cess to is not known a priori, i.e., we generate a candidate set Si
first for all systems we compare and select a fixed number k of
plans with

k = min
i
(|Si|)

to compute the correlation score afterward. For the selection of
the k representatives, we apply the standard outlier detection algo-
rithm of k-medoids. Like similar clustering algorithms, k-medoids
is partitioning, i.e., breaks the dataset into k groups and identifies
centroids in each group. k-medoids is robust to noise and outliers,
thus it is more likely to preserve outliers in the dataset.

We chose to use outliers based on the following intuition: judg-
ing by the frequency and nature of support cases, the cases in which
the inaccuracy of an optimizer causes a problem almost always oc-
cur in corner cases of the cost model. That is, the accuracy of a
cost model is to be measured by its most significant mistakes rather
than by average cases. We found the k-medoids clustering to be an
effective and very robust way to choose the k inputs from a larger
candidate set.

4. ARCHITECTURE
Figure 2 provides an overview over the architecture of TAQO and

its components. TAQO is executed as a stand-alone tool and run
against a given target database using a standard JDBC interface.

The workflow is as follows: given a workload, database con-
nection details and a configuration of optimizer hints to use, TAQO
creates a set of distinct plans for each query by choosing different
combinations of optimizer hints, e.g., enable or disabling individ-
ual join implementations such as hash or nested-loops joins. For
every distinct plan, TAQO determines its estimated cost from the
query plan and computes the actual cost by executing the query.
The data is processed using the metrics developed in the previous
section and a measure for the accuracy of the database system’s
optimizer is returned. In addition, TAQO generates test reports in-
cluding graphs to illustrate the analysis that facilitate an in-depth
investigation by database implementers.

4.1 Components
In the following we discuss the individual components of TAQO

in more detail.
Configuration Generator. Our approach relies on a standard

feature in modern databases: optimizer hints that affect the plan
choice. While the exact syntax is different for different systems,
setting a specific switch α is usually accomplished either by issu-
ing a simple command in the form ‘set α = v’, where v is a value
picked from the domain of α , or by incorporating a similar con-
struct into the query text.

The Configuration Generator computes the matrix of valid com-
binations of optimizer hints for a system given a configuration file
that contains the names of the hints and their possible values. The

 ! !

JDBC Interface!

DBn!DB1! . . .!

Configuration!
Generator!

Execution!
Tracker! !

Plan!
Deduplicator!

Ranker!

Input:!
•  Workload!
•  DB info.!
•  Opt switches!

TAQO!

Output:!
•  Accuracy

estimate!
•  Test report!
•  Plan distribution!

<? xml ?>!

Figure 2: Architecture of TAQO

configuration is described in an XML file that also contains the cor-
responding syntax to be used, in addition to the hints/value combi-
nations.

Given a set of switches α1, . . . ,αn with domains D1, . . . ,Dn, re-
spectively, a possible configuration is an assignment of each αi to
a value from Di. In general, the number of valid configurations is
exponential in the number of switches. TAQO allows user to enu-
merate the entire configuration space exhaustively, or restrict it to a
random sample of the configuration space with a given size.

Plan Deduplicator. Different combinations of switch values
might lead to the same query plan, e.g., aggregation hints are inef-
fective if the query does not contain an aggregation operation. The
Plan Deduplicator provides facilities to eliminate duplicate plans
from the experiment. It is activated by registering a plan parser,
which is responsible for extracting plan’s estimated cost and plan’s
body from the textual output of the underlying query optimizer. By
comparing the bodies of different plans, the plan deduplicator fil-
ters out identical plans. TAQO’s framework includes pre-configured
plan parsers for a number of commercial database systems. In ad-
dition, the plan parser API is exposed as an interface that users can
implement to test other systems.

Execution Tracker. Given a query plan, the Execution Tracker
obtains the plan’s actual cost by physically running the plan and
timing its execution until termination. Due to the system workload
and cache factors, the execution time of a query plan might fluctu-
ate over a number of values. To avoid this turbulence, the Execution
Tracker runs the query plan for several times and stores the best ex-
ecution time. TAQO allows users to set the number of repetitions in
the input configuration file. Another concern is that some bad plans
might take a very long time to terminate. The Execution Tracker
stops an execution if its time exceeds a given time-out value, also
specified in the input configuration file. The Execution Tracker
marks such plans as ‘time-out plans’ and records their number as
part of the final report.

Ranker. The Ranker is responsible for computing a correlation
score between the rankings of plans based on actual and estimated
costs. By default, TAQO uses a Kendall Tau-based rank correlation
metric, as discussed in Section 3.2. To allow users to experiment
with other metrics, the score computation API is exposed, and it
can to be implemented as needed. In addition to the rank correla-
tion metric, graphs may be intuitive to explain optimizer’s behav-
ior. The plan distribution plot (e.g., Figure 6) is generated by the
Ranker for each tested query as part of the final report.

4.2 Portability and Extensibility
TAQO was designed with configurability in mind. In particular,

two areas of configurability have been critical to this study:

Query
Opt-A Opt-B Opt-C Opt-D

OK T/O OK T/O OK T/O OK T/O

Q1 1 5 1 1 31 2 6 10
Q2 73 6 161 40 236 120 87 14
Q3 24 8 19 37 27 67 49 15
Q4 26 2 2 2 24 64 49 15
Q5 34 8 22 133 32 57 140 36
Q6 3 0 1 1 16 0 4 0
Q7 34 6 45 105 36 57 126 26
Q8 20 18 25 163 18 44 65 32
Q9 4 46 14 144 3 50 96 23
Q10 34 6 65 98 29 64 56 9
Q11 36 2 173 23 1 0 33 12
Q12 15 3 8 13 60 31 80 24
Q13 19 13 14 2 28 6 60 24
Q14 13 1 11 4 29 14 27 4
Q15 6 0 2 0 1 0 69 8
Q16 54 6 62 9 1 0 24 23
Q17 6 18 10 14 1 0 24 23
Q18 31 19 28 84 1 0 53 13
Q19 12 2 11 13 86 1 26 6
Q20 83 5 61 87 178 58 94 49
Q21 18 38 75 59 98 70 98 72
Q22 12 8 28 4 1 0 37 12

Table 1: Number of plans generated for TPC-H queries

• Portability: TAQO uses a JDBC interface to hide database in-
teraction details. To test an optimizer, user need only provide
a JDBC driver, configure hints, and provide a plan parser.

• Extensibility: TAQO exposes the API used to compute ac-
curacy measure to the user. This allows experimenting with
different accuracy measurement techniques, which is impor-
tant to support different use cases.

We demonstrate our framework’s versatility in Section 5 where we
report results on using TAQO to evaluate four different commercial
query optimizers.

5. EVALUATION
TAQO is part of Greenplum’s development and test cycles. We

present experiments we conducted using several commercial database
systems to demonstrate the effectiveness of TAQO. In the following
discussion, we anonymized these systems and refer to them simply
as Opt-A, Opt-B, Opt-C, and Opt-D. To preserve anonymity, we
cannot disclose the number nor the names of the optimizer hints
used as this would allow users familiar with any of the systems to
infer their true identities.

5.1 Setup
We conducted our experiments on a server equipped with a 2.4

GHz Quad CPU and 8 GB of memory. As test dataset we chose
TPC-H at scale factor 1.0, i.e., that is 1 GB of data size. In prelimi-
nary tests, we found the size of the database to be of little relevance
and, hence, chose a scale factor that allowed us to run large number
of experiments efficiently.

For each experiment TAQO executes a query 5 times and retains
the best execution time after eliminating the top result to allow for
cache warming. Queries running longer than 30 seconds are de-
clared ’timed out’. This allows attempting the execution of even
highly costed plans to check whether their execution time is actu-
ally short in reality. The maximum number of configuration consid-
ered is capped at 500 and configurations are chosen with uniform
probability.

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

Q2! Q3! Q4! Q5! Q7! Q8! Q9! Q10! Q12! Q13! Q14! Q19! Q20! Q21!

Opt-A! Opt-B! Opt-C! Opt-D!

Figure 3: Correlation scores for different TPC-H queries. Low score indicates high accuracy

5.2 Sampling the Plan Space
Table 1 shows the number of generated plan alternatives for each

query. The ‘OK’ column has the number of plans that finished
execution regularly, the ‘T/O’ column has the number of timed-
out plans. In case of time-out, we use the time-out threshold as
the actual execution cost. As discussed in Section 3.2, we use a
k-medoids algorithm to cluster the results and chose k to be the
minimum number of plans any of the test subjects produces for this
query but no less than 5. This enables a fair comparison between
the different optimizers even in the cases where one of them pro-
duces only a single plan.

The data in Table 1 provides several insights that underline the
validity of our approach:

• Our methodology is able to generate non-trivial numbers of
plan alternatives in general across all systems and across all
queries; (we discuss exceptions below).

• The number of plans found reflects largely the queries’ com-
plexity, e.g., Q1 is of trivial nature, while Q2 is generally
considered more complex.

• The choice of optimizer hints in each system provides a sig-
nificant number of plans that do not time out and hence can
be considered reasonable plan alternatives given the data size.

The data also identifies several peculiarities, especially regarding
Opt-C: while we used more switches on it than on any other opti-
mizer we were not able to generate more than 1 plan alternative for
a number of queries: Q11, Q15, Q16, Q17, 18, and Q22. We have
consulted the development team of Opt-C and deployed additional
switches according to their recommendation but were still not able
to force more than 1 plan in these situations.

Opt-B generates a significant number of plans that do not finish
within the timeout limit. This indicates that its optimizer hints are
more heavy-handed than those of other systems and are likely to be
more difficult to tune in practice.

5.3 Optimizers Comparison
Next, we compare the four systems based on their rank correla-

tion scores. Figure 3 shows the scores for all queries and for each
system per query. A lower score indicates higher accuracy accord-
ing to our methodology. At first glimpse, the graph reveals that
no system outperforms the others on all queries, or, conversely, for
each optimizer there exists a query where its accuracy is the lowest
among all contenders.

Figure 4 shows the relative rank correlation scores of the four
optimizers, defined as s(Oi)/∑i s(Oi). For each query shown in
Figure 4, the wider the area an an optimizer occupies, the less ac-
curate the optimizer is. We eliminate from the comparison queries
where at least one of the optimizers produced only one plan. For
queries where it produces more than one plan alternative, Opt-C
outperforms the other systems with the exception of Q9.

In addition to the overall correlation score, we also examined the
best plan found according to [11], i.e., the default plan an optimizer
would generate in absence of any hints. Surprisingly, in a large
number of cases, the default plan is not the optimal plan overall:
for several queries, forcing different plans revealed better solutions
than the optimizer found on its own.

Figure 5 sums up this insight and contrasts it with overall accu-
racy of each optimizer. We computed the average correlation score
for each optimizer over all queries and plot optimizer’s accuracy,
defined as 1−avg(s), against optimality, defined as the number of
times the default plan returned by an optimizer is the actual best
plan in our sample. The size of a bubble in the plot indicates the
average number of plans generated by each optimizer.

The plot emphasizes our earlier observations. Opt-C scores high-
est on both accuracy and optimality. Among the 22 TPC-H queries,
the default plan returned by Opt-C is the optimal plan in 11 queries.

0! 0.2! 0.4! 0.6! 0.8! 1!

Q21!

Q20!

Q19!

Q14!

Q13!

Q12!

Q10!

Q9!

Q8!

Q7!

Q5!

Q4!

Q3!

Q2!

Opt-A! Opt-B! Opt-C! Opt-D!

Figure 4: Optimizers relative scores. Low score indicates high
accuracy

0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!

0.6! 0.7! 0.8! 0.9! 1!

O
pt
im
al
ity
!

Accuracy!

Opt-A

Opt-B

Opt-C

Opt-D

Figure 5: Accuracy vs. optimality

Opt-A and Opt-B score significantly lower in both accuracy and op-
timality but are very close to each other. Opt-A performs slightly
better in terms of optimality. The average number of plans for Opt-
A is the lowest with 35 generated plans, while Opt-B generated 85
plans, Opt-C generated 74 plans, and Opt-D generated 81 plans.

5.4 In-depth Analysis
To demonstrate how the quantitative score can provide better in-

sight into the optimizer’s accuracy, we used TAQO to generate plan
distribution plots. Figure 6 shows the plan distribution plots of the
four optimizers for TPC-H Q14. We show for each optimizer the
distribution of generated plans, and the centroids—shown as the in-
ner points—picked by the clustering algorithm during the normal-
ization step. When an optimizer consistently ranks plan alterna-
tives correctly, the plan distribution plot shows a monotonic trend.
That is, as estimated plan cost increases, the actual cost also in-
creases. Opt-C clearly demonstrates this trend. In contrast, Opt-D
incorrectly assigns a relatively high estimated cost to the actual best
plan and low estimated costs to slow plans, shown at the bottom-
right corner of the plot. These ranking errors contribute to the low
accuracy of Opt-D.

This type of analysis helps detecting problematic queries that
pose challenges to the cost model. Also, engineers can use the rank
correlation as a measure to judge whether a code-level change made
to an optimizer may cause noticeable plan regressions.

TAQO was primarily developed to provide engineers with a ge-
neric, fully automatic, yet technology agnostic way to test the ac-
curacy and optimality of the product. It is becoming a vital tool in
the development of Greenplum’s query optimizer.

6. CONCLUSION AND FUTURE WORK
Testing and quality assessment of query optimizers are critical

elements for both the development of database systems as well
as the advancement of research in the field of query optimization.
Among several important design goals for an optimizer, the accu-
racy of the cost model and the optimizer’s ability to distinguish a
superior from an inferior plan are crucial to its success.

In this paper we presented TAQO, a general and portable frame-
work for testing the accuracy of query optimizers. TAQO leverages
system-specific hints or tuning mechanisms in order to force the
optimizer to choose different plans. We define a metric over the
plans found by comparing the estimated with the actual cost and
measure the correlation of plans for queries and workloads. This
metric is rather intuitive as it summarizes how likely a given op-
timizer is making bad optimization decisions. The results we pre-
sented in this paper by comparing major database systems suggest
the abilities of commercial query optimizers differ widely. To the

0!

2000000!

4000000!

6000000!

8000000!

10000000!

12000000!

14000000!

16000000!

0! 500! 1000! 1500! 2000! 2500! 3000! 3500!
0!

20000!

40000!

60000!

80000!

100000!

120000!

140000!

160000!

180000!

200000!

0! 2000! 4000! 6000! 8000! 10000! 12000! 14000!

0!

200!

400!

600!

800!

1000!

1200!

1400!

1600!

1800!

2000!

0! 5000! 10000! 15000! 20000! 25000! 30000! 35000!
0!

5E+09!

1E+10!

1.5E+10!

2E+10!

2.5E+10!

3E+10!

3.5E+10!

0! 5000! 10000! 15000! 20000! 25000! 30000! 35000!

A! B!

C! D!
Figure 6: Plan distribution plots for Q14. Actual execution time
is on the x-axis, and estimated cost is on the y-axis

best of our knowledge, this is the first study of its kind.

Acknowledgements
The authors would like to thank Srinivasa Meka for his technical
support for the different database systems we tested, as well as the
members of the Query Processing team at Greenplum for valuable
feedback and support.

7. REFERENCES
[1] S. Chaudhuri, L. Giakoumakis, V. Narasayya, and

R. Ramamurthy. Rule Profiling for Query Optimizers and
their Implications. In Proc. ICDE, 2010.

[2] L. Giakoumakis and C. Galindo-Legaria. Testing SQL
Server’s Query Optimizer: Challenges, Techniques and
Experiences. IEEE Data Eng. Bulletin, 31(1), 2008.

[3] G. Graefe and K. Salem, editors. Proc. of the Fourth
International Workshop on Testing Database Systems,
DBTest 2011, Athens, Greece. ACM, 2011.

[4] D. Harish, P. N. Darera, and J. Haritsa. Identifying robust
plans through plan diagram reduction. Proc. of the VLDB
End. (PVLDB), 1(1):1124–1140, 2008.

[5] J. Haritsa. The Picasso Database Query Optimizer Visualizer.
Proc. of the VLDB End. (PVLDB), 3(2):1517–1520, 2010.

[6] M. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[7] L. Mackert and G. Lohman. R* optimizer validation and
performance evaluation for distributed queries. In VLDB,
1986.

[8] L. Mackert and G. Lohman. R* optimizer validation and
performance evaluation for local queries. In SIGMOD, 1986.

[9] M. Stillger and J.-C. Freytag. Testing the Quality of a Query
Optimizer. IEEE Data Eng. Bulletin, 18(3):41–48, 1995.

[10] F. Waas and C. A. Galindo-Legaria. Counting, Enumerating,
and Sampling of Execution Plans in a Cost-Based Query
Optimizer. In Proc. ACM SIGMOD, 2000.

[11] F. Waas, L. Giakoumakis, and S. Zhang. Plan Space Entropy:
An Early Warning System to Detect Plan Regressions in
Cost-based Optimizers. In Proc. DBTest, 2011.

