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ABSTRACT
Parametric query optimization (PQO) must address two problems:
identify a relatively small number of plans to cache for a parameter-
ized query (populateCache), and efficiently select the best cached
plan to use for executing any instance of the parameterized query
(getPlan). Our approach decouples these two decisions. We formu-
late populateCache as an optimization problem with the goal of
identifying a set of plans that minimizes the optimizer estimated
cost of queries in the log, and present an efficient algorithm. For
getPlan, we leverage query logs to train machine learning (ML)
models to choose the lowest optimizer-estimated cost plan from
the cached plans. We conduct extensive experiments using com-
plex parameterized queries from benchmarks and real workloads.
Our algorithm for populateCache achieves low geometric mean
sub-optimality (1.2) even for complex queries using relatively few
plans, and scales well to large query logs. The mean latency of
our ML model based getPlan technique (∼ 210𝜇𝑠𝑒𝑐) is between
one to four orders of magnitude faster compared to prior PQO
techniques. The mean sub-optimality is low (1.05), and the 95th
percentile sub-optimality (1.3) is between 1.1× and 25× lower com-
pared to prior techniques. Finally, we present an efficient algorithm
for getPlan that leverages execution time information in query logs
to circumvent inaccuracies of the query optimizer’s cost estimates.
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1 INTRODUCTION
Database applications extensively use parameterized queries, where
the same SQL statement is executed repeatedlywith different param-
eter bindings (e.g., a stored procedure). For complex SQL queries,
the straightforward approach of optimizing every query instance
(Opt-Always), can consume significant CPU and memory resources.
In fact, many commercial relational database systems [4, 26] adopt
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the other extreme approach by optimizing only the first (or user-
specified) query instance of a parameterized query and caching the
plan for reuse in subsequent query instances. While this technique
(Opt-Once) minimizes optimization time, the cached plan may be
arbitrarily sub-optimal for subsequent query instances.

Parametric query optimization (PQO) is a middle-ground ap-
proach that aims to sharply reduce optimization overheads com-
pared to Opt-Always while incurring execution sub-optimality as
little as possible compared to Opt-Always. For a given parame-
terized query, a PQO technique must identify a set of execution
plans to be cached. When a new query instance arrives, the PQO
technique must efficiently pick the best plan to use for this query
instance from among the cached plans. Using terminology from
prior work [10, 22], we use the term populateCache for the former
task and the term getPlan for the latter task. The sub-optimality of
any populateCache technique for a given query instance is the ratio
of the cost of the best plan available in the cache to the cost of the
plan obtained by optimizing the query instance (i.e., Opt-Always).
The sub-optimality of getPlan for the given query instance is the
ratio of the optimizer estimated cost of the plan selected by getPlan
to the optimizer estimated cost of the best plan in the cache. Note
that the overall sub-optimality of a PQO technique is the combined
sub-optimality of populateCache and getPlan. Since getPlan is
on the critical path of query execution, another crucial metric is
efficiency, i.e., the time taken for an invocation of getPlan.

There has been extensive prior work on PQO (see Section 7)
most of which are online techniques [9, 10, 22, 32]. With respect to
getPlan these techniques often fall short in at least one of the above
metrics of sub-optimality or efficiency. Specifically, their decision
to reuse a cached plan for a new query instance is based on assump-
tions (e.g., monotonicity) on how cost of the plan changes over
multi-dimensional space of selectivity of parameterized predicates.
Since these assumptions often fail for complex SQL queries [37],
getPlan sub-optimality is often very high. Some techniques make
more conservative assumptions on how the cost of a plan changes,
and thereby achieve better sub-optimality, but these techniques
frequently need to fall back to making expensive optimizer or re-
cost calls [22], and therefore suffer from high mean and tail latency
for getPlan. With respect to populateCache, the online techniques
adaptively add and remove plans from the plan cache, but: (a) are
operationally challenging due to lack of predictability and debugga-
bility arising from a continuously changing set of plans for a query,
and (b) often require a large number of plans to be cached.
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1.1 Decoupling populateCache and getPlan
We propose to architecturally decouple populateCache and getPlan
into independent modules. In this approach, getPlan only selects
the best among the cached plans and does not fall back to the opti-
mizer, immediately resolving the high latency issue. populateCache,
which is run as an offline step, identifies a set of plans to be cached
which are then installed in the plan cache. This results in greater
predictability and debuggability and is simpler to operationalize.
The decoupled architecture has an additional benefit that it allows
DBAs to manually include a set of plans to cache based on their ex-
perience. This architecture requires invoking the offline step when
the data or workload characteristics change significantly.

1.2 Leveraging query logs for PQO
We observe that today’s DBMSs come equipped with efficient tech-
nology for logging query instances [6, 7]. An application developer
or DBA can also explicitly provide a workload of query instances
for a parameterized query. In our approach to PQO both populate-
Cache and getPlan leverage query logs as described below.

We present a novel formulation for populateCache that uses
query logs in an offline step to identify plans to cache such that the
optimizer-estimated cost of the workload is minimized (Section 5).
Query logs help populateCache focus on workload-relevant regions
in an otherwise very large selectivity space. We show that a simple,
greedy search technique scales well with the number of instances
in the query log. Even when restricted to use only a small number
of plans to cache, usually no more than 6, our algorithm achieves a
relatively low geometric mean sub-optimality (∼ 1.2) over queries
in the workload (Section 6.3). Finally, we observe that due to the
decoupling of populateCache and getPlan in our architecture, one
could alternatively replace our algorithm with a prior technique
for populateCache [20, 21, 25, 28–30, 37].

For getPlan– the main focus of this paper – given a parame-
terized query, we use the query logs and a set of cached plans as
input to train a supervised machine learning (ML) model that can
efficiently identify the best cached plan to use for an incoming in-
stance of that parameterized query (Section 3). Observe that, unlike
prior techniques [9, 10, 22, 25, 28, 32], our approach works for any
complex SQL query and also makes no assumptions about the cost
behavior of the plans. We show that using decision trees [1] or
tree-ensembles [15], we can generate ML models of small sizes (e.g.,
16KB) that are very accurate for the task. Our ML model based tech-
nique has low mean latency (∼ 210𝜇𝑠𝑒𝑐) and 95th percentile latency
(∼ 350𝜇𝑠𝑒𝑐), which is one to four orders of magnitude smaller com-
pared to prior techniques. Our getPlan technique also achieves low
sub-optimality (geometric mean of ∼ 1.05), and the 95th percentile
sub-optimality (∼ 1.3), which is 1.1× to 25× lower compared to
prior PQO techniques for getPlan.

1.3 Exploiting execution cost for getPlan
Previous work on getPlan, including the formulation above, frames
the goal of getPlan in terms of minimizing the optimizer-estimated
cost of query instances, and may lead to sub-optimal selection of
plans in terms of execution cost (e.g., CPU time or execution time).
This mismatch is not surprising due to well-known issues such as
simplified cost models that are used by query optimizers and errors

in cardinality estimation [13, 33]. Indeed, such behavior is common
in parameterized queries that we evaluated (Section 6.5).

We observe that the problem of designing execution-cost aware
getPlan for a given parameterized query and a given set of cached
plans is much simpler than the general problem of making cost esti-
mation used by the query optimizer consistent with execution cost
for arbitrary queries. A straightforward adaptation of the super-
vised ML approach described in Section 1.2 is, however, impractical
due to the prohibitive cost of acquiring labeled training data which
includes obtaining execution costs for query instances for multiple
cached plans.

We propose an execution-cost aware getPlan formulation based
on the principle of contextual bandits [42] in the reinforcement
learning literature (Section 4). For training, the bandit learner uses
the execution cost obtained after each query instance has executed.
Unlike supervisedML techniques, no additional executions for other
cached plans, which were not chosen to execute the query instance,
are required for training. We find that a contextual bandit learner
implemented using Bootstrapped Thompson-sampling [19] with tree-
based regression models [1, 15] has low-latency and leads to plans
with low execution cost. For several parameterized queries, the
geometric mean of execution sub-optimality improves by 2× and
the 95th percentile execution sub-optimality improves by an order
of magnitude when compared to choosing the best plan according
to optimizer estimated cost. Since a standard implementation of
bandit learners results in highly sub-optimal plans during the initial
learning phase, we develop a technique to mitigate this limitation
by leveraging the query optimizer for bootstrapping.

1.4 Summary of contributions
• Unlike many prior PQO techniques where populateCache and
getPlan are intertwined [9, 10, 22, 32], we propose decoupling
the modules. This leads to greater flexibility in choosing plans
to cache and improves predictability and debuggability, which is
crucial in production environments.

• We present a formulation of populateCache as an offline search
problem based on query logs. Evaluation of our algorithm shows
that across different parameterized queries, the algorithm achieves
low aggregate optimizer estimated cost with relatively few plans,
and scales to a large number of input query instances.

• For getPlan, for the optimizer-estimated cost metric, we show
that simple ML models with small memory footprint can achieve
both: (i) fast average and tail getPlan times and (ii) low sub-
optimality. Furthermore, unlike prior work, our techniques work
for arbitrary SQL queries without requiring assumptions about
the behavior of optimizer cost models.

• We introduce a novel framing of the getPlan problem based on
execution cost where the goal is to select from among the cached
plans, the plan with the lowest execution cost. We formulate this
as a contextual multi-armed bandit problem whose rewards are
based on execution cost feedback.

• We present a comprehensive empirical evaluation using multiple
synthetic and real-world parameterized queries, comparing the
proposed techniques against several previous PQO techniques
from the research literature and approaches adopted by commer-
cial DBMSs.
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2 QUERY LOG DRIVEN PQO ARCHITECTURE
Applications extensively rely on parameterized queries, using data-
base mechanisms such as stored procedures and prepared state-
ments. Different instances of a parameterized query can vary only
in the parameter bindings. Some commercial systems [4, 26] cache a
single plan for each parameterized query, whereas other DBMSs al-
low storing multiple plans [32]. The advantage of caching plans for
a parameterized query is that the overhead of invoking the query
optimizer can be avoided. In Figure 1, we outline the components
for a DBMS that: (i) architecturally decouples populateCache and
getPlan and (ii) leverages query logs for PQO. Below, we describe
the functionality of each key module shown in the figure.
Collecting query logs: The functionality of logging query in-
stances is standard in most commercial DBMSs [6, 7]. A query log
contains information about each query instance including its pa-
rameter bindings, execution time, and CPU time. We expect that
the DBMS bootstraps the PQO process by using an existing PQO
technique, e.g.,Opt-Once [4], or Merging-Ranges [32], or evenOpt-
Always, and then utilizes the proposed techniques once sufficient
instances have been logged1.
populateCache: The offline populateCache module is responsible
for identifying a set of plans to cache for a given parameterized
query 𝑄 . It takes as input a set of query instances of 𝑄 . This input
can be obtained from the query log, or can be provided directly
by a DBA or application developer. populateCache takes as input
a budget on the number of plans (𝐾) to cache. It also takes and
an additional optional constraint as input: a set of plans that must
be included in the set of plans to cache. During its search, the
populateCache module consults the query optimizer using two
APIs: (a) A regular optimizer call, which returns a plan for a query
instance or (b) A recost call, which returns the cost of a given plan
for a specific query instance [8]. The set of 𝐾 plans returned can be
added to the plan cache, e.g., using an API similar to plan guides [5].
Training models for getPlan: For a given parameterized query
𝑄 , this offline module takes as input a set P of 𝐾 plans and a log of
query instances of 𝑄 , and trains an ML model. Given an arbitrary
query instance as input, the ML model selects one of the plans
in P to use for executing that query instance. To obtain labeled
data necessary to train the ML models, this module consults the
query optimizer using the recost interface to obtain the matrix of
(plan, cost) values. Note that even when the plans to be cached are
not changed, we may wish to re-train getPlan, e.g., when data or
workload characteristics have changed sufficiently. Finally, the ML
model is installed for use by getPlan.
getPlan: The plan cache contains one entry for each parameterized
query, which points to the set of cached plans for that query and
the ML model to select among them. For a new query instance,
getPlan first parses and then matches it to its parameterized query
𝑄 . It extracts the bindings for the query instance and uses them to
compute the selectivity for each parameterized predicate, which
forms the input to the ML model. The plan returned by invoking
the ML model used to execute the query instance.

1We could use synthetically generated query instances for bootstrapping, however
evaluating the effectiveness of this approach is beyond the scope of this work.
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Figure 1: Architecture Overview of Query-Log driven PQO

2.1 Problem description
For a parameterized query (a.k.a. query template) 𝑄 , with 𝑑 pa-
rameterized predicates, we use 𝑞𝑒 to denote an instance of 𝑄 . Each
instance of 𝑄 is defined by the set of bindings of the parameter-
ized predicates, e.g., 𝑉=(𝑣1, . . . , 𝑣𝑑 ). We also associate a derived
selectivity vector 𝑆=(𝑠1, . . . , 𝑠𝑑 ) with each query instance, consist-
ing of the selectivity of each parameterized predicate. For a given
query instance 𝑞𝑒 , the plan obtained by invoking the query opti-
mizer on it is denoted by 𝑃𝑜𝑝𝑡 (𝑞𝑒 ). Further, for a given plan 𝑃 and
query instance 𝑞𝑒 , the optimizer estimated cost is denoted with
𝐶𝑜𝑠𝑡 (𝑃, 𝑞𝑒 ) and the actual execution cost is denoted by 𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡 (𝑃 ,
𝑞𝑒 ). Next, we define a set of 𝑛 query instances (a.k.a workload) of𝑄
as𝑊 = ⟨𝑞1, 𝑞2, . . . , 𝑞𝑛⟩. Below we formally define the two goals of
PQO: populateCache and getPlan, along with the relevant metrics
for their evaluation.

Problem definition for populateCache: Given a workload𝑊 ,
and a user specified budget𝐾 on number of plans, efficiently choose
a plan setP = {𝑃1, 𝑃2, . . . , 𝑃𝐾 } such that the aggregate (e.g., geomet-
ric mean or 95th percentile) sub-optimality metric 𝑆𝑂populateCache
over all instances in𝑊 is minimized, where

𝑆𝑂populateCache (P, 𝑞𝑒 ) =
𝑎𝑟𝑔𝑚𝑖𝑛𝑃 ∈P𝐶𝑜𝑠𝑡 (𝑃, 𝑞𝑒 )
𝐶𝑜𝑠𝑡 (𝑃𝑜𝑝𝑡 (𝑞𝑒 ), 𝑞𝑒 )

(1)

The term in the numerator assumes a perfect getPlanwhich chooses
the lowest cost plan among all plans in P. The term in the de-
nominator is the cost of the instance assuming an ideal strategy
Opt-Always, which optimizes the query instance. We consider the
aggregated metric over all instances in𝑊 , in the form of either
geometric mean or 95𝑡ℎ percentile.

Another metric relevant for populateCache evaluation is the
total time needed to identify the required plans. We also measure
the total number of optimize and recost calls made by the algorithm.

Problem definition for getPlan: Given a workload𝑊 , for pa-
rameterized query 𝑄 , a set of 𝐾 cached plans P = {𝑃1, 𝑃2, . . . , 𝑃𝐾 },
and a query instance (may not be part of𝑊 ) select the cached plan
that minimizes
Objective 1: 𝑆𝑂𝑂𝑝𝑡𝐶𝑜𝑠𝑡getPlan for a query instance, where

𝑆𝑂
𝑂𝑝𝑡𝐶𝑜𝑠𝑡

getPlan (𝑃 ′, 𝑞𝑒 ) =
𝐶𝑜𝑠𝑡 (𝑃 ′, 𝑞𝑒 )

argmin𝑃 ∈P 𝐶𝑜𝑠𝑡 (𝑃, 𝑞𝑒 )
(2)
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Objective 2: 𝑆𝑂𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡getPlan for a query instance where

𝑆𝑂𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡getPlan (𝑃 ′, 𝑞𝑒 ) =
𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡 (𝑃 ′, 𝑞𝑒 )

argmin𝑃 ∈P 𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡 (𝑃, 𝑞𝑒 )
(3)

Similar to populateCache, we consider an aggregated metric in
the form of either geometric mean or 95𝑡ℎ percentile. In addition,
we also evaluate getPlan with latency as the time taken to return
the selected cached plan, and report its mean and tail percentile
values. We also report the time spent in generating the labeled data
and training the ML model for getPlan.

3 OPTIMIZER COST BASED GETPLAN
Given a set of 𝐾 plans to be cached, and a new incoming query
instance 𝑞𝑒 , getPlan is responsible for selecting the cached plan
to use for executing 𝑞𝑒 . In this section, we focus on the setting
where the objective is to select the cached plan with the lowest
optimizer estimated cost. A straightforward method to accurately
determine the cost-minimizing plan for 𝑞𝑒 is to compute estimated
cost for each plan and return 𝑎𝑟𝑔𝑚𝑖𝑛𝑃 ∈P𝐶𝑜𝑠𝑡 (𝑃, 𝑞𝑒 ), however, it
requires invoking a recost method that must work for arbitrarily
complex SQL queries. Prior work [22] evaluated an existing feature
in a commercial database (USE PLAN query hint in Microsoft SQL
Server), and found that a recost call incurs at least 10 ms per plan
and often 100s of milliseconds for complex queries2, which is too
expensive to use in practice.

We observe that identifying the best cached plan does not neces-
sarily require computing accurate costs of cached plans, and instead
use machine learning (ML) techniques to design an efficient and
accurate implementation for getPlan. In particular, we propose us-
ing a supervised ML model for getPlan requiring small memory
footprint and fast inference time. Each ML model is trained to deal
with a single parameterized query, by leveraging a set of query
instances labeled with the best plan choices. The effectiveness of
such a model arises from its ability to identify patterns in the best
plan labels from the training data. In the rest of this section, we
describe the input features to the ML model, present two different
supervised ML formulations: classification and regression, followed
by discussions on model training and a comparison of the two
formulations.
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Figure 2: MLModel designs for a given parameterized query

2The overhead is dominated by the cost of creating the optimizer’s internal memo
data structure. Even if the internal data structure were to be cached [22], a recost call
takes up to 10 ms per plan to invoke cardinality and cost computation functions across
all operators in a complex plan.

3.1 Features
We use the vector of selectivities of each parameterized predicate
as input features to the model. Intuitively, our models use these
features to divide the high dimensional selectivity space into parti-
tions, and map each partition to one of the cached plans. This is a
significant benefit compared to prior work [9, 10, 22, 32] since get-
Plan does not need to invoke the query optimizer. Note that most
prior work in PQO also rely upon the same information to make
their getPlan decisions. These features can be efficiently obtained
(≈ 25 𝜇sec per selectivity) using statistics such as histograms that
are available in database systems.

While we found that selectivity features deliver sufficient accu-
racy to outperform prior PQO techniques, we also consider alterna-
tive input features in our experimental evaluation (see Section 6.2.3).
In particular, we use parameter bindings of the parameterized pred-
icates parsed from the query instance as input features. We use the
same feature encoding for parameter bindings as proposed recently
in the context of cardinality estimation [23] for commonly occur-
ring range and categorical predicates (IN clause). Interestingly, we
find that the models with only parameter bindings can also yield
sufficiently accurate models to match the best of the prior PQO tech-
niques, although selectivity features deliver even better accuracy.
We observe that for both feature alternatives, the getPlan overhead
is much smaller than prior techniques that support accurate plan
selection.

3.2 Classification formulation
The getPlan problem can naturally be viewed as amulti-class classi-
fication problem, where the given 𝐾 plans correspond to 𝐾-classes.
The model learns to partition the feature space (e.g., selectivities)
based on the best plan id labels. Hence, the training data consists
of a set of query instances from𝑊 labeled with the id of the best
among the 𝐾 plans. The training data and design of ML models is
depicted in Figure 2.

Feature 1

Fe
at

u
re

 2

Class-P1
Class-P2

Class-P3 P1 P2

P3 P4

In classification formulation, there 
is no information to distinguish 
whether P2 or P3 is better for 
queries whose optimal plan is P4

Figure 3: Example to illustrate limitation of classification
formulation.

While the classification formulation appears to fit well for our
problem, its objective of aiming to maximize classification accu-
racy may not align well with our sub-optimality metric for getPlan,
as defined in Section 2.1. This is because the cost impact of mis-
classifying a query instance 𝑞𝑒 to plan 𝑃𝑖 , rather than the actual
cost-optimal choice plan 𝑃 𝑗 , can be very high depending on 𝑃𝑖 , 𝑃 𝑗
and 𝑞𝑒 . Such classification problems where the mis-classification
penalty depends on the particular example (rather than only the
class label) are known as example-dependent cost-sensitive classifica-
tion. While there exist research proposals to handle cost-sensitivity
in binary classification scenarios, it is difficult to handle multi-class
problems [43].
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We present an example to illustrate this limitation of the classifi-
cation formulation in Figure 3. It shows a set of training examples in
a 2-dimensional selectivity space represented using markers for the
corresponding best plan choice among 𝑃1, 𝑃2, 𝑃3 and 𝑃4. The figure
also shows class boundaries based on a reasonably accurate clas-
sifier. Observe that, the examples with the best plan label 𝑃4 have
been classified as plan 𝑃3, which may lead to higher misclassifica-
tion penalty (i.e., sub-optimality) compared to an equally accurate
alternative classifier that assigns the same examples to class 𝑃2.

3.3 Regression formulation
In this formulation, we train individual regression models, one for
each cached plan, to approximate its optimizer estimated cost given
the input features of the query instance. To determine the best
plan for a new incoming query instance, we invoke each regression
model to predict the cost of each plan and select the minimum cost
plan – as shown in Figure 2. Observe that, this formulation is a low
overhead (one to two orders of magnitude faster) approximation
of the accurate method of re-costing each of the cached plan to
determine the best plan3. We expect the regression formulation to
perform better since it has full cost information about all cached
plans, unlike classification that utilizes only best plan labels.

3.4 Discussion
3.4.1 Model training. Interestingly, in our context, the labeled in-
put data required for training both classification and regression
formulation is the same. The cost of each of the cached plans on
the query instances in the workload, which directly serve as labels
in the regression formulation4, and are also needed to generate the
best plan label for the classification formulation (Figure 2).

We have experimented with several ML models including simple
linear models, support vector models, as well as tree-based non-
linear models such as Decision Trees and XGBoost [15] models.
The overall cost of training a model is typically dominated by the
labeling cost, i.e., using re-cost calls for each of the cached plans for
the given representative set of queries. The actual model training
time given the labeled data is relatively small (typically around
100ms in our evaluation). Finally, we note that this training step is
performed offline and can be re-invoked when data or workload
characteristics change significantly, or when plans are added or
removed from the plan cache (see discussion in Section 5.3).

3.4.2 Classification vs. regression. While both classification and re-
gression models are significantly better in sub-optimality compared
to prior work, we also empirically compare these two techniques
(Section 6.2). We found that for small memory budgets and training
data sizes, regression models result in better sub-optimality, partic-
ularly at higher percentiles such as 95th percentile, and its getPlan
(and model training) time is only slightly higher than classification
models.

3While an approximate and efficient recost method could potentially be implemented
inside a DB engine as well, use of regression models has the advantage of being non-
intrusive, supporting a trade-off between accuracy and memory overhead, and adapt
to different cost metric such as execution cost, as discussed later in Section 4.
4We use log-transformed version of cost values to emphasize regions where the plan
has small cost values and is expected to be the best among the cached plans.

4 EXECUTION COST BASED GETPLAN
The supervised ML techniques for getPlan proposed in Section 3,
like all prior PQO work, aim to select the cached plan with the low-
est optimizer-estimated cost. This can, however, lead to execution
sub-optimality since it is well-known ([13, 33]) that even when a
plan 𝑃1 is lower in terms of optimizer-estimated cost than plan 𝑃2, it
can sometimes be worse in terms of execution cost metrics such as
CPU time or elapsed time. This can happen either due to erroneous
cardinality estimates for intermediate query expressions [33] or
inability of optimizer cost model to represent the current execution
environment. Thus, a getPlan that can choose the best plan accord-
ing to execution cost can be beneficial. Note that while cardinality
estimation and cost modeling for arbitrary SQL queries are very
difficult problems, selecting the best among𝐾 cached plans in terms
of execution cost is a simpler problem since it involves a fixed query
template and a small, fixed set of execution plans.

One straightforward approach is to reuse the supervised learning
method in the previous section by simply replacing optimizer cost
based label with execution cost labels. However, this approach is
impractical in terms of generating labeled training data since it
would require executing every training query instance with each
of the 𝐾 cached plans, some of which can be highly sub-optimal5.

4.1 Approach: Leveraging execution feedback
We propose a novel formulation for adapting getPlan module to
execution costs by leveraging the execution cost information (CPU
time, elapsed time) obtained when previous query instances of the
same parameterized query execute. Such information can be cap-
tured through standard logging capabilities in commercial DBMSs [6,
7].
Contextual multi-arm bandits: We formulate getPlan for exe-
cution costs as a contextual multi-arm bandit (CMAB) problem. The
CMAB framework falls under reinforcement learning (RL) para-
digm6. While supervised learning involves offline model training
using a set of pre-labeled training examples, a bandit technique
learns from feedback across multiple iterations, as we process more
examples. In each iteration: (a) it processes input (called context)
by taking an action that involves selecting one out of a fixed set of
candidates (called arms), (b) it observes the reward generated for
that action, and (c) it uses the reward to influence the future actions
for similar inputs (contexts) - the last step may be done in batches.
Considering plan selection as action and execution cost feedback
as the reward, this technique is well suited for our application. It
is worth highlighting that the technique neither requires taking
optimal actions for initial inputs, nor do sub-optimal actions need
to be explicitly corrected. We show that the bandit technique can
be implemented in practice by making simple extensions to the
regression formulation described in the previous section.

4.2 getPlan formulation
CMAB is a generalization of the popular multi-arm bandit tech-
nique [40] due to the extra context information as input. It has
5The best plan label for classification formulation can be collected by executing the 𝐾
plans in parallel until one of them finishes. However, the absolute overhead can still
be quite large.
6An intuitive difference is that generic RL has to deal with delayed rewards for actions
while bandit formulations work with immediate reward for their actions.
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many real-world applications including website optimization and
clinical trials [42]. Next, we provide formal definition of CMAB and
then describe how to formulate the getPlan problem.
Bandit: Bandit 𝐵 can be defined as a set of arms 𝑘 ∈ {1, 2, ..𝐾},
where each arm is defined by some reward function that maps
context vector 𝑥𝑡 to 𝑟𝑡,𝑘 for each time step 𝑡 until horizon 𝑇 .
Policy: Policy 𝜋 seeks tomaximize its cumulative reward

∑𝑇
𝑖=1 𝑟𝑡,𝑎𝑡

by sequentially selecting one of the bandits arms, defined as taking
action 𝑎𝑡 ∈ {1, 2, ..𝐾} for each time step 𝑡 ∈ {1, 2, ...𝑇 }. Policy 𝜋
does this selection by using one or more ML models and updating
their parameters (𝜃𝑡 ) at every time step 𝑡 .
Arm Selection Process: In each round 𝑡 = {1, 2, ..,𝑇 }, policy 𝜋
• observes the 𝑑−dimensional context vector 𝑥𝑡
• usesmodels with parameters𝜃𝑡−1 to select an action𝑎𝑡 ∈ {1, 2..𝑘}
• receives a reward 𝑟𝑡,𝑎𝑡 for action 𝑎𝑡
• updates the model parameters to 𝜃𝑡 using {𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡,𝑎𝑡 }
Adaptation to getPlan problem: For a given query 𝑞𝑒 , the 𝐾
cached plans correspond to the 𝐾 arms, the selectivity vector 𝑆 (the
parameter binding vector𝑉 ) corresponds to the context vector, and
(negative of) the reward for choosing 𝑖𝑡ℎ arm is given by the execu-
tion cost of 𝑞𝑒 using the plan 𝑃𝑖 . As more instances are processed,
the bandit based getPlan can be expected to select plans with lower
execution cost. Observe that we could adapt the contextual multi-
arm bandit formulation for our 𝐾 plan selection only because each
of the 𝐾 cached plans is a valid alternative for any instance of the
parameterized query 𝑄 , and the only difference among the cached
plans is their execution cost.

4.3 Thompson sampling for getPlan
Various arm (plan) selection strategies have been proposed in lit-
erature for bandit learners (see [42] for a survey). One important
difference between strategies is how they balance the exploration vs
exploitation trade-off. Intuitively, exploitation refers to making the
best decision based on the data observed so far while exploration
refers to deviating from the observed data to find potentially better
decisions. Specifically, 𝜖-greedy explores by selecting a random
plan with a 𝜖−probability and exploits the feedback by selecting
minimum cost plan with (1-𝜖) probability. Other strategies, such as
Thompson Sampling (TS) and Upper Confidence Bound (UCB), im-
plicitly balance the exploration vs. exploitation trade-off by choos-
ing an action with the highest expected reward w.r.t. randomly
sampled belief [11, 38]. We use Thompson sampling (TS) due to its
efficiency as well as empirical success across problem domains [12].
Specifically, we use the online bootstrapped version [19].
Pseudo-code for Bootstrapped TS: The algorithm to process
query instances based on the online bootstrapped TS strategy is
given in Algorithm 1. The strategy maintains 𝑡 supervised regres-
sion models for each of the 𝐾 arms (i.e., plans). For every incoming
instance 𝑞𝑒 , we start with iterating over each plan, and choosing a
model at random (out of 𝑡 models) to predict the plan’s execution
cost for 𝑞𝑒 . Then, the plan 𝑃𝑎 with minimum predicted execution
cost (i.e., maximum reward) is chosen to execute the query instance
𝑞𝑒 . Next, the algorithm updates the getPlan method using the exe-
cution cost feedback. After execution of 𝑞𝑒 using 𝑃𝑎 , we obtain the
true execution cost 𝑟𝑒𝑎 , and the new observation {𝑆𝑒 , 𝑟𝑒𝑎} is added to
the training data of models corresponding to the plan 𝑃𝑎 , where 𝑆e

is the selectivity vector of 𝑞𝑒 . Here, it is important to note that, the
new observation is added to each model’s training data (associated
with plan 𝑃𝑎) but with a different weight factor decided by a gamma
distribution. It is easy to see that the algorithm explores by using
a randomly chosen model from the multiple models available per
plan. Further, it exploits by selecting the plan with the minimum
predicted execution cost, after the models have been trained with
sufficient query examples.

Algorithm 1 getPlan using online bootstrapped TS
1: for each query instance 𝑞𝑒 with context (selectivity) 𝑆𝑒 do
2: //getPlan
3: for plan i in 1 to K do
4: Select model 𝑗 uniformly at random from [1,𝑡]
5: set 𝑟𝑖 = 𝑓𝑖,𝑗 (𝑆𝑒 )
6: end for
7: Select action a = argmin𝑖 𝑟𝑖
8: Execute 𝑞𝑒 with 𝑃𝑎 to obtain true execution cost 𝑟𝑒𝑎
9: //adapt getPlan using the execution cost feedback
10: add observation {𝑆𝑒 , 𝑟𝑒𝑎 } to the history of plan 𝑃𝑎
11: for model 𝑗 in 1 to 𝑡 do
12: Sample observation weight 𝑤 = Gamma(1,1)
13: update 𝑓𝑎,𝑗 with new observation {𝑆𝑒 , 𝑟𝑒𝑎 } with weight 𝑤
14: end for
15: end for

4.4 Discussion
Avoiding the initial sub-optimal decisions: The bandit based
algorithm makes randomized plan selection decisions in the initial
phase. We empirically observed (Section 6.5) that the initial plan
selections are worse when compared to selecting the cached plan
with the lowest optimizer estimated cost. After the initial phase
however, the contextual bandits quickly improve to a significantly
better plan selection policy. We can avoid the sub-optimal deci-
sions in the initial phase by using a simple mitigation strategy
that replaces the randomized decision with the decision based on
the optimizer-estimated costs (similar to approaches in the CMAB
literature [39, 41]). While this simple modification reduces the
sub-optimality in the initial phase of contextual bandit learning,
it also has a side effect that the initial exploratory phase of the
contextual bandits is now biased. Although there is a risk of delay
in convergence due to this bias, our empirical results (reported in
Section 6.5) indicate that this mitigation strategy largely retains the
benefit of bandits while avoiding the initial risk.
Training and inference overheads: In terms of overhead spent
on model training, the contextual bandit formulation: (1) trains
multiple regression models per plan, and (2) it needs to retrain
the models after each batch of queries. It is important to note that
we use tree-based (decision tree or XGBoost [15]) models that are
very fast in terms of training and the additional overhead spent
on model training is worth the saving in execution times due to
selection of better plans. Further, the overhead in terms of making
the plan selection decision is the same as the supervised regression
formulation, both require evaluating one model per cached plan.
Handling changes in the set of cached plans: Unlike super-
vised ML techniques that require re-training when the plan gets
added, a contextual bandit technique automatically adapts when a
new plan (or set of plans) is cached. While the sub-optimality may
increase temporarily, we observe that the bandit learner adapts
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quickly. Similarly, dropping a cached plan can be handled by a ban-
dit learner in a straightforward manner by ignoring the dropped
arm (plan). We empirically evaluate these scenarios in Section 6.5.

5 POPULATECACHE ALGORITHM
The goal of the populateCache method is to efficiently identify a
small set of plans that can together help achieve small sub-optimality
across a given workload𝑊 of query instances (see Section 2.1 for
the exact definition). Our query log based approach has the follow-
ing phases:
(1) Plan-Collection phase: We collect candidate plans by invok-
ing the query optimizer for a subset of 𝑛 queries in𝑊 , with worst
case overhead of 𝑛 ×𝑂𝑡 , where𝑂𝑡 is the average optimization time.
Suppose𝑚 distinct plans are collected.
(2) Plan-Recost phase: We recost each candidate plan for each
of the 𝑛 queries, with worst case overhead of 𝑛 ×𝑚 × 𝑅𝑡 , where
𝑅𝑡 is the average plan recosting time. We use the term plan-recost
matrix to refer to this information.
(3) K-set identification phase: We use the information in the
plan-recost matrix to determine the set of plans to be cached for a
given plan budget 𝐾 . This phase has a worst case overhead of

(𝑚
𝐾

)
×

𝐶𝑡 , where 𝐶𝑡 is the time needed for computing the optimization
metric for each candidate set of 𝐾 plans.

For a query log of size n = 2000, and assuming m = 100 plans,
and K = 5, the brute force implementation can take more than 10
hours! This analysis is based on our empirical observation that
each optimizer call takes ≈100ms up to a few seconds, and each
re-costing call takes ≈10ms -100ms. However, the largest fraction of
time is needed to evaluate the ≈75 million candidate K-sets. In fact,
for the maximum cost suboptimality metric, the K-set identification
problem has been shown to be NP complete [20]. This overhead is
clearly impractical. Therefore, in the rest of this section we discuss
heuristics for reducing the running time in each phase above.

5.1 K-set identification: greedy search
Given the hardness of the problem for certain objective functions,
we propose to use a simple greedy strategy for this phase (similar
to [20]). The algorithm requires a candidate plan set, the plan-recost
matrix, final set size 𝐾 and metric function. It starts with an empty
plan set and greedily adds a plan to this set in every iteration that
minimizes the metric. This procedure continues until the desired set
size (𝐾 ) is reached. The complexity of the algorithm is𝑂 (𝐾×𝑚×𝐶𝑡 )
where 𝐶𝑡 is the time needed to compute the metric value for a set
of candidate plans, which is efficient once the plan-recost matrix is
computed. In our evaluation, for 200 plans (𝑚 = 200), 2000 instances
(𝑛 = 2000), 𝐾 = 10 with metric as geometric mean sub-optimality,
the greedy algorithm run time was less than a second. Details of our
empirical evaluation of populateCache are described in Section 6.

5.2 Plan collection and recost phases
To reduce the overheads in these phases without hurting the quality
of the solution significantly, we propose using only a small subset
of query instances instances in each phase. We find that selecting
around 100-200 instances at random from the query log works well
in practice. This is based on the empirical observation that while
picking query instances to optimize in a random order, the size of

collected plan set as well the best plan quality achievable using
them stabilize quickly.

In the re-cost phase, the aim is to have enough re-costings so that
the search strategy can make an informed decision about which
plans to be included in the small budget of 𝐾 . Similar to the plan
collection phase we can selectively or randomly choose a smaller
subset of instances to work with. Once again, we find empirically
that selecting a set of around 200-400 instances at random yields
good results for populateCache.

5.3 Handling changes to data and workload
The supervised ML techniques (see Section 3) assume that the
data and workload, remain unchanged. When there are significant
changes in data or workload, we need to re-invoke populateCache
as well as the module for training ML models for getPlan. For
the latter, we need to first generate the training data followed by
model retraining for the supervisedmodels, whereas bandit learners
can adapt by re-training continuously, as empirically validated
in Section 6.5. Data changes can be detected by leveraging the
mechanism that exist in most DBMSs to trigger updates to statistics,
whereas workload drift can potentially be tracked by adapting
techniques from the literature [36]. Evaluation of these proposals
for PQO is an interesting area of future work.

6 EXPERIMENTS
In this section, we evaluate: (a) getPlan for optimizer estimated cost
using supervised ML models (described in Section 3). (b) populate-
Cache algorithm (Section 5). (c) getPlan for execution cost using
the contextual multi-armed bandit approach (Section 4).

6.1 Setup
Databases and parameterized queries: We work with two syn-
thetic databases TPC-DS (100 GB) [2], TPC-H (skewed, 10 GB) [3]
and one real-world customer database REAL1 (97GB). All experi-
ments are conducted on Microsoft SQL Server 2017 DBMS. In total,
we evaluate 25 distinct parameterized queries across the databases.7
More than half of these parameterized queries contain complex SQL
constructs such as multiple SELECT clauses with UNION OR IN-
TERSECT operator, sub-queries including those with EXISTS and
NON-EXISTS clauses, and outer joins. Specifically for REAL1, the
queries have between 5 to 10 joins (including outer joins). The rest
of the parameterized queries are single block queries with joins of
four or more tables.
Query instance generation: The number of parameterized pred-
icates per query template vary from 3 to 16 (with a median of 9).
For REAL1, the number of parameterized predicates vary between
8 and 16. For each parameterized query, we generate 2000 distinct
query instances by instantiating the parameterized predicates with
binding values. For each parameterized predicate, we randomly
choose a value from a pre-determined space of bindings with ex-
ponentially distributed selectivities. Since all instances are distinct,
the training and test sets for ML models have no overlap.

7In particular, we experimented TPC-DS queries [16,17,18,24,25,35,38,69,91] and TPC-H
queries [2,5,7,8,9,10,16,20,21] and 7 queries from REAL1.
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Model setup: Our experiments use XGBoost [15] models with 16
KB memory constraint and predicate selectivities as input features,
unless specified otherwise.

Selectivity 1

Se
le

ct
iv

it
y 

2

P1 P2 P3 P4

Selectivity 1

Se
le

ct
iv

it
y 

2

SCR
Density

MR
PCM

Prior online techniques create local regions 
based on a small number of examples to 

approximate near-optimality of plans

ML models identify patterns in 
many examples to partition the entire 

selectivity space into plan regions

Figure 4: Past online techniques vs. ML based getPlan

Alternative PQO techniques: We compare with the following
prior online PQO techniques: (1) Merging-Ranges (MR) [32], (2)
PCM, (3) SCR [22] (4) Density8. Unlike our approach, these baselines
interleave getPlan and populateCache in an online manner as query
instances are processed. Figure 4 provides a visual comparison of
plan regions created by the proposed ML based getPlan as well as
the prior online techniques. To ensure fair comparison, we adapt
evaluation of these techniques as follows (except for the end-to-end
evaluation in Section 6.4): (a) we restrict all methods to the same
fixed set of plans, (b) existing techniques refer to optimizer when
their getPlan fails to pick one of the cached plan, we replace this
optimizer call with a method that recosts the cached plans to return
the best plan - it takes less time than optimizer call and retains the
semantics of optimal plan choice.
Machine: All the experiments were conducted on a machine with
a 2-socket, Intel(R) Xeon(R) E5-2660 CPU @ 2.60GHz, with 20 total
cores, 192GB RAM and a 2TB local SSD.
Viewing Figures: We recommend using a colour printout since
the figures use colours.

6.2 Optimizer cost based getPlan
We have three main parts of the experiment that demonstrate:
• Our getPlanmethod that uses supervised ML models can achieve
cost sub-optimality equivalent to the best of the prior techniques
while being orders of magnitude faster than them.

• While both classification and regression formulations produce
getPlan with high accuracy, the regression formulation achieves
better tail sub-optimality than classification when training data
size is small.

• The sensitivity of ML models to memory budget, training data
size, features, and model type.
The two metrics we use are the getPlan time and the optimizer

estimated cost sub-optimality for getPlan (see Section 2.1).
Evaluation methodology: For each query template we found a
set of good plans using the populateCache algorithm described in
Section 5. The size of this set varies from 4-7 depending on the
8Our implementation of the density based plan selection [9] where its getPlan module
finds the count of all plans in a selectivity neighborhood, and if there is a plan that
appears more frequently than all other plans combined, return the plan. Otherwise,
the best among all cached plans is returned.

(a) Geometric mean (b) 95th percentile

Figure 5: Aggregate sub-optimality and mean getPlan time
for various PQO techniques

query template. We then re-costed this plan set on all the 2000
instances of a query template. We use this plan-recost matrix for
the experiment. Each PQO technique is run on 1600 instances per
query template during which they construct their getPlan logic.
Similarly, the supervised ML methods are given the same set of
1600 instances to train. We then evaluated the getPlan time and
cost sub-optimality of each method on the remaining 400 instances
per query template. We repeat this experiment 10 times for each
query template with different subset of 1600 out of 2000 instances.
In total, we collect the cost sub-optimality values and getPlan times
over 400 instances × 10 repetitions × 25 query templates.

6.2.1 Sub-optimality vs. getPlan time. Figure 5a plots themean
getPlan time (in milliseconds) vs. the geometric mean of cost sub-
optimality aggregated over all experiments across all parameterized
queries. We see that both classification and regression based su-
pervised ML techniques are significantly better in one or both
dimensions when compared to all techniques evaluated, sometimes
by orders of magnitudes. We observe similar behavior even with
95𝑡ℎ percentile sub-optimality as shown in Figure 5b. As expected,
Opt-Once has the worst sub-optimality, but the getPlan is fastest
since the logic is trivial. Among other prior techniques, (i) Merging
Ranges (MR) has relatively small mean getPlan time, but suffers
from a significantly higher mean and tail cost sub-optimality, and
(ii) SCR achieves near-optimal getPlan at the expense of very high
getPlan time, due its reliance on invocation of the optimizer (and
re-cost) calls during getPlan. The remaining techniques such as
PCM and Density fall in-between the two, and are significantly
worse than the ML methods in both dimensions. Classification and
regression based getPlan are comparable in both 95th percentile
sub-optimality (more details in Section 6.2.2) as well as getPlan
time. Note that regression models have getPlan times comparable to
classification version since the same memory constraint is enforced
for both.

Next, in Figure 6a, for each technique we plot different per-
centiles ranging from 75𝑡ℎ to 99𝑡ℎ , of the sub-optimalities aggre-
gated over all experiments. Supervised ML techniques are shown in
red, while other techniques are shown in black. Both Opt-Once and
MR suffer from sub-optimality >2 for more than 80% of the queries.
While PCM, Density, and SCR pick near optimal plans for ≈ 90% of
the queries, this comes at the expense of significantly higher mean
getPlan time as noted earlier. Supervised ML methods outperform
all prior techniques in terms of sub-optimality of plan choices.

408



(a) Sub-optimality profile (b) getPlan time distribution

Figure 6: Detailed comparison among PQO techniques

Figure 6b drills down into getPlan times, and uses boxplots to
summarize the distribution for each technique. The getPlan tech-
nique using supervised ML models leads to low mean and variance.
Prior techniques have much higher variance, with high getPlan
time when they fall back to invoking the query optimizer. The tech-
niques, in terms of the increasing order of optimizer invocations
for getPlan are: supervised models (none), MR, Density, SCR/PCM.
Note that SCR and PCM incur larger optimizer invocations due
to their conservative approach that is reflected in their better sub-
optimality profile in Figure 6a. Overall, supervised models have the
smallest getPlan time as well best sub-optimality profile. Observe
that, all the optimizer interaction required for the supervised ML
methods happens in the offline training phase.

6.2.2 Classification vs. regression. As discussed in Section 3.4.2,
when classification mis-classifies an instance it is not equipped to
consider the sub-optimality of the replacement plan. Such mis-
classifications happen more often when training data is small, lead-
ing to sparse regions in a large selectivity space. With 100 training
examples, classification models exhibit tail sub-optimality as large
as 100, while regression models produce 5× better plans.

6.2.3 Sensitivity experiments for ML models. Next, we eval-
uate the sensitivity of supervised ML models with regard to cost
sub-optimality metric. We vary model-size, training-size, model-
type and features from their default values. We use regression
models in these experiments, classification models show similar
trends.

(A) (B)

(C) (D)

Figure 7: Sub-optimality impact of regression model param-
eters [(A) Model memory (B) Training size (C) Model types
(D) Features]

Memory: Figure 7(A) shows that the sub-optimality improves as
we increase the model-size from 2 KB to 100 KB with diminishing

(a) Plan set size (𝐾 ) (b) Instances optimized

(c) Instances recosted (d) Combined analysis

Figure 8: Sub-optimality impact of populateCache parameters

returns. Since a cached plan typically takes at least 100KB of mem-
ory, and often more for large plans, we expect our default value of
16KB to be acceptable in practice.
Training size: When the training size is increased from 100 to
1600, we find that the sub-optimality improves significantly as
shown in Figure 7(B). We believe that 400 examples can provide
a reasonable balance between training cost and sub-optimality, as
more examples bring gains only in the very high percentiles.
Model type: With regard to model type, we found that tree based
models, i.e., regression trees and their boosted versions (XGBoost),
significantly outperform other simpler models such as linear and
support vector models, as shown in Figure 7(C).
Features: We also evaluated multiple alternative feature sets: (a)
selectivities only, (b) predicate bindings only, and (c) both – the
results are summarized in Figure 7(D). We find that selectivity
features are compact, accurate, available in most DBMSs and fast to
compute. While we observe that only predicate bindings can also
lead to reasonably accurate models9, our evaluation did not find
any significant advantage of using them as additional features.

6.3 Evaluation of populateCache
In this section, we evaluate the quality and efficiency of our offline
populateCache module (Section 5). Our claim is that a relatively
simple set of heuristics enables our technique to scale well to large
input workloads while achieving low sub-optimality for the work-
load. Recall that the trade-off that populateCache navigates is the
time spent in terms of optimizer and re-cost calls vs. the quality of
set of plans identified. The parameters to the algorithm is the set
size𝐾 , number of query instances to be optimized(𝑁𝑜𝑝𝑡 ), number of
instances to be re-costed (𝑁𝑟𝑒𝑐𝑜𝑠𝑡 ). We perform a controlled study
of the sensitivity of each parameter on quality and running time
of the algorithm. We vary one parameter at a time, and set the
others to a high default value. The default values for the param-
eters are 𝐾 = 10, 𝑁𝑜𝑝𝑡 = 2000 and 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 = 2000. Recall from
Section 2.1 that for any populateCache algorithm we can define its
sub-optimality with respect to an ideal (potentially unattainable)

9It may be interesting to further explore scenarios where selectivity computation is
not feasible, e.g., parameterized predicates on views or user-defined predicates.
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cost, i.e., the cost of the plan obtained if the query instance were
optimized. We use this metric in our evaluation.
Evaluation methodology: For each of the 25 query templates,
we collect the 2000 query instances. We optimized the 2000 query
instances to obtain a set of distinct plans. In order to generate
the complete plan-recost matrix, we re-costed each distinct plan
over all 2000 instances. We use this data to run our algorithm
while varying the set size(𝐾), number of instances to optimize/re-
cost(𝑁𝑜𝑝𝑡 , 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 ). Since our algorithm chooses instances randomly,
we repeat the experiment 10 times. We then evaluate the plan set
returned by our algorithm on the entire set of 2000 instances. We
report the geometric mean over all these points.
Varying number of plan to cache (𝐾): Here, we vary 𝐾 while
fixing both 𝑁𝑜𝑝𝑡 and 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 to 2000. Since we provide the entire
plan re-cost matrix, in effect this experiment evaluates the quality
of the greedy algorithm. Given the entire plan re-cost matrix, the
greedy search algorithm runs within a second. The plan re-cost
matrix generation time dominates the greedy run time. Hence, we
focus on the sub-optimality of the plan set chosen by the algorithm.
Figure 8a shows that the greedy algorithm significantly improves
sub-optimality when we vary the set size (𝐾 ) from 2-10, and is able
to achieve a geometric mean sub-optimality below 1.2, with around
6 plans.
Varying number of instances for re-costing/optimizing: In
the two experiments below, we fix 𝐾 to 10. In Figure 8b, we vary
the 𝑁𝑜𝑝𝑡 from 10 to 2000, while fixing the 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 at 2000. We find
that choosing 100-200 instances to optimize for obtaining candidate
plans works well across all parameterized queries we evaluated,
and there are diminishing returns of optimizing more instances. In
Figure 8c, we vary 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 from 10 to 2000, while fixing 𝑁𝑜𝑝𝑡 to
2000. Once again, we observe diminishing returns in sub-optimality.
Choosing 200-400 instances for re-costing works well across all
parameterized queries we evaluated.
Combining parameters: Finally, Figure 8d shows that the sub-
optimality of our algorithm with the parameter choices (𝐾 = 6,
𝑁𝑜𝑝𝑡 = 100, 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 = 200) is comparable with the maximum
parameter values possible (𝐾 = 10, 𝑁𝑜𝑝𝑡 = 2000, 𝑁𝑟𝑒𝑐𝑜𝑠𝑡 = 2000)
until 95𝑡ℎ percentile, and significantly better than (𝐾 = 6,𝑁𝑜𝑝𝑡 = 10,
𝑁𝑟𝑒𝑐𝑜𝑠𝑡 = 20). The greedy search time is negligible compared to
the optimizer and recost calls.

Figure 9: End to end comparison of optimizer cost based get-
Plan with prior online PQO techniques

6.4 End-to-end evaluation
We compare the proposed PQO techniques with SCR [22] and Merg-
ing Ranges [32], for the same sequence of query instances and report

the sub-optimality for each technique with respect to Opt-Always.
Therefore, it captures the combined sub-optimality introduced by
populateCache and getPlan. Since prior techniques are allowed
to invoke the optimizer to obtain a new plan, we also report the
optimizer overhead (left chart), i.e., fraction of instances for which
an optimizer call is made, in addition to the sub-optimality met-
ric (right chart), in Figure 9. We use the terms MR_limited and
SCR_limited to denote adaptions of prior techniques that are al-
lowed to make optimizer calls, but are restricted to use 𝐾 cached
plans only to ensure a fair comparison.

We reportmultiple variants of our approachwhere𝑚𝑜𝑑𝑒𝑙_𝑝𝑐𝑋_𝑡𝑌
represents regression models trained using X and Y instances for
populateCache and getPlan training, respectively. For bootstrap-
ping, we use Opt-Always before the supervised regression model
for getPlan is trained, however any other technique with lower
optimizer overhead could also be used. We make the following ob-
servations: (a) SCR_limited is a conservative approach, and leads to
lowest sub-optimality. However, it invokes the optimizer for more
than 40% of the queries. (b) MR_orig invokes the optimizer much
less often compared to SCR_orig, but the optimize fraction rises
close to 1.0 for MR_limited due to the limit on plan cache. Even
while using more cached plans, MR_orig faces steep increase in
mean sub-optimality because its getPlan is based on simplifying
assumptions that often fails to hold. (c) Regression based models
lead to even worse sub-optimality than MR_orig when we use a
small number of instances (𝑋 = 25 and 𝑌 = 100) for populateCache
and getPlan training. However, it improves quickly with increase
in size of query logs used for training, achieving reasonable accu-
racy with 𝑋 = 100 and 𝑌 = 200. Further increasing training data
leads to only marginal gains in mean sub-optimality. The initial
optimizer overhead amortizes quickly as no optimizer invocations
happen after getPlan is trained. Note that offline overhead spent
in populateCache and training models are not shown in Figure 9.
Overall, our techniques deliver low sub-optimality compared to
Opt-Always with small offline training cost.

6.5 Execution cost based getPlan
The key claims of this experiment are:
• The bandit learners converge to picking plans with lower execu-
tion cost compared to when the plan with the lowest optimizer
cost is picked.

• The sub-optimality of bandit learner in the initial phase can be
largely mitigated by choosing the best plan according to opti-
mizer estimated cost for the initial phase, and then switching to
execution cost based getPlan.

• The bandit learner adapts gracefully to workload drift, addition
and removal of plans, as well as noise in execution time.

Evaluation methodology: Similar to the previous section, for
each query template we found a set of good plans using the pop-
ulateCache algorithm described in Section 5. The size of this set
varies from 4-7 depending on the query template. We generate 2000
query instances for evaluating the getPlan policy. We provide a
sequence (a random permutation) of the 2000 query instances to
the getPlan policy, and for each instance it chooses a plan from
the fixed set of plans. This chosen plan is then executed, and the
feedback provided to the policy is this execution cost. The getPlan
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policy may use this feedback to improve its future decisions. We
repeat this process 50 times using different random sequences.
Training models for contextual bandits: We use exponential
batch sizes (10,20,40,80,160..) for training the bandit learner, i.e.,
train after processing 10,30,70,150... query instances. The training
time for the models is approximately 10ms per batch, and even
smaller for the initial batches. In practice, the cost of retraining
models for the bandit learner does not add significant overheads.
Sub-optimality metric: Recall from Section 2.1 that execution
cost sub-optimality of a getPlan policy is the ratio of execution cost
(i.e., CPU time or elapsed time) of the plan chosen by the policy
divided by the execution cost of the best plan in the set. We report
the execution cost sub-optimality metric using CPU time metric.

We compare among the following strategies: (a) optimizer-cost-
baseline: It picks the best among the 𝐾 cached plans based on the
optimizer estimated costs. (b) bandit-random: It uses bandit based
getPlan for all query instances, therefore, makes randomized deci-
sions for the initial queries in the sequence. (c) bandit-mitigated:
It uses the optimizer-cost-baseline for the first 50 instances in the
sequence and then switches to the bandit based getPlan learned
with the execution cost feedback from first 50 instance as initial
data. (d) bandit-exec-bootstrap: It picks the best plan in terms of
execution cost for the first 50 instances, which is found by executing
all K plans in parallel until the best plan finishes, and then switches
to bandit based getPlan.
Sub-optimality evaluation: The bandit learners use execution
cost feedback obtained from a sequence of query executions to im-
prove their decisions. For each experiment, we evaluate the strate-
gies with a random sequence of 500 query instances from a specific
query template and collect the execution cost sub-optimality of the
500 getPlan choices. We repeated this experiment with 25 Query
templates and 50 different random sequence of instances. In total,
there are 25 × 50 such experiments and in each experiment each
strategy makes 500 plan choices. We aggregated the geometric
mean and tail sub-optimality for each of the 500 plan choices across
the 25×50 experiments. We plot the aggregated metrics in Figure 10.
To observe the trends clearly, we report the sliding window average
over 25 instances.

Note that the execution cost sub-optimality of optimizer-cost-
baseline is large, and does not improve even after processing many
queries. The bandit-random strategy starts with significantly sub-
optimal decisions, however starts converging to a better policy than
optimizer-cost-baseline, as more execution feedback is collected. The
bandit-mitigated strategy is able to largely avoid the initial phase of
sub-optimal decisions, and exhibits similar sub-optimality profile
as the bandit-random strategy after ∼100 queries, despite the biased
start. Both the bandit strategies converge to small sub-optimality
profiles than optimizer-cost-baseline. The trends are similar for both
the geometric mean and tail (95th percentile) sub-optimality. Finally,
while the expensive baseline bandit-exec-bootstrap converges to a
slightly better sub-optimality than bandit-mitigated, the mean sub-
optimality in the initial phase is too high to be practical.

6.5.1 Evaluating convergence of bandit learners. We now evaluate
factors that may impact convergence pattern of bandit learners.
Impact of workload drift: Figure 11a demonstrates the ability
of bandit learners to adapt to changes in workload distribution.

(a) Geometric Mean (b) Tail Sub-optimality

Figure 10: Execution sub-optimality of bandit learners

(a) Impact of workload drift (b) Impact of plan set drift

(c) Varying arm selection (d) Varying noise in rewards

Figure 11: Impact of (a) workload drift (b) plan set drift (c)
arm selection methods and (b) noise in execution rewards,
on the convergence of bandit learners

In this experiment, we evaluate bandit learners using a special-
ized sequence of query instances constructed to simulate work-
load drift. We first picked the top-3 selectivity dimensions that
have largest variance in our workload and construct the query se-
quence by picking the first 200 queries with smallest selectivities,
next 300 queries with medium selectivities, and then queries with
largest selectivities towards the end. The sub-optimality profile of
optimizer-cost-baseline provides evidence that the above design
leads to abrupt and significant changes in the workload distribu-
tion, providing an adversarial challenge to the bandit learners. We
observe that the bandit learners already start improving the sub-
optimality of getPlan choices for the first 200 queries but the tail
sub-optimality profile degrades quickly as the workload distribu-
tion shifts from small to medium selectivities. The bandit learns
start adapting again and converge to small sub-optimalities as more
queries are processed. While bandit-random faces less disruption
than bandit-mitigated, we believe that the bandit-mitigated is still
the preferred variant since it converges quickly when the workload
is stable and adapts reasonably well to the workload shift.
Handling plan changes: We evaluate how the contextual bandit
adapts to changes in the set of plans cached. Figure 11b shows the
sub-optimality impact of dropping half of the plans in the cache
(chosen at random) after 500 queries, and later adding the same set
of plans after 1000 queries. As expected, the sub-optimality degrades
after 500 queries, however, after adding the plans back bandit-
mitigated strategy quickly converges to its original performance,
by leveraging the previously collected execution cost feedback.
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Importance of Thompson Sampling: Next, we compare differ-
ent arm (plan) selection strategies for bandit learners: (1) 𝜖-greedy
(with 𝜖 = 0.1), (2) thompson-sampling (TS), and (3) upper-confidence-
bound (UCB). In terms of getPlan overhead, both 𝜖-greedy and TS
are efficient and comparable to supervised regression models. Both
TS and UCB incur relatively larger overhead in terms of memory
and training, as they maintain multiple regression models per plan,
e.g., TSk denotes TS with k models per plan. The tail sub-optimality
performance of each bandit variant is reported in Figure 11c. We
found that both TS and UCB outperform 𝜖-greedy in terms of sub-
optimality performance, demonstrating the advantage of TS or UCB.
We pick TS due to its getPlan efficiency advantage over UCB.
Handling noise in execution time: The execution time of a
query instance can vary depending on other queries that are exe-
cuting in the system (this variation is less for the CPU time metric).
Hence the feedback available to the bandit learner can be noisy. In
order to evaluate the effectiveness of the bandit learner with noisy
rewards, we scaled the actual execution time by a randomly gener-
ated value before providing it to the bandit learner. We multiply a
constant noise factor(𝑛𝑓 ) with a randomly generated value from
gamma distribution(𝐺𝑎𝑚𝑚𝑎(𝛼 = 2, 𝛽 = 2))10. Thus, the final exe-
cution time is 𝑇𝑟𝑢𝑒𝐸𝑥𝑒𝑐𝐶𝑜𝑠𝑡 × 𝑛𝑓 ×𝐺𝑎𝑚𝑚𝑎(2.0, 2.0). We achieve
different amounts of noise by changing this noise factor 𝑛𝑓 over the
values {0.0, 0.5, 1.0}. Figure11d shows that as we increase despite
the injection of significant noise the bandit learner improves over
time, however its rate of convergence slows down.

7 RELATEDWORK
PQO has been studied for over three decades leading to a large body
of relevant research work. We start by discussing the techniques
relevant to getPlan, which is the primary focus of this paper.
Prior work on getPlan: There have been several proposals with
focus on efficient getPlan: Merging Ranges [32], PCM, Ellipse [10],
density based clustering [9] and SCR [22]. However, they suffer from
a few important limitations. First, they assume that the plan cost
functions are linear and/or monotonic; these assumptions fail for
complex SQL queries [37] and leads to sub-optimal plan selection
- our empirical evaluation validates this limitation. Second, both
getPlan and populateCache modules are intertwined during the
online processing. As a result: (a) getPlan often falls back to an
expensive optimizer call (and recost calls in [22]) causing large
getPlan time especially for high-dimensional parameterized queries,
and (b) the getPlan is continuously adapted as more queries are
executed, making debugging difficult. In contrast, we propose to
decouple populateCache from getPlan and use getPlan based on
supervised MLmodels trained offline using data derived from query
logs, thereby making no assumption about the plan cost functions.
Empirically, we find these models make good decisions for getPlan.
Our decoupled architecture also ensures that the getPlan time is
consistently small.
Prior work on populateCache:A subset of prior works that aims
to find a single robust plan across the selectivity space [14, 16–
18, 27] is inherently limited in its ability to achieve near-optimal
plan quality. Hence, most proposals focus on finding the set of
10The percentile values of𝐺𝑎𝑚𝑚𝑎 (𝛼 = 2.0, 𝛽 = 2.0) are 5th =0.7 ,25th=1.9 ,50th=3.35
,75th=5.38 ,95th=9.4.

optimal plans across the full space of selectivities of parameterized
predicates [25, 28, 30]. Research on plan diagrams and their reduc-
tion [29, 37] demonstrated that a small number of plans (∼10) are
sufficient to achieve near-optimality across the selectivity space.
Follow up work on plan diagrams proved that the problem of find-
ing a small set of near-optimal plans from the set of optimal plans
across the selectivity space is NP-hard, and an efficient greedy al-
gorithm is a reasonable alternative to brute force search [20]. Our
empirical findings corroborate these observations, and we leverage
a greedy search algorithm for populateCache. However, the prior
works identified the small set of plans after enumerating all plans in
a large multi-dimensional selectivity space, which has prohibitive
cost beyond 5-6 dimensions [21]. In contrast, populateCache in
online PQO techniques [9, 10, 22, 32] is opportunistic: a query is
optimized only when the getPlan method finds that none of the
existing plans is near-optimal for the new incoming query. Our
approach can be viewed as a middle-ground between the above
mentioned extremes: we utilize the query logs to guide our candi-
date plan generation in the relevant parts of the large selectivity
space, and identify a small set of plans to seed the plan cache.
ML for query optimization: There have been many recent at-
tempts to improve query optimization using ML techniques (see
survey [31]), including techniques for index selection, knob-tuning,
cardinality estimation etc. The closest prior work aims to use ML
to improve plan selection for ad-hoc queries [34, 35], by using a
custom designed neural network model to predict execution cost of
an arbitrary execution plan. In contrast, we propose low overhead
models to pick one of a small set of plans for an individual pa-
rameterized query - a much simpler problem compared to [34, 35].
Our work is also similar to prior work [23, 24] that emphasize use
of low overhead ML methods to improve various aspects of query
optimization.

8 CONCLUSION
We revisit the important problem of parametric query optimiza-
tion in databases and propose three key ideas. First, we advocate
decoupling the problem of identifying which plans to cache (popu-
lateCache), from the problem of selecting, for a given instance of
the parameterized query, which plan to use from the set of cached
plans (getPlan). Second, we develop techniques that leverage his-
torical query logs for both populateCache and getPlan problems.
Unlike prior work, our approach is applicable for arbitrary complex
SQL without having to make any assumptions on the cost behavior
of plans. For populateCache we present an efficient and scalable
algorithm to choose a small set of plans to cache to minimize the ag-
gregate sub-optimality across queries in the log. In contrast to prior
techniques, for getPlan we are able to achieve both low latency and
low sub-optimality using machine learning models trained on query
logs. Finally, we also introduce a novel formulation of getPlan for
PQO that leverages the knowledge of execution time information in
query logs instead of using optimizer estimated cost to circumvent
inaccuracies of the query optimizer’s costing. Our solution adapts
the contextual bandit formulation from reinforcement learning, and
preliminary experimental results show that this approach results
in lower execution cost when compared to the best solution for the
traditional PQO formulation.
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