
255

Rethinking Learned Cost Models: Why Start from Scratch?

JIANI YANG, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
SAI WU∗, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
DONGXIANG ZHANG, Zhejiang University, China
JIAN DAI, Alibaba Group, China
FEIFEI LI, Alibaba Group, China
GANG CHEN, Zhejiang University, China

Recent work has applied learning-based approaches to replace the conventional cost model, but these ap-
proaches are expensive to train and result in high inference overheads. Furthermore, due to a lack of ex-
plainability, models trained for one database may not be easily transferred to another, requiring a complete
re-training process. In this paper, we propose a new approach to tuning the conventional formula-based cost
model for DBMS. Our approach involves identifying important parameters within the cost model rules and
using a fast-learning model to adjust them for each specific hardware and software configuration of the DBMS
deployment. We dynamically partition the search space of hardware and software configurations to gradually
refine the cost model estimation. To apply our cost model to a new DBMS instance, we start with a rough
estimation and progressively refine it with finer granularity. Our experiments with different hardware and
software configurations show that our approach enables the conventional cost model to be quickly transferred
to any database instance, achieving comparable results to a fine-tuned learning-based model. Overall, our
approach provides a practical solution to tuning the conventional cost model for DBMS, with significant
benefits in terms of reduced cost and improved performance.

CCS Concepts: • Information systems→ Query optimization.

Additional Key Words and Phrases: Cost model, query optimization, explainability

ACM Reference Format:
Jiani Yang, Sai Wu, Dongxiang Zhang, Jian Dai, Feifei Li, and Gang Chen. 2023. Rethinking Learned Cost
Models: Why Start from Scratch?. Proc. ACM Manag. Data 1, 4 (SIGMOD), Article 255 (December 2023),
27 pages. https://doi.org/10.1145/3626769

1 INTRODUCTION
Database researchers and developers have been working for a long time to summarize empirical
formulas that can be used to estimate the cost of a database query. These formulas, collectively
known as a formula-based cost model[31], reflect how a database system interacts with the operating
system and hardware components such as memory, CPU, and disk. Despite the widespread use of
formula-based cost models, they typically require database administrators (DBAs) to tune certain
∗Sai Wu is the corresponding author.

Authors’ addresses: Jiani Yang, jianiyang_cs@zju.edu.cn, The State Key Laboratory of Blockchain and Data Security, Zhejiang
University, China; SaiWu, wusai@zju.edu.cn, The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
China; Dongxiang Zhang, zhangdongxiang@zju.edu.cn, Zhejiang University, China; Jian Dai, yiding.dj@alibaba-inc.com,
Alibaba Group, China; Feifei Li, lifeifei@alibaba-inc.com, Alibaba Group, China; Gang Chen, cg@zju.edu.cn, Zhejiang
University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/12-ART255 $15.00
https://doi.org/10.1145/3626769

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0005-8290-7267
HTTPS://ORCID.ORG/0000-0002-1866-9197
HTTPS://ORCID.ORG/0000-0002-9964-2470
HTTPS://ORCID.ORG/0009-0009-4002-2339
HTTPS://ORCID.ORG/0009-0003-0770-5775
HTTPS://ORCID.ORG/0000-0002-7483-0045
https://doi.org/10.1145/3626769
https://orcid.org/0009-0005-8290-7267
https://orcid.org/0000-0002-1866-9197
https://orcid.org/0000-0002-9964-2470
https://orcid.org/0009-0009-4002-2339
https://orcid.org/0009-0003-0770-5775
https://orcid.org/0000-0002-7483-0045
https://doi.org/10.1145/3626769

255:2 Jiani Yang et al.

hyperparameters. For example, in PostgreSQL, users can set a ratio to normalize I/O and CPU costs
in the formula-based cost model to reflect their relative importance, allowing the query optimizer
to compare them. Even if manual tuning is required, formula-based cost models have proven to be
effective in many cases and are by far widely used in many mainstream database systems today.

In recent years, deep learning models have gained a lot of attention in the field of cost estimation
for database systems [11, 21, 23, 36, 43, 47]. These models leverage end-to-end neural networks
to estimate the cost of a query. Given a large number of training samples, learning-based models
can generalize the correlation between the query and the cost, and hence often produce more
reliable cost estimation results than formula-based models. While they have shown promising
results, learning-based models differ from formula-based models in that they are more difficult to
interpret and use. This is because deep learning models treat cost estimation as an opaque box
process, making it challenging for database administrators to understand how the cost values are
produced. When the predicted cost values deviate significantly from the actual values, the learned
end-to-end model needs to be retrained, which is costly.
General speaking, deploying learning-based models as the in-database cost models face three

key challenges:

Generalization: Typically, learning-based models are trained on a specific database with specific
hardware and software configurations. As a result, transferring these models to a new
database or different hardware/software environment is not feasible, and a complete re-
training process is required. Although building a general pre-trained model for all DBMSs
and possible environments would be ideal, it is not feasible in the near future due to the lack
of a large repository of structured datasets. Thus, current solutions must build models in an
ad-hoc way, which can be time-consuming and resource-intensive.

Training Overhead: Learning-based models require a significant amount of training data, which
is typically generated by executing queries on the underlying DBMS to collect their physical
plans and corresponding processing costs. However, the size of the query space grows
exponentially with the number of tables and columns, making it impractical to perform a
thorough sampling. Additionally, the overhead of obtaining a single sample is equal to the
processing latency of the query, which can be significant for complex queries. As a result,
obtaining enough training data to train a learning-based model can be a time-consuming and
expensive process.

Explainability: Furthermore, learning-based models are essentially opaque boxes, which perform
end-to-end predictions without providing insights into how the cost estimate was generated.
As a result, it is challenging for database administrators to conduct root cause analysis for
unexpected processing costs or slow queries. In contrast, formula-based cost models can be
more transparent and easier to interpret, allowing DBAs to tune specific hyperparameters and
adjust the cost model accordingly. This transparency enables DBAs to understand the cost
estimation process and identify any potential issues, leading to more effective performance
tuning.

Therefore, the ideal approach would be to combine the advantages of formula-based models, such
as their low cost, generalization, and explainability, with the precision of learning-based models. By
doing so, we can effectively improve the cost model of existing DBMS. Our strategy is to identify
the limitations of formula-based models that result in imprecise cost estimations and address them
using light-weighted learning-based approaches. The hybrid model we aim to develop should be
easy to train, capable of being transferred to different hardware and software environments, and
provide explainable results. Such a hybrid model can improve the precision of cost estimation while

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:3

preserving the transparency and interpretability of the formula-based models, thus providing a
more effective solution for DBAs to optimize query performance.

In this paper, we argue that the conventional formula-based model can still provide a comparable
estimation result to the learning-based one, if its hyperparameters are properly tuned based on
hardware, software and data distribution. To achieve this objective, we investigate the potential
configurations that affect the hyperparameters of the formula-based cost model and train a tree-
like model to recommend settings for all involved hyperparameters on a given combination of
configurations. In order to differentiate between the two types of parameters, we employ the term
C-param to denote configuration parameters and R-param to denote the hyperparameters of the
formula-based cost model.
To model the correlations between those two types of parameters, we introduce a two-stage

learning framework that accounts for different configurations during distinct training stages. In
the offline stage, we identify possible static configurations that affect R-params to establish a
base model for different hardware and software configurations, providing a warm-up. During the
online stage, we enhance the base model by incorporating additional configuration parameters that
capture online dynamics, based on query performance statistics. The base model is then fine-tuned
gradually by splitting its leaf nodes via the activated C-params. The splitting process resembles
that of a decision tree, but with customized splitting criteria to make the prediction of R-params as
accurate as possible. Each leaf node represents a subspace of C-params that we use to generate
predictions of R-params for various physical operators. When a new query is submitted to the
DBMS, we search the tree for the involved subspace and replace the default values of R-params
with our predicted values. This process is transparent to the query optimizer.

We make the following contributions in this paper:
• We propose the ParamTree model, which uses the formula-based model as a template and
instantiates it with the predicted R-params. Experimental results demonstrate that our
approach provides more accurate (or comparable) estimation results than retrained or fine-
tuned deep learning models with fewer examples.
• ParamTree exhibits good adaptability, allowing for the reuse of a trained model for different
hardware configurations, software configurations, and varying data distributions.
• Our model can be integrated non-intrusively with existing query optimizers and its results
are explainable.

The remainder of the paper is organized as follows. Section 2 introduces the backgrounds and
gives an overview of our approach. Section 3 and Section 4 discuss the offline training stage and
online refinement stage of our approach, respectively. Section 5 evaluates the proposed approach
and we briefly introduce some related work in Section 6. Section 7 concludes the paper.

2 SYSTEM OVERVIEW
In this section, we first explicitly define our problem and then give an overview of our approach.

2.1 Problem Definition
Major database systems such as PostgreSQL, MySQL, and Oracle use formula-based cost models to
estimate computation overhead and disk I/O for specific operators. Table 11 summarizes the built-in
formulas in PostgreSQL for estimating startup and runtime costs of several common physical
operators, including SeqScan, IndexOnlyScan, IndexScan, Sort, and HashJoin. The startup cost
refers to the overhead incurred before fetching the first tuple, while the runtime cost denotes the
1These cost formulas are summarized from the source code of PostgreSQL. All values except for the R-params, which can
be customized by the user, can be calculated. Due to space limitations, we do not elaborate on all operators’ cost formulas.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:4 Jiani Yang et al.

Operator Cost Type Cost Formula
startup_cost 0

cpu (𝑟𝑡 + 𝑟𝑜 × 𝑁𝑞𝑝) × 𝑡𝑢𝑝𝑙𝑒𝑠_𝑛𝑢𝑚SeqScan runtime_cost disk 𝑟𝑠 × 𝑡𝑎𝑏𝑙𝑒_𝑝𝑎𝑔𝑒𝑠
startup_cost ⌈log2 𝑖𝑛𝑑𝑒𝑥_𝑡𝑢𝑝𝑙𝑒𝑠⌉ × 𝑟𝑜 + (𝑖𝑛𝑑𝑒𝑥_𝑡𝑟𝑒𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 + 1) × 50 × 𝑟𝑜

cpu 𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑖𝑛𝑑𝑒𝑥_𝑡𝑢𝑝𝑙𝑒𝑠 × (𝑟𝑡 + 𝑟𝑖 + 𝑟𝑜 × 𝑁𝑐𝑝)IndexOnlyScan runtime_cost disk ⌈𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑖𝑛𝑑𝑒𝑥_𝑝𝑎𝑔𝑒𝑠⌉ × 𝑟𝑟
startup_cost ⌈log2 𝑖𝑛𝑑𝑒𝑥_𝑡𝑢𝑝𝑙𝑒𝑠⌉ × 𝑟𝑜 + (𝑖𝑛𝑑𝑒𝑥_𝑡𝑟𝑒𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 + 1) × 50 × 𝑟𝑜

cpu 𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑖𝑛𝑑𝑒𝑥_𝑡𝑢𝑝𝑙𝑒𝑠 × (𝑟𝑖 + 𝑟𝑜 × 𝑁𝑐𝑝 + 𝑟𝑡 + 𝑟𝑜 × 𝑁𝑞𝑝)

IndexScan runtime_cost disk

⌈𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑖𝑛𝑑𝑒𝑥_𝑝𝑎𝑔𝑒𝑠⌉ × 𝑟𝑟 +𝑚𝑎𝑥_𝐼𝑂_𝑐𝑜𝑠𝑡+
𝑖𝑛𝑑𝑒𝑥𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛2 × (𝑚𝑖𝑛_𝐼𝑂_𝑐𝑜𝑠𝑡 −𝑚𝑎𝑥_𝐼𝑂_𝑐𝑜𝑠𝑡)
(𝑚𝑎𝑥_𝐼𝑂_𝑐𝑜𝑠𝑡 = 𝑟𝑟 × Φ𝑀𝑎𝑐𝑘𝑒𝑟𝑡−𝑙𝑜ℎ𝑚𝑎𝑛 ,
𝑚𝑖𝑛_𝐼𝑂_𝑐𝑜𝑠𝑡 = (⌈𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑡𝑎𝑏𝑙𝑒_𝑝𝑎𝑔𝑒𝑠⌉ − 1) × 𝑟𝑠 + 𝑟𝑟)

cpu 𝐶𝐿𝑡 + 2 × 𝑟𝑜 × 𝑡𝑢𝑝𝑙𝑒𝑠_𝑛𝑢𝑚 × log2 𝑡𝑢𝑝𝑙𝑒𝑠_𝑛𝑢𝑚
startup_cost disk

When input_bytes > work_mem:
2 × ⌈ 𝑖𝑛𝑝𝑢𝑡_𝑏𝑦𝑡𝑒𝑠

𝐵𝐿𝐶𝐾𝑆𝑍
⌉ ×max(1, ⌈𝑙𝑜𝑔𝑚𝑒𝑟𝑔𝑒𝑜𝑟𝑑𝑒𝑟 𝑖𝑛𝑝𝑢𝑡_𝑏𝑦𝑡𝑒𝑠𝑐𝑤

⌉) × (0.75𝑟𝑠 + 0.25𝑟𝑟)Sort
runtime_cost cpu 𝑟𝑜 × 𝑡𝑢𝑝𝑙𝑒𝑠_𝑛𝑢𝑚

cpu 𝐶𝐿𝑠 +𝐶𝑅𝑇 + 𝑅𝑟 × (𝑟𝑜 × 𝑁𝑐𝑝 + 𝑟𝑡)startup_cost disk sgn(𝑛𝑏𝑎𝑡𝑐ℎ𝑒𝑠 − 1) × (𝑟𝑠 × 𝑃𝑟)

cpu 𝐶𝐿𝑡 −𝐶𝐿𝑠 + 𝑟𝑜 × 𝑁𝑐𝑝 × 𝑅𝑙 + 𝑁𝑐𝑝 × 𝑟𝑜 × 𝑅𝑙 × 𝑅𝑟 × 𝑖𝑛𝑛𝑒𝑟𝑏𝑢𝑐𝑘𝑒𝑡𝑠𝑖𝑧𝑒 × 0.5
+𝑅𝑜 × (𝑟𝑡 + 𝑟𝑜 × 𝑁𝑞𝑝)HashJoin runtime_cost disk sgn(𝑛𝑏𝑎𝑡𝑐ℎ𝑒𝑠 − 1) × (𝑟𝑠 × (𝑃𝑟 + 2 × 𝑃𝑙))

Table 1. Main cost formulas and R-params for PostgreSQL. R-params are explained in table 2.

cost of manipulating the remaining tuples. These cost formulas typically represent a weighted
aggregation of one or more elemental factors. For example, the disk I/O of HashJoin is estimated
as an aggregation of 𝑃𝑟 and 𝑃𝑙 , which refer to the number of pages that the right and left relations
occupy, respectively. In this cost formula, 𝑟𝑠 is a weight parameter, referred to as R-params in this
paper. Table 2 shows the five overall R-params for PostgreSQL, including 𝑟𝑡 , which refers to the
CPU cost of processing a tuple. All the formulas in Table 1 follow the same linear template:

𝑐𝑜𝑠𝑡𝑜𝑝 =
∑

𝑓𝑖 (𝑜𝑝) × 𝑟𝑖 (1)

where 𝑟𝑖 refers to the corresponding R-params, 𝑓𝑖 (𝑜𝑝) denotes the number of cost units for 𝑟𝑖 , which
is determined by the execution of the physical operator.

Optimizer Parameter Symbol Default Description
cpu_tuple_cost 𝑟𝑡 0.01 The CPU cost of processing a tuple.
cpu_operator_cost 𝑟𝑜 0.0025 The CPU cost of processing an operator.
cpu_index_tuple_cost 𝑟𝑖 0.005 The cost of processing an index entry.
seq_page_cost 𝑟𝑠 1 The cost of sequentially accessing a disk page.
random_page_cost 𝑟𝑟 4 The cost of randomly accessing a disk page.

Table 2. R-params for cost model

Optimizing the performance of the cost model requires considering the impact of external factors
that may be ignored when using default R-params. We have conducted extensive analysis to identify
the external factors that may affect R-params. For example, we observed that the I/O time varies
significantly when executing the same query on HDD and SSD, which affects the adjustment of
I/O-related R-params. Similarly, processing different types of data(integer, float) also results in
varying execution times, affecting the adjustment of CPU-related R-params.

These factors are context-aware and referred to as C-params, including hardware resources,
underlying OS and DBMS, data distribution, and query workload. To determine the optimal R-
params for a specific operator in a query execution plan, these external factors must be taken
into account. We can classify the configurations of hardware, OS, and database as static C-params

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:5

Category C-params

Static C-params
hardware IO read/write speed, CPU clock speed, Storage capacity etc.
software Windows/Linux/MAC, PostgreSQL/MySQL, Row/Column etc.

DBMS configuration parameters require a server restart to take effect: Shared_Buffers, Block_Size etc.

Dynamic C-params
Query-Related Physical Operator, Structure of the query etc.
Data-Related Column Offset, Data Type, Index Correlation etc.

DBMS configuration parameters can be modified without restarting the server : Work_Mem, Temp_Buffers etc.
Table 3. Types of C-params.

since they remain unchanged during query processing, while parameters such as data type and
column correlation are query-dependent and referred to as dynamic C-params. Table 3 provides an
overview of these two categories of parameters.
The objective of our paper is to determine optimal choices of R-params in the built-in cost

formulas of major databases, in order to achieve more accurate query cost estimation. To accomplish
this goal, our research focuses on learning a mapping function from C-params to R-params, denoted
as𝐺 : 𝐶

op
−−→ 𝑅, to capture their dependencies for a given physical operator 𝑜𝑝 . By using the learned

function 𝐺 , we can generate recommended choices of R-params for a specific hardware-software
setup. In addition to the five operators presented in Table 1, we also implemented other operators
such as Nested Loop, Merge Join, and Aggregate.

2.2 Basic Idea
Learning the mapping function 𝐺 : 𝐶

op
−−→ 𝑅 for query cost estimation is a major contribution

of this paper. It presents a non-trivial regression task, for the generation of training samples
can be expensive due to the high dimensionality of C-params and the existence of slow queries.
Additionally, adapting the learned mapping function to the varying hardware and OS environments
with dynamic query workloads is another major contribution we make. It requires an efficient and
effective learning process.
Motivated by these, we propose a novel two-stage training and refinement framework. In

the offline training process, we build an initial decision tree for the static C-params, as an initialized
mapping function (i.e., model). The online refinement process then adaptively evolves the tree
with the target query workload and environment according to dynamic C-params. This framework
enables us to preserve and utilize the most of existing knowledge on one hand and evolves the
model to maintain excellent performance on the other hand. In the following sections, we present
the details.

2.3 Architecture
The workflow of the two-stage approach is illustrated in Figure 1 and we explain our design in the
following.

2.3.1 Offline training Stage. The objective of the offline training phase is to generate an initial
decision tree that captures the relationship between R-params and static C-params.

Although users’ databases and workloads may vary, it is possible to adjust and roughly optimize
R-params based on any database or workload. In this paper, because we use PostgreSQL as an
example to demonstrate our approach, we conduct SQL queries defined in the Job-workload2 on
various instances of a cloud server platform equipped with different CPUs, memory sizes, SSDs,
HDDs, operating systems, and other configurable hardware and software features. We leverage
this historical data from diversified hardware and software setups to pre-train a decision tree for
each operator, which we refer to as the ParamTree. This initial ParamTree for static C-params is

2https://github.com/gregrahn/join-order-benchmark

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://github.com/gregrahn/join-order-benchmark

255:6 Jiani Yang et al.

Offline Training Stage

ParamTrees

Online Refinement Stage

DBMS Cloud
Instances

...
Static

c-params

Seq Scan

Static
c-params

Static DBMS
Configure Params

Initialize

Generate Training Samples

Hardware
Params

Index Scan

...

...
Software
Params

ParamTrees
Seq Scan

Index Scan
Construct

...

Template-based Sample Generation

 Few-shot Recommendation Model

User's DBMS

Fig. 1. Overview architecture.

built using the customized decision tree algorithm (Section 3.2), and will be expanded during the
refinement process.

2.3.2 Online Refinement Stage. The offline training stage generates an initial ParamTree with static
C-params, but this alone may not provide precise cost estimation due to the dynamic C-params
that capture query-specific and data-specific factors. Therefore, we propose an online refinement
process to adaptively tune the ParamTree.

There are two key differences between the two stages in terms of model training:
• First, the online refinement stage is workload-aware and optimizes the ParamTree for the
online workload. If the workload changes, ParamTree’s structure is updated correspondingly.
• Second and most importantly, there are hundreds of dynamic C-params (17 query-related,
18 data-related, and 97 DBMS configuration parameters), compared to less than 20 static
C-params. This results in the curse of dimensionality during the refinement stage training.
Therefore, a different strategy is needed for the online stage. Unlike the passive reception of
training samples during the offline training stage, we actively generate samples based on
needs in the refinement stage.

The online refinement works as follows: if the cost model using existing ParamTrees cannot
provide a precise estimation for more than 𝜆 queries (error rate larger than 𝜖), online tree expansion
is invoked to split the leaf nodes. To cope with the curse of dimensionality, we use a few-shot
recommendation model to rank all candidate C-params based on their effects on cost estimations.
Then, we adopt a template-based sampling approach to retrieve enough samples to perform a tree
split. This process repeats until the cost model generates estimation results for less than 𝜆 queries
with error rates bounded by 𝜖 .

2.3.3 Cost Estimations with ParamTree. Finally, we present how to estimate the cost of a particular
physical query plan 𝑃 using our ParamTrees in Algorithms 1, which defines the recursive function
𝑑𝑜𝑃𝑙𝑎𝑛𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛. Firstly, we apply the learned ParamTrees, using the current values of C-
params, to predict the values of R-params. Then, 𝑓 𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝑚𝑢𝑙𝑎 denotes computing cost by filling
R-params and physical operator’s statistics 𝑛.𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 into cost formulas described in Table 1.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:7

Algorithm 1: Estimate cost for a physical plan 𝑑𝑜𝑃𝑙𝑎𝑛𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

1

Input: PhysicalPlan 𝑃 , DB 𝑑𝑏, Environment 𝑒𝑛𝑣
Output: Estimated Startup_cost 𝐶𝑠 , Estimated Total_cost 𝐶𝑡

2 Node 𝑛 = 𝑃 .root
if 𝑛.isLeaf() then

3 ParamTree 𝑇 = getParamTree(𝑛.type)
rParams 𝑟𝑝 = 𝑇 .obtainRParams(𝑑𝑏,𝑒𝑛𝑣 ,𝑛.𝑖𝑛𝑓 𝑜)
𝐶𝑠 ,𝐶𝑡 = fillCostFormula(𝑟𝑝 ,𝑛.𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ,0,0,0,0)

4 else
5 𝐶𝐿𝑠 ,𝐶

𝐿
𝑡 = doPlanCostEstimation(𝑃 .𝑙𝑒 𝑓 𝑡 ,𝑑𝑏,𝑒𝑛𝑣)

if 𝑛.𝑟𝑖𝑔ℎ𝑡 not NULL then
6 𝐶𝑅𝑠 ,𝐶

𝑅
𝑡 = doPlanCostEstimation(𝑃 .𝑟𝑖𝑔ℎ𝑡 ,𝑑𝑏,𝑒𝑛𝑣)

7 else
8 𝐶𝑅𝑠 ,𝐶

𝑅
𝑡 = 0,0

9 end
10 rParams 𝑟𝑝 = 𝑇 .obtainRParams(𝑑𝑏,𝑒𝑛𝑣 ,𝑛.𝑖𝑛𝑓 𝑜)

𝐶𝑠 ,𝐶𝑡 = fillCostFormula(𝑟𝑝 ,𝑛.𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ,𝐶𝐿𝑠 ,𝐶𝐿𝑡 ,𝐶𝑅𝑠 ,𝐶𝑅𝑡)
11 end
12 return 𝐶𝑠 ,𝐶𝑡

𝑓 𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝑚𝑢𝑙𝑎 also takes the startup cost and total cost of subtrees (Eg.𝐶𝐿𝑠 and𝐶𝐿𝑡 denote startup
cost and total cost of left subtree respectively, and 𝐶𝑅𝑠 and 𝐶𝑅𝑡 denote startup cost and total cost of
right subtree respectively) as input to output the estimated startup and total cost of this plan. We
take the total cost estimation as the final prediction of the physical plan.

In summary, we propose a new design principle for improving formula-based cost model, reducing
the problem of query cost estimation to learning a mapping function 𝐺 : 𝐶

op
−−→ 𝑅. Compared to

existing state-of-the-art approaches, which train an end-to-end model from scratch to obtain the
mapping from vectorized query representation to estimated cost, our new learning scheme has
several advantages:

Efficient: Instead of training from scratch, our model leverages the intelligence of domain experts
in the cost model. As shown in our experiments, our method requires significantly fewer
annotation samples, and is more efficient in both training and inference.

Explainable: Our method inherits the interpretability of the cost model, which allows DBAs to eas-
ily understand the elemental factors involved in cost estimation. Additionally, we use decision
trees to learn the mapping function 𝐺 , which is well-known for its good interpretability.

Transferable: Since our learning scheme is lightweight and requires fewer annotation samples,
our approach, combined with online tuning, can be conveniently transferred to diversified
hardware/software environments and dynamic workloads.

3 OFFLINE TRAINING STAGE
In offline training stage, we pre-train an initial ParamTree for static C-params.We collect benchmark
data from various cloud instances and adopt the customized decision tree algorithm.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:8 Jiani Yang et al.

IndexCorrelation

IndexCorrelation

IndexTreeH
eightDataType

0.5

IndexTreeHeight

integer float string

DataType

IndexCorrelation

DataType

IndexTreeH
eight

IndexCorrelation

0.5
IndexTreeH

eight

3

DataType

integer
float
string

Fig. 2. Illustration of hypercube

3.1 Formal Definition of the Tree
As illustrated in Figure 2, the process of splitting a decision tree involves continuously dividing
the space of C-params into hypercubes. Therefore, we present our tree construction from the
perspective of spatial partitioning. We start by formalizing the decision tree construction process.
Let C = 𝑐1, ..., 𝑐𝑛 denote all possible C-params. To simplify the problem, we normalize all C-params
to the range [0, 1]. For a subset 𝐶 of C (𝐶 ⊆ C), we define its hypercube 𝐻 as (𝐶,X), where X
maintains the upper and lower bounds of C-params in 𝐶 . For hypercube 𝐻 , the upper and lower
bounds of each dimension are defined as follows:

[𝐻 [𝑐𝑖] .𝑙, 𝐻 [𝑐𝑖] .𝑢] =
{
[0, 1], if 𝑥 ∉ 𝐶

[𝑙𝑖 , 𝑢𝑖], if 𝑥 ∈ 𝐶 , ∃[𝑙𝑖 , 𝑢𝑖] ∈ X
(2)

We construct a decision tree for each physical operator 𝑜𝑝 , with internal nodes and leaf nodes
playing different roles. Each internal node 𝑣𝑖 is represented as 𝑣𝑖 = [𝐻𝑖 , 𝑐 𝑗 , [𝑙1, 𝑢1], ..., [𝑙𝑚, 𝑢𝑚]].
Here, 𝐻𝑖 is a hypercube inherited from 𝑣𝑖 ’s parent node, 𝑐 𝑗 is the next C-param used for tree split,
and [𝑙 𝑗 , 𝑢 𝑗] denotes the partitioning result. For the 𝑘th child node of 𝑣𝑖 , if it is an internal node, its
hypercube is generated as follows:

𝐻𝑘 .𝐶 = 𝐻𝑖 .𝐶 ∪ {𝑐 𝑗 }, 𝐻𝑘 .X = 𝐻𝑖 .X ∪ {[𝑙𝑘 , 𝑢𝑘]} (3)

For root node, its hypercube is defined as 𝐻 = (∅, ∅).
On the other hand, leaf node 𝑣𝑙 is responsible for maintaining a pair (𝐻𝑙 , F), where 𝐻𝑙 is

generated in the same way as the internal node and F represents a cost estimation formula for
the corresponding physical operator 𝑜𝑝 . Most F formulas follow the same linear expression as
Equation 1, where 𝑟𝑖 refers to the R-param, which is the main target of this paper. To estimate the
R-params of F within the sub-space defined by 𝐻𝑙 , we intentionally generate queries as samples to
train a regression model.

3.2 Inital ParamTree Construction
In the offline stage, we start with an empty root node and recursively construct the internal nodes
for the static C-params. We collect training samples from our cloud servers, where we establish
data instances with diverse hardware and software environments to provide various services for
customers. Before starting online services, we run workloads (e.g., Job-benchmark) to test their
performance. The testing results are collected as our training dataset, denoted asD = ⟨C𝑖 , f𝑖 (𝑜𝑝), 𝑜𝑖⟩.
Here, C𝑖 represents the values of static C-params when performing the test, f𝑖 (𝑜𝑝) denotes the
vectorized representations of the involved cost estimation functions (Table 1), and 𝑜𝑖 denotes the
real processing cost. It’s important to note that 𝑜𝑖 serves as our training label, and the instances in
D are collected directly from historical query logs in our cloud database platform. The constructed
subtree functions as a pre-trained model and can adapt to the target environment of any deployed
database with ease.

Recall that our goal in this paper is to learn a mapping function from C-params to R-params, i.e.,
𝐺 : 𝐶

op
−−→ 𝑅, to capture their dependency for a physical operator 𝑜𝑝 . We will construct a decision

tree for each operator 𝑜𝑝 . Conventionally, decision tree construction algorithms such as C4.5 [30]

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:9

and CART [6] group data points with similar labels into the same leaf node for classification or
regression tasks. For example, CART regression tree [6] uses metrics like mean squared error (MSE)
and mean absolute error (MAE) to measure the purity of the data partitioning. However, these
algorithms all need to know explicit R-params as labels in advance, which is not available in our
case, so we cannot directly use these traditional decision tree algorithms to construct the mapping of
𝐺 : 𝐶

op
−−→ 𝑅. Samples in our dataset D = ⟨C𝑖 , f𝑖 (𝑜𝑝), 𝑜𝑖⟩ reflect the correlation as 𝐶 → 𝑂 . R-params

play like hidden parameters, working as 𝐶 → 𝑅 → 𝑂 . So we need to find a method to establish the
mapping function 𝐶 → 𝑅, without any explicit label for R-params, only samples reflecting 𝐶 → 𝑂 .

To resolve this issue, we adopt splitting criteria proposed by [42] that relies on no explicit label
information. In our case, we use C-params as splitting attributes and in every leaf node, we adopt
least square method to compute the R-params through samples lying in the leaf node. Suppose a
leaf node contains a dataset D̄ with 𝑛 samples, we want to obtain R-params r = [𝑟1, 𝑟2, . . .] that
can minimize the query cost estimation error Ψ𝑖 (𝑜𝑖 , f𝑖 (𝑜𝑝), r) = (𝑜𝑖 − f𝑖 (𝑜𝑝)Tr)2, i.e., the optimized
R-params can be obtained via

r̂ = argmin
r

𝑛∑
𝑖=1

Ψ𝑖 (𝑜𝑖 , f𝑖 (𝑜𝑝), r) (4)

Initially, the decision tree consists of only one leaf node. However, varying C-params can result
in distinct regression functions. Therefore, we require a method to determine which C-param
will have a significant impact on the regression functions. By dividing the dataset based on this
C-param, we can assign specific regression functions to each sub-dataset. Parameter instability
test [42] helps group data with potentially similar R-params which achieves the goal without any
explicit label for R-params. Next, we will explain the principle of the parameter instability test.

To obtain the optimal r̂ defined in Equation 4, the first order of Ψ should be 0:
𝑛∑
𝑖=1

𝜕Ψ (𝑜𝑖 , f𝑖 (𝑜𝑝), r)
𝜕r

=

𝑛∑
𝑖=1

𝜓 (𝑜𝑖 , f𝑖 (𝑜𝑝), r) = 0 (5)

If r does not change significantly, then𝜓 will vibrate near the origin point. Otherwise, it may
indicate that r has a large deviation, in which case we are encouraged to split the node. We quantify
the extent of vibration of𝜓 as

𝑊 (𝑡, r) = 𝑛−1/2
⌊𝑛𝑡 ⌋∑
𝑖=1

𝜓𝜎 (𝑐𝑖) (𝑜𝑖 , f𝑖 (𝑜𝑝), r) , 𝑡 ∈ [0, 1] (6)

Equation 6 represents the cumulative sum of the equation 5 sorted according to the value of C-param
𝑐 , where 𝜎 (𝑐𝑖) is the ordering permutation of the observations of c = [𝑐1, 𝑐2, . . . , 𝑐𝑛].

Then multiply covariance matrix of𝜓 (𝑜𝑖 , f𝑖 (𝑜𝑝), r) to𝑊 (𝑡, r) to scale the result, which is

𝐽 = 𝑛−1
𝑛∑
𝑖=1

𝜓 (𝑜𝑖 , f𝑖 (𝑜𝑝), r)𝜓 (𝑜𝑖 , f𝑖 (𝑜𝑝), r)⊤ (7)

Then we obtain empirical fluctuation process 𝑒 𝑓 𝑝 (𝑡):
𝑒 𝑓 𝑝 (𝑡) = 𝐽−1/2𝑊𝑛 (𝑡, r) (8)

We formulate the null hypothesis as R-params remain stable as 𝑐 varies, while the alternative hy-
pothesis posits that R-params are subject to change with alterations in 𝑐 . Under the null hypothesis,
Donsker’s invariance principle[4] is satisfied. At the interval of 𝑡 ∈ [0, 1], 𝑒 𝑓 𝑝 (𝑡) converges to the
k-dimensional Brownian bridge[29]𝑊 0. Under the alternative, the value of 𝑒 𝑓 𝑝 (𝑡) will gradually
approach the peak in the process.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:10 Jiani Yang et al.

For numeric and categorical C-params, we propose two instability tests respectively:
Numeric C-param We adopt the supLM test[3] for a numeric C-param 𝑐:

sup
𝑡 ∈Π

𝐿𝑀 (𝑡) = sup
𝑡 ∈Π

∥𝑒 𝑓 𝑝 (𝑡)∥22
𝑡 (1 − 𝑡) . (9)

Cateogrical C-param To test categorical variables, the following chi-square test is used, where
𝐾 is the number of categories, Δ𝐼𝑘𝑒 𝑓 𝑝 (𝑡) is the cumulative sum of 𝑒 𝑓 𝑝 (𝑡) on each category.
Then the L2 norm of the weighted Δ𝐼𝑘𝑒 𝑓 𝑝 (𝑡) is subjected to a 𝑑𝑖𝑚(r) · (𝐾 − 1) chi-square test.

𝜆𝜒2 (𝑊) =
𝐾∑
𝑘=1

|𝐼𝑘 |−1

𝑛

Δ𝐼𝑘𝑒 𝑓 𝑝 (𝑡)2
2 (10)

The two instability tests described above aim to estimate the significance of C-params in deter-
mining the values of R-params. A higher instability test result suggests that the values of R-params
remain stable even as the values of C-params change, while a lower result indicates that changes in
C-params may cause the values of R-params to fluctuate significantly. To identify the next split
attribute, we select the C-param with the lowest stability result.

We employ a multi-way split strategy, because previous research has suggested that this approach
can generate smaller, more accurate, and easier-to-understand decision trees [10, 28]. We follow a
recursive approach to divide intervals, using the following steps:
Step 1: Assuming the observations of 𝑐 are sorted as [𝑣1, 𝑣2, . . . , 𝑣𝑛] (For categorical variables,

random order can be used). Traverse all of them to find a split point that minimizes the
object function Ψ (𝑜, f (𝑜𝑝), r). Assuming the best-split point is 𝑣4, then the value of 𝑐 is
divided into two intervals, [𝑣1, 𝑣2, 𝑣3, 𝑣4] and [𝑣5, . . . , 𝑣𝑛].

Step 2: For each interval, apply the parameter instability test to the C-param 𝑐 . If the instability
result is below the threshold 𝛼 , it suggests that C-params have an influence on the values
of R-params, and we continue splitting this range and repeat Step 1. If the instability result
is above 𝛼 , we consider this interval fixed and will no longer split it.

Step 3: Once no more splitting is performed on all intervals, we divide the range of values for 𝑐
into several intervals, with each interval serving as a new node in the decision tree.

After expanding the decision tree and creating new leaf nodes, we train a linear regression
model using the optimization objective function (Equation 4) to obtain R-params. To prevent
severe overfitting, we adopt a termination strategy inspired by existing decision tree construction
algorithms for static C-params. We terminate the tree construction if one of the following conditions
is met:
• All 𝑝 values obtained by C-params’ parameter instability tests are greater than the threshold
𝛼 .
• The number of samples at a leaf node falls below 𝛽 .
• All samples at the leaf node share the same C-params values.

4 ONLINE REFINEMENT STAGE
When the initial ParamTree fails to provide a satisfactory cost estimation result, we resort to
the online refinement process to gradually expand the tree. However, there are two significant
differences between the static and dynamic C-params. Firstly, there are hundreds of dynamic C-
params, making conventional decision tree algorithms too expensive. Secondly, dynamic C-params
have a strong correlation with the query and data distributions. This means they are highly sensitive
to the underlying data and target workload. Consequently, the refinement process operates as an
ongoing process for each online DBMS.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:11

Few-shot Recommendation Model

Identify hypercube Sensitivity AnalysisResponse Surface

ParamTrees
Seq Scan

Index Scan

...

Index Correlation

Template-based Sample Generation

Template

Template

Template

Bad Prediction Queries

BUFFER

Generated Queries
Index Scan using Index
IDX_SUPPLIER_NATION_KEY
Index Correlation = 0.05

1

Index Scan using Index
IDX_LINEITEM_ORDER_KEY
Index Correlation = 0.99

Index Scan using Index
IDX_NATION_REGION_KEY
Index Correlation = 0.35

...

Repeat

Parameter
Instability Test

Index Correlation

Update Buffer
Remove Queries with
Accurate Estimation

Index Scan

Expanding

C-param

2

3

Workload

...Q Q Q

Bad Prediction Queries

BUFFER

Full

1

2

3

4

5

Fig. 3. Process of online tree expansion

4.1 Online Tree Expansion
The online tree expansion process consists of two major modules: the few-shot recommendation
model (Section 4.2) and the template-based sampling approach (Section 4.3). As shown in Fig-
ure 3, our approach maintains a buffer for queries that receive imprecise estimated costs from
the ParamTree. If the error rate of our cost estimation for query 𝑞𝑖 is greater than a pre-defined
threshold 𝜖 , we mark it as imprecise. We set an upper bound 𝜆 for the size of the buffer, and when
it is full, the tree expansion process is triggered. The steps involved in the process are:
(1) We group queries in the buffer based on their operators and calculate the error rates for each

operator. We use the R-params information of a leaf node for cost estimation of each operator.
We take the average estimation error rate of each leaf node for operators in the buffer and
select the leaf node with the highest error rate for expansion. In the following steps, we focus
on the expansion of this individual leaf node.

(2) The few-shot recommendation model is employed to recommend the next most dominant
C-param for the node split.

(3) The template-based sample generation approach is invoked to collect enough samples for
expansion.

(4) We perform the parameter instability test (Section 3.2) to verify the necessity of node split. If
the C-param does not have a significant impact on R-params, we go back to step 2.

(5) We split the node with the C-param based on generated samples and retrain our regression
functions for R-params in the new leaf nodes. We re-evaluate the costs of queries in the
buffer. For those that receive precise estimations, we remove them from the buffer.

In what follows, we will elaborate our few-shot recommendation model and template-based
sample generation approach.

4.2 Few-shot Recommendation Model
In our paper, we include hundreds of candidate dynamic C-params, such as query and data related
parameters, in order to model the hidden parameters of the cost model as extensively as possible.
However, for a given query, only a few of these parameters will actually have a significant impact
on query performance. Many database tuning researches [2, 7, 9, 14] also have demonstrated that
some C-params are consistently more important than others. Thus, when expanding the decision

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:12 Jiani Yang et al.

tree for a target workload, we need to select the next most dominant C-param. To achieve this,
we build a model 𝑌 = 𝐺 (C) to measure the correlations between C-params and R-params, which
are the performance metrics. This enables us to identify the C-params that are most sensitive to
R-params.

We generate samples and train the model in an offline way. We use PGBench3 as our benchmark
for generating samples to train the model. Suppose we want to split leaf node 𝑣𝑙 = (𝐻𝑙 , F) of
existing ParamTree. If 𝑌 = 𝐺 (C) has been learned, we can rank the importance of each C-params
as follows:

𝑐𝑜𝑝𝑡 = argmax
𝑐∈C−𝐻𝑙 .𝐶

∫
𝐻𝑙

𝜕𝐺 (C)
𝜕𝑐

(11)

Namely, we pick the C-param with the largest accumulative partial differential in hypercube 𝐻𝑙 as
our split dimension.

Unfortunately, training a function𝐺 (C) to measure correlations between C-params and R-params
can be difficult as explicit samples revealing such correlations are not available. However, we assume
that the formula-based cost model can provide a good estimation, if all R-params in Table 1 are set
correctly. The perturbation of C-params can lead to imprecise estimations as the original settings of
R-params may not be valid. Therefore, we can measure the importance of C-params by comparing
the real processing cost to the estimated cost, and examining the resulting divergence.

To measure the importance of C-params, we simulate 𝑌 using 𝑌 =
|𝑡𝑎𝑐𝑡−𝑡𝑒𝑠𝑡 |
𝑡𝑎𝑐𝑡

, where 𝑡𝑎𝑐𝑡 and 𝑡𝑒𝑠𝑡
are the costs of actual processing and estimation, respectively. Our goal is to learn a 𝐺 (C) that
estimates 𝑌 . However, this is a very challenging problem because of the high dimensionality of the
hypercube 𝐻𝑙 , which makes it difficult to obtain enough samples.
To address the sparse space problem, we adopt a few-shot learning approach called Response

Surface Method (RSM) [18]. In RSM, a response surface is constructed using a small set of sample
points, and this surface is used to approximate the cost ratio within the hypercube. By doing so,
we can reduce the number of samples required for estimating the correlations between C-params
and 𝑌 . In the following, we will describe how to construct a response surface and how to pick the
dominant C-param in hypercube 𝐻𝑙 in a more efficient way.

4.2.1 Surface Construction. RSM approximates a complex data distribution with a few simple
functions (e.g., polynomial functions).
It was shown that RSM applies linear combinations of RBF (Radial Basis Functions) to produce

good fits for both continuous and discrete response functions [25], and is suitable for multivariate
high-order nonlinear problems [13]. Our RSM follows the same RBF strategy and simulates the 𝑌
as:

𝐺 (C) = 𝑌 =

𝑝∑
𝑖=1

𝛽𝑖𝑔𝑖 (C) +
𝑚∑
𝑖=1

𝜆𝑖𝜙

(C − C(𝑖)) (12)

where 𝑔(𝑪) = {𝑔1 (𝑪), 𝑔2 (𝑪), ..., 𝑔𝑝 (𝑪)} are low-order polynomial regression functions. For
example, if we focus on two-orders of correlations, we have:

𝑔(𝑪) = {1, 𝑐1, ..., 𝑐𝑛, 𝑐1𝑐2, ..., 𝑐𝑛−1𝑐𝑛, 𝑐
2
1, ..., 𝑐

2
𝑛} (13)

𝛽 = {𝛽1, 𝛽2, ..., 𝛽𝑝 } are regression coefficients of 𝑔(𝑪) (𝑝 = |𝑔(𝐶) |). 𝑚 denotes the number of
training samples. Samples refer to queries with different settings of C-params, and we submit them
to the DBMS to collect real processing cost (The strategy of generating sample queries will be
discussed in Secion 4.3).

𝑪 − 𝑪 (𝑖) is the Euclidean norm, 𝜙 is the basis function, and 𝜆𝑖 is the

3https://www.PostgreSQL.org/docs/current/pgbench.html

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://www.PostgreSQL.org/docs/current/pgbench.html

Rethinking Learned Cost Models: Why Start from Scratch? 255:13

coefficient of the 𝑖th basis function. In this paper, we apply Gaussian function as the Kernel function
of RBF:

𝜙 (
𝑪 − 𝑪 (𝑖)) = 𝑒𝑥𝑝 (𝑪 − 𝑪 (𝑖)2

/𝜌2
𝑖) (14)

Equation 12 can be trained using the classic least square method. Initially, we apply the Latin
Hypercube Sampling (LHS)[24] approach to generate 𝑚 samples, which is a commonly used
sampling method that can generate sample points with randomness and uniformity within a given
parameter range. Every dimension will be divided into𝑚 equally probable intervals. The goal is to
ensure that every interval within each dimension is covered by at least one sample, providing a
representative and evenly distributed set of samples across the entire parameter space. Given the
benchmark workload𝑊 , we ask the DBMS to process queries in𝑊 with different C-params from
samples. The collected real processing costs and estimated ones are used as training samples. LHS
allows us to achieve a reasonable approximation of 𝑌 with a few samples.

4.2.2 Sensitivity Analysis. Once the RSM model is established, we utilize the Sobol’ method [34, 35]
to estimate Equation 11 and rank the importance of C-params during the online refinement stage.
The Sobol’ method decomposes the total variance of 𝑌 to determine the contribution of each input
variable to the change of 𝑌 .

For a leaf node 𝑣𝑙 = (𝐻𝑙 , F) of ParamTree, we need to collect multiple sobol sequence samples,
which should be multiples of 𝑛 + 2 (𝑛 is the number of remaining C-params). The RSM can output
estimated 𝑌 for these samples, which can be used to compute the sobol’ index and rank the
importance of C-params. By combining the RSM and Sobol’ method, we can avoid the need to
collect samples every time a global sensitivity analysis is performed. Instead, only a small amount
of computation is required to obtain the results.

4.3 Template-Based Sample Generation
To generate the required random samples for both surface construction and online tree expansion,
statistics for some running queries need to be collected from the DBMS. Specifically, after the
processing of a query 𝑞, statistics for each operator of the query can be collected from the execution
engine, resulting in a set of triples D = ⟨C𝑖 , f𝑖 (𝑜𝑝), 𝑜𝑖⟩, as mentioned in Section 3.2.
Running queries randomly may not always produce suitable samples for our training process.

To address this issue, we propose a template-based approach for sample generation and provide
two sampling APIs: F (𝑆𝑘 , 𝑜𝑝𝑖 , 𝐻𝑙 , 𝑐 𝑗 ,𝑚) and F (𝑜𝑝𝑖 , 𝐻𝑙 ,𝑚).
The first API is used for splitting the ParamTree in the online stage, while the second one is

a specialized version of the first API designed for training the C-param recommendation model
(Section 4.2). We denote the query set where our ParamTree cannot provide accurate estimations
as 𝑆𝑘 . In our algorithm, we select the leaf node 𝑣𝑙 with the highest error rate for expansion. Here,
𝑜𝑝𝑖 is the operator of the ParamTree to which 𝑣𝑙 belongs, and 𝐻𝑙 is the hypercube that 𝑣𝑙 maintains.
We use 𝑐 𝑗 as the C-param to split the ParamTree, which also serves as our sampling criterion.𝑚 is
the number of required samples. Using this API, we modify queries in 𝑆𝑘 to generate new queries
whose physical execution plan contains 𝑜𝑝𝑖 and the samples inside the hypercube 𝐻𝑙 .

The second API, F (𝑜𝑝𝑖 , 𝐻𝑙 ,𝑚), retrieves𝑚 random samples from the hypercube 𝐻𝑙 . This API
can be represented as a series of invocations of the first API: F (𝑆𝑘 = 𝑝𝑔𝑏𝑒𝑛𝑐ℎ, 𝑜𝑝𝑖 , 𝐻𝑙 , 𝑐 𝑗 ,

𝑚
|𝑐 |) for all

valid 𝑐 𝑗 . The following discussion will focus on the implementation of the first API.
Our sampling process aims to enhance the ParamTree by minimizing estimation errors for

queries that are similar to those in 𝑆𝑘 . To achieve this, we adopt a twofold sampling strategy:

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:14 Jiani Yang et al.

C-param AST Hidden
Parameter

Logical Op

<Attribute>

Selection
Join
Sort

Aggregation

<RelName> Scan

<RelName>
<Attribute>

Name: DataType
Description:
The datatype of the attribute.

Name: ColumnOffset
Description: The offset of the
column to the head of the
corresponding tuple.
Name: TuplesPerBlock
Description: The average number
of tuples in a block.

<FromList>

<RelName>

<Condition>

Value/<Attribute></>/=/!= <Attribute>

<Query>

... FROM <FromList> WHERE <Condition>

<RelName> <FromList>

<RelName>
<A.Attribute> =

A

B

<B.Attribute>

Name: LeftSinAvg/RightSinAvg
Description: Left/Right operator's
input tuples' average width.

Name: InnerUnique
Description: Whether there are no
more than one inner row could match
any given outer row.

<OrderKey>

<Attribute>

C-param Physical Plan Hidden
Parameter

Physical Op

Table/
Predicates

Index Scan

Inner
Relation
(#tuple/
#unique
tuples)

Hash Join

Add Hint/
Select

Template

Hash Join
Merge Join

Nested Loop
...

Name: BatchesNum
Description: The number of
batches needed based on current
hash_mem.

Name: InnerBucketSize
Description: The average number
of tuples in a hash bucket.

<GroupKey>

<Attribute>

Join

Name: IndexCorrelation
Description: The correlation
between the physical and logical
storage of table.
Name: IndexTreeHeight
Description: The height of the
index tree.

Name: Left/RightOperator
Description: The type of
left/right child operator.
Name: ParentOperator
Description: The type of parent
operator.

Seq Scan

Hash Join

Sort

Index Scan

...

Seq Scan

Hash Join

Aggregate

Seq Scan

...

C-params related to Logical Plan

C-params related to Physical Plan

Hash Join

Hash

Hash Join

Seq Scan

Index Scan

Hash Nested
Loop

Index
Scan

Seq
Scan

Temp Relation

Nested
Loop

Seq
Scan

Temp Relation

Table

Index Scan

Nested
Loop

Seq
Scan

Fig. 4. C-params and their plan templates

Similarity Samples are generated based on the query set 𝑆𝑘 . This enables the cost model to
adjust its estimations by incorporating updated values of R-params, which in turn minimizes
estimation errors for queries in 𝑆𝑘 .

Versatility To ensure that the cost model is robust and can generate accurate estimations for
unseen queries, samples are drawn uniformly from the value domain of 𝑐 𝑗 . Additionally, we
aim to test as many variants of queries in 𝑆𝑘 as possible.

4.3.1 Basic Idea. We have designed a modified stratified sampling strategy to generate samples
that are representative of the distribution of C-param values. For a continuous C-param 𝑐 𝑗 , we use
discretization to divide its domain into 𝑘 equally sized buckets. If 𝑐 𝑗 is discrete, we uniformly hash
its values into 𝑘 buckets.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:15

We maintain a histogram 𝐻 for each C-param, which records the distribution of its values for
historical queries. Specifically, 𝐻 (𝑖) (0 < 𝑖 < 𝑘) returns the number of historical queries that have
the 𝑐 𝑗 set to a value in the 𝑖th bucket. Therefore, 𝐻 represents the popularity of each value of the
C-param 𝑐 𝑗 .
Then, the probability 𝑝 (𝑖) of retrieving a sample from bucket 𝑖 is set as:

𝑝 (𝑖) = 𝑚𝑎𝑥 (𝜖, 𝐻 (𝑖))∑𝑘−1
𝑥=0 𝐻 (𝑥)

(15)

𝜖 denotes the minimal probability assigned to each bucket. Let𝑚 be the required number of samples
for training. We need to retrieve𝑚𝑝 (𝑖) samples for bucket 𝑖 , and within each bucket, the samples
are generated uniformly at random.

4.3.2 Template-Based Approach. The two properties (Similarity and Versatility) require our sam-
pling approach to generate samples based on 𝑆𝑘 . However, this is a non-trivial task since, for
specific queries and datasets, values of a C-param cannot be randomly selected. Some C-params are
correlated with query structures. Therefore, we classify the dynamic C-params into three categories:
𝐶0, 𝐶1, and 𝐶2.

The C-params in𝐶0 normally represent DBMS configurations, such as the size of buffer for temp
tables. C-params from𝐶0 are irrelevant to query structures and datasets. To generate a new sample
for 𝑐 𝑗 ∈ 𝐶0, we simply select a random query from 𝑆𝑞 that involves 𝑜𝑝𝑖 during processing. We then
set the C-param to a random value of bucket 𝑖 with a probability of 𝑝 (𝑖). The query is submitted
for processing, and we collect the statistics for 𝑜𝑝𝑖 as a triple (𝑜𝑝𝑖 , f (𝑜𝑝𝑖), 𝑜).
On the other hand, 𝐶1 and 𝐶2 refer to C-params that are correlated with a query’s logical plan

and physical plan, respectively (e.g., column type, data type, and index tree height). For a C-param
𝑐 𝑗 from 𝐶1 or 𝐶2, we cannot arbitrarily set a value for 𝑐 𝑗 because its value is bound to the query
structure. For example, Figure 4 shows some C-params that are late materialized during the logical
plan generation (𝐶1 type) and physical plan generation (𝐶2 type) processes, respectively. For C-
params such as DataType and ColumnOffset, their values are set when we add columns into query
predicates. These values depend on the query structure (where clause) and targeted tables/columns.

Therefore, we can only obtain statistics about possible values of C-params in 𝐶1 when a logical
plan is available. To enable more value tests for those C-params, we can replace the target column
with other columns from the same table. It should be noted that the available values of C-params
are defined by the database schema.
On the other hand, for C-params in 𝐶2 such as IndexCorrelation and BathesNum, their values

can only be determined when physical plans are generated. The values of C-params in 𝐶2 are
materialized based on run-time configurations, such as whether indexes are available and whether
the optimizer chooses to use them when generating the physical plan. Therefore, the values of
these C-params cannot be determined until all physical operators are definite.
For C-params of 𝐶1 and 𝐶2 types, we build a template table that indicates the sub-trees of the

involved ASTs (Abstract Syntax Trees) and physical plan trees. We also list the hidden parameters
that can be used to change the values of the corresponding C-params. In this way, for a query
𝑞 𝑗 from 𝑆𝑞 , we can apply a graph matching algorithm to find the same sub-tree in the AST and
physical plan trees of queries. By adjusting the values of the hidden attributes, we can obtain a
new query 𝑞 𝑗 that shares a similar query structure with 𝑞 𝑗 , but with a different configuration for
the C-params.
We can simplify the sampling process by using an inverted index. For each operator 𝑜𝑝𝑖 , there

are multiple templates available for a C-param 𝑐 𝑗 , denoted as 𝑡0, 𝑡1, ..., 𝑡𝑛 . After matching a template
against a query 𝑞 from 𝑆𝑞 , we can obtain statistics on the possible values of 𝑐 𝑗 for that matching.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:16 Jiani Yang et al.

Algorithm 2: Greedy algorithm for sampling queries
Input: Operator 𝑜𝑝 , C-param 𝑐 , bucket probability 𝑝 , Query set 𝑆𝑞 , Template set 𝑇
Output: Generated queries 𝑄

1 𝑄 = {} ; ⊲ Store selected queries

2 for 𝐵𝑖 ←B1 to 𝐵𝑡 do
3 Select satisfied queries and templates 𝑆𝑖 =< 𝑞, 𝑡 > for 𝑐 from query set 𝑆𝑞 and template

set 𝑇
4 foreach (𝑞, 𝑡) ∈ 𝑆𝑖 do
5 𝐿 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑞, 𝑡, 𝐵𝑖);
6 Sort 𝐿 by estimated processing cost 𝑜 ;
7 𝑄 = 𝑄 ∪ select top ⌈𝑚𝑝 (𝑖)∥𝑆𝑖 ∥ ⌉ queries from 𝐿

8 end
9 end

10 return 𝑄

To build the inverted index, we use a composite key [𝑐𝑖 , 𝐵 𝑗], indicating the corresponding C-param
and the involved bucket. The value of the key is a list of triples: 𝑟 = [𝑡𝑖 , 𝑞 𝑗 , 𝑜𝑖 𝑗], where template 𝑡𝑖 is
matched against query 𝑞 𝑗 , and the estimated processing cost of 𝑞 𝑗 with this matching is 𝑜𝑖 𝑗 .
If we retrieve𝑚 samples for a C-param 𝑐 𝑗 , we are expected to pick𝑚𝑝 (𝑖) samples for the 𝑖th

bucket. Given our inverted index, we can retrieve a list of triples 𝐿, and now our target is to ensure
diversity while minimizing costs. More formally, the sampling process will return a list 𝐿′ with
size𝑚𝑝 (𝑖). 𝐿′ shares the same set of triples with 𝐿, but allows a triple sampled multiple times. 𝐿′
should satisfy:

arg min
𝐿′

∑
∀𝑟 ∈𝐿′

𝑟 .𝑜 (16)

and
arg max

𝐿′
∥
⋃
∀𝑟 ∈𝐿′

𝑟 .𝑡 ∥ (17)

where ∥ ∗ ∥ returns the number of unique elements in a set. Algorithm 2 illustrates our sampling
process. The algorithm starts by creating an empty set𝑄 to store selected queries. Next, it traverses
all the buckets to add queries into 𝑄(line 2-9). For every bucket 𝐵𝑖 , it firstly selects a satisfied
combination of queries from 𝑆𝑞 and template 𝑡 . Then, for each combination (𝑞, 𝑡), generate a list of
queries 𝐿 with C-param values in 𝐵𝑖 by modifying query 𝑞 through template 𝑡 (line 5). Sort queries in
𝐿 according to their estimated cost 𝑜 and then select the ⌈𝑚𝑝 (𝑖)∥𝑆𝑖 ∥ ⌉ queries with the smallest cost(line 6-
7), where ∥𝑆 ∥ denote the number of different (𝑞, 𝑡) combinations. So, we get

∑𝑡
𝑖=1⌈

𝑚𝑝 (𝑖)
∥𝑆𝑖 ∥ ⌉ × ∥𝑆𝑖 ∥ =𝑚

queries after running Algorithm 2.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate our model from four aspects: accuracy, generalization, and dynamic,
training overhead.

5.1 Experimental Setup
Environment and Datasets. By default, our experiments are conducted on our in-house server,
equipped with 4 Xeon CPUs, 32 GB dram, and 894 GB SSD. The default operating system and DBMS
are Ubuntu 18.04.6 LTS and PostgreSQL 13.3, respectively. However, to show the generalization of

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:17

our model, we also test it on 20 cloud instances with different hardware and DBMS configurations.
We adopt widely-used benchmark datasets such as IMDB, TPC-H and TPC-DS in our experiments.

Note that we disable the parallel execution to improve the stability of results.
ComparisonApproaches.Wedenote ourmethod as ParamTree and compare it with both formula-
based and learning-based approaches:
(1) PostgreSQL Cost Model (Scaled CM): This is PostgreSQL’s default cost model. It provides

estimated cost unit that can be scaled to the real processing time with a simple linear
function.

(2) PostgreSQL Tuned Cost Model (Tuned CM): We follow the method proposed by [39] to adjust
the R-params in Table 2. With the adjusted R-params and accurate cardinality estimation, we
can improve the precision of default PostgreSQL cost model.

(3) We also compare with multiple recent learning-based models, including MSCN[17], E2E[36],
QueryFormer[43], and TCNN[21, 47]. These models apply deep neural networks to encode
queries or physical query plans and predict query execution time in an end-to-end manner.
Training these models incurs high overheads, because we need to collect query execution
time as the training samples for a large volume of query plans.

(4) Zeroshot approach: Zeroshot[11] builds a pre-trained model with samples from many well-
known databases and shows good transferability to a new database. However, its leverage
of pre-trained knowledge is not fair to other competitors. In addition, it requires thorough
re-training for any new hardware and software environment. Therefore, we only compare
with Zeroshot in the generalization experiment.

(5) Learned tuners aim at recommending knob values automatically, which include R-params in
cost model.We also compare our workwith state-of-the-art learned tuners, like OutterTune[2]
and LlamaTune[15].

Among these approaches, MSCN, E2E, QueryFormer, and TCNN combine cardinality estimation
with cost prediction to create an end-to-end model, while Zeroshot only focuses on cost estimation.
For the latter ones, we adopt DeepDB [12] as the cardinality estimation model. DeepDB is a
data-driven technique and is easy to train.
Evaluation Metrics. We use Q-error as our main evaluation metric. We also evaluate the training
overhead of our approach. The Q-error is computed as:

Q-error(𝑞) = 1
𝑛

𝑛∑
𝑖=1

max (𝑎𝑐𝑡𝑢𝑎𝑙 (𝑞), 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑞))
min (𝑎𝑐𝑡𝑢𝑎𝑙 (𝑞), 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑞))

𝑎𝑐𝑡𝑢𝑎𝑙 (𝑞) is the actual execution time of query 𝑞, while 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑞) is the algorithm’s estimated
execution time of query 𝑞. A smaller Q-error value indicates better performance and the optimality
occurs when Q-error equals 1.

5.2 Performance of Cost Estimation
In this set of experiments, we evaluate the overall performance of all approaches on IMDB. For all
the learning-based comparison approaches, we construct a training set with 5, 000 queries from
IMDB synthetic workload, and estimate the query execution time for two workloads: job-light and
scale. To demonstrate the superiority of ParamTree in terms of friendliness to training samples, we
train ParamTree with only 2, 000 samples. ParamTree+DeepDB implies that we adopt DeepDB for
cardinality estimation, whereas ParamTree+Exact is the oracle scenario in which we assume the
exact cardinality is available.

Prediction Accuracy. As shown in Table 4, ParamTree exhibits extremely accurate prediction
performance when using exact cardinality, with Q-error below 1.11 in job-light and 1.15 in scale

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:18 Jiani Yang et al.

IMDB(Job-light) median 90th 95th 99th mean
Tuned CM+DeepDB 2.55 6.69 9.65 16.16 3.72
Tuned CM+Exact 1.97 3.45 4.07 9.76 2.36
MSCN 3.40 20.71 37.91 75.77 9.36
E2E 2.27 10.53 17.75 87.54 7.16
QueryFormer 1.57 9.33 18.59 40.00 4.41
TCNN 1.90 13.37 26.25 61.24 6.65
ParamTree+DeepDB 1.58 5.07 7.35 14.37 2.59
ParamTree+Exact 1.11 1.58 1.78 4.79 1.32
IMDB(Scale) median 90th 95th 99th mean
Tuned CM+DeepDB 2.03 7.53 12.84 54.73 4.72
Tuned CM+Exact 1.75 3.65 3.73 6.68 2.14
MSCN 2.33 12.28 25.46 72.24 6.19
E2E 1.91 9.15 13.78 21.19 3.66
QueryFormer 1.25 5.08 9.37 44.36 3.26
TCNN 1.41 6.73 17.9 85.41 4.84
ParamTree+DeepDB 1.47 5.09 8.98 27.14 2.97
ParamTree+Exact 1.15 1.90 2.67 5.31 1.41

Table 4. Comparison of prediction accuracy

Error(ms) SeqScan IndexScan IndexOnly Sort
Tuned CM 139.76 690.15 1743.34 613.76
ParamTree 97.67 108.29 164.27 14.26
Error(ms) MergeJoin NestedLoop HashJoin Aggregate
Tuned CM 431.26 19.03 1022.09 1094.54
ParamTree 70.73 8.91 77.66 26.30

Table 5. Performance of different operators.

for 50% of queries. If DeepDB is adopted for cardinality estimation, ParamTree can still outperform
its competitors. Traditional cost models have a relatively high median Q-error but perform well in
predicting tail queries, making them stand out in terms of average performance. On the contrary,
deep learning methods show poor performance when predicting tail queries. This is because tradi-
tional cost models rely on formula-based estimation, allowing them to generate robust predictions
for a wide range of queries, less affected by shifts in the distribution of training and testing queries,
while deep learning methods are highly sensitive to the change of query distribution. ParamTree
inherits the merit of the traditional cost model so that it also shows good transferability for new
data and queries.

Performance of individual operators. In Table 5, we give a more granular view of the per-
formance of some key operators when predicting queries from job-light workload. Because many
operators (e.g., Index Scan and Index Only Scan) may loop several times in a physical plan, we
add up their costs in all loops. We use Median Absolute Error(MedianAE) to measure the accuracy.
From the result, we can find that there are significant improvements in ParamTree compared to
Tuned CM for the Aggregate and Sort operators.

Compare with leading learned tuners.We also compare our approach with learned tuners,
and the results are shown in Table 6. In this experiment, we use default cardinality estimation
results given by PostgreSQL. Our results show these learned tuners cannot provide a better result
than Tuned CM and our approach. Learned tuners aim at increasing throughput or decreasing

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:19

IMDB(Job-light) median 90th 95th 99th mean
Sclaed CM 3.91 11.07 32.11 44.05 6.81
Tuned CM 2.07 9.42 11.07 21.65 3.83
OutterTune 10.08 12.22 12.77 17.18 8.06
LlamaTune(SMAC) 3.27 7.48 35.77 134.9 9.76
LlamaTune(DDPG) 3.28 7.76 43.23 152.41 10.94
ParamTree 1.47 7.28 9.49 35.23 3.63

Table 6. Performance on different learned tuners.

IMDB(Job-light) median 90th 95th 99th mean
MySQL 2.16 16.11 27.47 79.62 7.09
TCNN 1.97 7.92 10.07 29.58 3.74
QueryFormer 2.03 8.44 9.78 15.8 3.72
ParamTree 1.81 7.67 12.73 24.45 3.66

Table 7. Performance on MySQL.

latency, instead of improving cost model’s prediction accuracy. So they pay more attention to
parameters that control resources, instead of hyperparameters in cost model. Moreover, we find
that even using default cardinality estimation, ParamTree still provides accurate predictions against
learning-based cost models.

Performance onMySQL. ParamTree can be widely applied to any database that uses a formula-
based cost model. We demonstrate the effectiveness of our method when applied to MySQL.
As shown in Table 7, we use the default cardinality given by MySQL. ParamTree’s predictive
performance can still rival that of learning-based cost models.

5.3 Generalization Performance
Generality is a desirable feature for learning-based cost models. Here, we investigate two types
of generalization performance and compare our ParamTree with PostgreSQL cost models as well
as a pre-trained model called Zeroshot [11], which is specifically designed to support the transfer
to unseen databases. The other methods[17, 21, 36, 43, 47] use embedding for table and column
names which causes them to be unable to predict unseen databases.

Generalization among differentmachines.We select 20 cloud servers with different hardware
configurations. For each server, we vary the DBMS configuration parameters to generate 100 database
instances with different combinations of static C-params. For each database, we load IMDB and run
the Job workload to obtain the execution results as the annotation labels. We randomly divide 20
cloud servers into training and testing sets with a split ratio of 0.8. ParamTree and Zeroshot are
pre-trained with the training samples and evaluated on the test cloud servers.
For the PostgreSQL cost model, we generate two variants with different settings of R-params.

One is to use the default values and map the cost unit to query execution time through a linear
model. The other requests collecting several samples and calculating the appropriate R-params for
that instance. We call the former Scaled Cost Model and the latter Tuned Cost Model.
Table 8 shows the evaluation results, which indicate that ParamTree outperforms all other

methods on four test cloud database machines. Without collecting any samples to adjust R-params,
it can even achieve better performance than Tuned CM. Zeroshot requires a large number of
samples to adapt to a specific hardware environment and obtain a model and its performance is
inferior when the hardware environment is changed.

Generalization among different databases. In this setting, we load multiple databases into
the same DBMS and run the experiments within the same machine. As shown in Figure 5, the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:20 Jiani Yang et al.

ID Methods Q-error
median 90th 95th 99th mean

#1

Scaled CM 2.76 21.30 41.10 239.56 13.02
Tuned CM 2.69 5.96 12.41 21.85 3.59
Zeroshot 5.69 19.00 25.51 35.62 8.99
ParamTree 2.26 5.36 10.69 18.64 3.09

#2

Scaled CM 5.78 44.24 89.83 526.31 28.41
Tuned CM 3.38 7.22 14.21 27.48 4.38
Zeroshot 7.27 39.34 45.21 48.47 13.02
ParamTree 2.73 8.27 10.69 26.62 4.24

#3

Scaled CM 2.25 20.43 38.54 251.29 13.26
Tuned CM 2.46 6.40 13.69 25.14 3.85
Zeroshot 7.80 28.20 32.93 46.68 11.79
ParamTree 1.78 5.04 9.92 18.54 2.90

#4

Scaled CM 2.71 15.79 35.37 145.97 10.01
Tuned CM 2.56 5.00 8.61 17.00 3.12
Zeroshot 6.23 20.84 25.49 35.58 9.25
ParamTree 2.22 4.94 7.39 14.48 2.79

Table 8. Prediction performance on four random unseen machines.

airlin
e ssb

walmart

financial

baske
tball

movielens

Test Database

airlin
e

ssb

walmart

financial

baske
tball

movielensTr
ai

n
Da

ta
ba

se

1.05 2.99 4.85 6.52 3.51 7.12

1.88 1.05 2.52 3.28 2.50 4.52

16.46 16.04 1.03 2.62 11.48 8.25

6.17 2.65 1.67 1.07 2.30 2.33

2.20 1.48 1.55 1.56 1.12 1.66

3.07 1.87 1.96 1.39 1.77 1.08

Zeroshot

airlin
e ssb

walmart

financial

baske
tball

movielens

Test Database

1.12 1.21 1.45 1.71 1.34 1.41

1.51 1.15 1.54 1.92 1.43 1.65

1.53 1.25 1.16 1.67 1.64 1.45

1.68 1.20 1.50 1.47 1.33 1.38

1.46 1.19 1.46 1.80 1.22 1.49

1.59 1.30 1.32 1.63 1.35 1.28

ParamTree

1.5

2.0

2.5

3.0

Q-
er

ro
r

Fig. 5. Generalization performance of the model on different databases. The numbers on the chart represent
the corresponding Q-error.

vertical axis represents the database used during model training, and the horizontal axis represents
the database used for testing. We choose 6 publicly available databases to conduct this experiment
and use the workload generated by [11] for these databases, which are Select-Project-Aggregate-
Join (SPAJ) queries with conjunctive predicates on numeric and categorical columns. For Zeroshot,
we use 5, 000 samples from every database to train the model, and we only use 1, 000 samples
for ParamTree. For ParamTree, the Q-error of all models is below 1.92. Although Zeroshot can
have very good predictive performance on the training dataset, the knowledge learned by the
model is very limited, resulting in a sharp drop in performance when making predictions on other
databases. ParamTree is built on top of the traditional cost model, and its abundant prior knowledge
enables it to migrate well between different databases. Moreover, it only focuses on a small number
of hyperparameters in the cost model, making it less prone to overfitting and failure to learn
corresponding knowledge.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:21

5.4 Performance on Dynamic Scenarios
In this experiment, we evaluate the performance of ParamTree when handling dynamic scenarios,
including the update of query distribution, database size, and data skewness. In the online refinement
stage, ParamTree can specifically improve queries with poor prediction results. Moreover, the rules
of the cost model and dynamic C-params used for splitting can take data updates into account.
However, it is difficult for the deep learning approaches to support the dynamic scenario because
they collect samples on static databases, and cannot perceive the update of data.

Dynamic queries. Query distribution update is common in practice. In this experiment, we use
the Initial ParamTree obtained from the Offline training stage as the initial model and then use
IMDB’s job-light as the query workload for online refinement. As shown in Figure 6, We record the
average Q-error of job-light’s query prediction results after each node expansion. It can be seen that
the model only needs a very small amount of samples to achieve very good prediction performance.
After generating 350 samples, ParamTree+Exact’s mean Q-error can reach 1.26, which is better
than the effect achieved by passive learning using 2000 samples in Section 5.2.

0 50 100 150 200 250 300 350 400
Sample Number

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Q-

er
ro

r

Tuned CM+Exact
ParamTree+Exact

0 50 100 150 200 250 300 350 400
Sample Number

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ea

n
Q-

er
ro

r

Tuned CM+DeepDB
ParamTree+DeepDB

Fig. 6. Performance of ParamTree for every expansion in online refinement stage.

Generalization to Data Dynamics.We consider data dynamism from the size of database and
the skewness of data distribution. We use the model trained on TPC-H (scale=1𝐺 , skew factor = 0)
for this experiment. From Figure 7(a), it can be observed that as the size of the database increases, the
predictive performance of the traditional cost model remains almost unchanged. The performance
of ParamTree degrades when the database size increases from 1𝐺 to 7𝐺 and then slightly improves
when the database size further expands to 10𝐺 . Nevertheless, it still outperforms the traditional
cost model in all scenarios. Figure 7(b) shows that as data skewness increases, the performance
of traditional cost model declines significantly. In contrast, ParamTree is less sensitive to data
skewness. When the skew factor increases to 1.5, the traditional cost model’s performance decreases
by 112.8% compared to the original database, while ParamTree’s performance only decreases by
53.2%. The Q-error of ParamTree is more than 2.5x smaller than Tuned CM.

5.5 Training and Inference Overhead
Training efficiency and friendliness to the number of required training samples are desirable
advantages of ParamTree. As shown in Table 9, we compare the training time of methods that
use physical execution plans as input. We can see that the training time of ParamTree is only
about 1/5 of the fastest neural network method TCNN. We also compare the performance with
varying numbers of training samples. In this experiment, we use TPC-H as the workload to generate
numerous queries through different seeds. We chose a typical deep learning method with a small
training overhead, TCNN, for comparison. For a fair comparison, both TCNN and ParamTree use

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:22 Jiani Yang et al.

1G 4G 7G 10G
Database Size

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
M

ea
n

Q-
er

ro
r

Tuned CM+Exact
ParamTree+Exact

(a) Data Update

0 0.5 1 1.5
Skew Factor

0

1

2

3

4

5

M
ea

n
Q-

er
ro

r

Tuned CM+Exact
ParamTree+Exact

(b) Data Skewness

Fig. 7. Performance of the model facing data dynamics.

Method E2E QueryFormer TCNN ParamTree
Time(s) 1364.41 5995.90 1248.67 272.04

Table 9. Comparison of model training time

exact cardinality for query execution time estimation. We can see from Figure 8 that ParamTree
requires significantly fewer training samples to obtain satisfactory performance. To reach the same
level of converged Q-error, TCNN requires 4, 000 samples to be fully trained, whereas ParamTree
only consumes 1, 000 samples.

0 500 1000 1500 2000 2500 3000 3500 4000
Sample Number

1.5

2.0

M
ea

n
Q-

er
ro

r TCNN
ParamTree

Fig. 8. Training process for TPC-H.

Since we adopt decision tree, the inference is in fact very fast. Embedding our method into a
database system would not introduce significant additional costs to the existing cost estimation. It
only requires a modest increase in search time for R-params within the decision tree. Furthermore,
our trees have a height controlled within 10, so accessing fewer than 10 nodes is sufficient to obtain
the required R-params. Additionally, the decision tree occupies minimal space and can be loaded
entirely into memory.

5.6 Ablation Studies
5.6.1 Effect of Components. Firstly, we conduct experiments to demonstrate the benefits of design-
ing three modules and reported the results in Table 10. Firstly, without conducting a parameter
instability test, the decision tree would only have one root node and no branches. The results
indicate that this leads to a significant decrease in accuracy. Secondly, we replace the few-shot
recommendation model with a random model and the result shows a decline in effectiveness.
Thirdly, to evaluate template-based sample generation module’s effectiveness, we create a pool

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

Rethinking Learned Cost Models: Why Start from Scratch? 255:23

Ablation (Median Q-error) TPC-H TPC-DS JOB
ParamTree 1.08 1.18 1.18
w/o Parameter instability test 1.12 1.62 1.88
w/o Few-shot recommendation model 1.17 1.27 1.41
w/o Template-based sample generation 1.60 1.39 1.70

Table 10. Ablation study of ParamTree on diverse workloads.

50 100 150
Buffer Size

1.0

1.1

1.2

1.3

M
ed

ia
n

Q-
er

ro
r

1.1 1.2 1.3
Threshold

1.0

1.1

1.2

1.3

M
ed

ia
n

Q-
er

ro
r

Fig. 9. Effect of hyperparameters.(TPC-H)

consisting of numerous random queries and selected queries from it during each epoch. Result
shows taking random queries as training samples doesn’t yield satisfactory results.
Many previous studies have utilized workload queries for both training and testing. However,

this approach produces inferior results when the model is faced with queries that are significantly
different from those in the training workload. For instance, TCNN is able to achieve a mean Q-
error of 1.07 on TPC-H workload; however, its Q-error increases drastically to 4.79 when tested
on randomly generated queries. To address the issue, we propose the template-based sampling
approach, which achieves a good balance between randomness and locality. Taking workload
queries as training samples, ParamTree achieves 1.11 on TPC-H, but also performs well on random
queries, yielding a Q-error value of 1.63. Moreover, with template-based sampling, ParamTree can
attain 1.25 on random queries.

5.6.2 Effect of hyperparameters. Finally, we explore the impact of the size of the buffered queries 𝜆
and the error threshold 𝜖 . These findings are presented in Figure 9. We can see that as buffer size 𝜆
increases, the performance is getting better. With a large buffer size, ParamTree is able to consider
more queries in one expansion, which helps the model make good decisions. However, this kind
of benefit will not continue to exist as the buffer size increases. After reaching a certain level, the
performance will stabilize. The error threshold 𝜖 determines at what point the estimated errors of a
query reach, conducting subsequent customization and improvement for that query. Result shows
Q-error 1.1 is a good threshold for TPC-H. For different workloads, it should be set with different
values.

6 RELATEDWORK
Cost Estimation. Previous work [1, 19, 32] used machine learning algorithms to predict costs
from two levels: operator-level and plan-level. The former has generalization ability, while the
latter has higher accuracy. These works usually combine two types of models in order to achieve
better results. With the development of deep learning, researchers turn their attention to using
deep learning to estimate query costs[21, 23, 26, 36, 43, 47]. The focus of these methods is on how
to capture the structural information of the physical execution plan tree well. [36, 43] also focus
on how to improve the accuracy of cardinality estimation by utilizing the features of sampling.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

255:24 Jiani Yang et al.

[11] considers the generalization performance and transferability of cost estimation models, which
can be extended to unseen databases, but does not consider the effect of different hardware and
requires a large number of training samples. [39] aims at tuning hyperparameters in cost model,
which is the most relative work with ours. However, its settings do not change according to
different queries, operators, and database configurations, resulting in lower accuracy compared
to ParamTree. Learned tuners[2, 15] also tune cost model’s hyperparameters, but they aim at
increasing throughput or decreasing latency, rather than improving cost model’s accuracy. Some
works [16, 33, 46] consider how to better estimate costs in the era of big data and cloud computing.
[17, 37] encode queries and can accomplish multiple tasks including cost estimation, but did not
consider different physical plans.[38] proposed a framework to gather training data for tasks like
cost estimation which can serve as an effective tool for other methods.

Learned Database Components. As deep learning rapidly developed, researchers focus on us-
ing deep learning technology to replace some components of databases, eg. end-to-end optimizers[22,
40], cardinality and cost estimation[12, 20, 23, 36, 46], query rewrite[44, 45], join optimization[8, 41].
As models become more complex, there is a higher risk of overfitting on simple workloads. This
can result in poor generalization performance, requiring us to be more vigilant. In our approach,
we adopt a lightweight model instead of a deep learning model and generate diverse queries to
enhance the generalization ability of the model.

Decision Tree Algorithms. Decision tree algorithms are popular due to their interpretability,
simplicity, and ability to handle both categorical and numerical data. Classical algorithms like
ID3 [27], c4.5 [30], CART [6], random forest [5] are designed to solve classification and regression
problems. However, the problems we face in our work are not typical regression or classification
problems. Hence, we customized a multi-way decision tree based on parameter instability test[42]
and calculated the hyperparameters of the cost model from the leaf nodes.

7 CONCLUSION
The formula-based cost model shows good explainability and generalization when involved in
cost estimations. However, its performance is outrun by recent learning-based approaches. In this
paper, we identify key parameters within cost model formulas and design a fast-learning model. By
partitioning the search space, we refine cost model estimation and achieve comparable performance
to fine-tuned learning-based models. Extensive tests on commonly used datasets demonstrate
that our method outperforms existing techniques. Moreover, our approach also shows a high
transferability when dealing with dynamic scenarios. These advantages indicate its non-negligible
prospects in practice.

ACKNOWLEDGMENTS
This workwas supported by the Key Research Program of Zhejiang Province (Grant No. 2023C01037)

REFERENCES
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. 2012. Learning-based Query Perfor-

mance Modeling and Prediction. In IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington,
DC, USA (Arlington, Virginia), 1-5 April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE
Computer Society, 390–401. https://doi.org/10.1109/ICDE.2012.64

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017. Automatic Database Management
System Tuning Through Large-scale Machine Learning. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1009–1024. https://doi.org/10.1145/3035918.3064029

[3] Donald W. K. Andrews. 1993. Tests for Parameter Instability and Structural Change With Unknown Change Point.
Econometrica 61, 4 (1993), 821–856. http://www.jstor.org/stable/2951764

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1145/3035918.3064029
http://www.jstor.org/stable/2951764

Rethinking Learned Cost Models: Why Start from Scratch? 255:25

[4] Patrick Billingsley. 2013. Convergence of probability measures. John Wiley & Sons.
[5] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32. https://doi.org/10.1023/A:1010933404324
[6] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.
[7] Baoqing Cai, Yu Liu, Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua Li, Bin Cheng, Jie Yang, and Jiashu Xing.

2022. HUNTER: An Online Cloud Database Hybrid Tuning System for Personalized Requirements. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati,
and Amr El Abbadi (Eds.). ACM, 646–659. https://doi.org/10.1145/3514221.3517882

[8] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng. 2022. Efficient
Join Order Selection Learning with Graph-based Representation. In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala
(Eds.). ACM, 97–107. https://doi.org/10.1145/3534678.3539303

[9] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Database Configuration Parameters with
iTuned. Proc. VLDB Endow. 2, 1 (2009), 1246–1257. https://doi.org/10.14778/1687627.1687767

[10] Fernando Berzal Galiano, Juan C. Cubero, Nicolás Marín, and Daniel Sánchez. 2004. Building multi-way decision trees
with numerical attributes. Inf. Sci. 165, 1-2 (2004), 73–90. https://doi.org/10.1016/j.ins.2003.09.018

[11] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction.
Proc. VLDB Endow. 15, 11 (2022), 2361–2374. https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf

[12] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.
DeepDB: Learn from Data, not from Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[13] Ruichen Jin, Wei Chen, and Timothy W. Simpson. 2000. Comparative Studies Of Metamodeling Techniques Under
Multiple Modeling Criteria. Structural and Multidisciplinary Optimization 23 (2000), 1–13.

[14] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman. 2020. Too Many Knobs to Tune? Towards
Faster Database Tuning by Pre-selecting Important Knobs. In 12th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage 2020, July 13-14, 2020, Anirudh Badam and Vijay Chidambaram (Eds.). USENIX Association.
https://www.usenix.org/conference/hotstorage20/presentation/kanellis

[15] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, and Shivaram Venkataraman. 2022.
LlamaTune: Sample-Efficient DBMS Configuration Tuning. Proc. VLDB Endow. 15, 11 (2022), 2953–2965. https:
//www.vldb.org/pvldb/vol15/p2953-kanellis.pdf

[16] Johan Kok Zhi Kang, Gaurav, Sien Yi Tan, Feng Cheng, Shixuan Sun, and Bingsheng He. 2021. Efficient Deep Learning
Pipelines for Accurate Cost Estimations Over Large Scale Query Workload. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1014–1022. https://doi.org/10.1145/3448016.3457546

[17] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. In 9th Biennial Conference on Innovative Data Sys-
tems Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[18] Thiagarajan Krishnamurthy. 2003. Response Surface Approximation with Augmented and Compactly Supported
Radial Basis Functions. https://doi.org/10.2514/6.2003-1748

[19] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri. 2012. Robust Estimation of Resource
Consumption for SQL Queries using Statistical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566. https:
//doi.org/10.14778/2350229.2350269

[20] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and Accurate Deep Ensembles with Uncertainty
for Cardinality Estimation. Proc. VLDB Endow. 14, 11 (2021), 1950–1963. https://doi.org/10.14778/3476249.3476254

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2022. Bao: Making
Learned Query Optimization Practical. SIGMOD Rec. 51, 1 (2022), 6–13. https://doi.org/10.1145/3542700.3542703

[22] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,
and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[23] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural Network Models for Query Performance
Prediction. Proc. VLDB Endow. 12, 11 (2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[24] M. D. McKay, R. J. Beckman, and W. J. Conover. 1979. A Comparison of Three Methods for Selecting Values of
Input Variables in the Analysis of Output from a Computer Code. Technometrics 21, 2 (1979), 239–245. http:
//www.jstor.org/stable/1268522

[25] Martin Meckesheimer, Russell R. Barton, Timothy Simpson, Frej Limayem, and Bernard Yannou. 2001. Metamodeling
of Combined Discrete/Continuous Responses. AIAA Journal 39, 10 (2001), 1950–1959. https://doi.org/10.2514/2.1185
arXiv:https://doi.org/10.2514/2.1185

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3514221.3517882
https://doi.org/10.1145/3534678.3539303
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.1016/j.ins.2003.09.018
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://www.usenix.org/conference/hotstorage20/presentation/kanellis
https://www.vldb.org/pvldb/vol15/p2953-kanellis.pdf
https://www.vldb.org/pvldb/vol15/p2953-kanellis.pdf
https://doi.org/10.1145/3448016.3457546
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.2514/6.2003-1748
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/3476249.3476254
https://doi.org/10.1145/3542700.3542703
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
http://www.jstor.org/stable/1268522
http://www.jstor.org/stable/1268522
https://doi.org/10.2514/2.1185
https://arxiv.org/abs/https://doi.org/10.2514/2.1185

255:26 Jiani Yang et al.

[26] Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database Workload Characterization with Query Plan
Encoders. Proc. VLDB Endow. 15, 4 (2021), 923–935. https://doi.org/10.14778/3503585.3503600

[27] J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (1986), 81–106. https://doi.org/10.1023/A:
1022643204877

[28] J. Ross Quinlan. 1996. Improved Use of Continuous Attributes in C4.5. J. Artif. Intell. Res. 4 (1996), 77–90. https:
//doi.org/10.1613/jair.279

[29] Daniel Revuz and Marc Yor. 2013. Continuous martingales and Brownian motion. Vol. 293. Springer Science & Business
Media.

[30] Steven Salzberg. 1994. Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann
Publishers, Inc., 1993. Mach. Learn. 16, 3 (1994), 235–240. https://doi.org/10.1007/BF00993309

[31] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1979. Access
Path Selection in a Relational Database Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1, Philip A. Bernstein (Ed.). ACM, 23–34.
https://doi.org/10.1145/582095.582099

[32] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020. Cost Models for Big Data Query
Processing: Learning, Retrofitting, and Our Findings. In Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 99–113. https:
//doi.org/10.1145/3318464.3380584

[33] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020. Cost Models for Big Data Query
Processing: Learning, Retrofitting, and Our Findings. In Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 99–113. https:
//doi.org/10.1145/3318464.3380584

[34] Il’ya Meerovich Sobol’. 1990. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe mod-
elirovanie 2, 1 (1990), 112–118.

[35] I.M Sobol. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.
Mathematics and Computers in Simulation 55, 1 (2001), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6 The
Second IMACS Seminar on Monte Carlo Methods.

[36] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator. Proc. VLDB Endow. 13, 3 (nov 2019),
307–319. https://doi.org/10.14778/3368289.3368296

[37] Xiu Tang, Sai Wu, Mingli Song, Shanshan Ying, Feifei Li, and Gang Chen. 2022. PreQR: Pre-training Representation for
SQL Understanding. In SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 204–216. https://doi.org/10.1145/3514221.3517878

[38] Francesco Ventura, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. Expand your Training Limits!
Generating Training Data for ML-based Data Management. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 1865–1878. https://doi.org/10.1145/3448016.3457286

[39] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. Predicting
query execution time: Are optimizer cost models really unusable?. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen, Christopher M. Jermaine, and Xiaofang
Zhou (Eds.). IEEE Computer Society, 1081–1092. https://doi.org/10.1109/ICDE.2013.6544899

[40] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. 2022. Balsa: Learning a
Query Optimizer Without Expert Demonstrations. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 931–944.
https://doi.org/10.1145/3514221.3517885

[41] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement Learning with Tree-LSTM for Join Order
Selection. In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 1297–1308. https://doi.org/10.1109/ICDE48307.2020.00116

[42] Achim Zeileis, Torsten Hothorn, and Kurt Hornik. 2008. Model-based recursive partitioning. Journal of Computational
and Graphical Statistics 17, 2 (2008), 492–514.

[43] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A Tree Transformer Model for Query Plan
Representation. Proc. VLDB Endow. 15, 8 (2022), 1658–1670. https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf

[44] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu. 2021. SIA: Optimizing Queries using
Learned Predicates. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2169–2181. https://doi.org/10.1145/
3448016.3457262

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://doi.org/10.14778/3503585.3503600
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1613/jair.279
https://doi.org/10.1613/jair.279
https://doi.org/10.1007/BF00993309
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1145/3514221.3517878
https://doi.org/10.1145/3448016.3457286
https://doi.org/10.1109/ICDE.2013.6544899
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.1109/ICDE48307.2020.00116
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf
https://doi.org/10.1145/3448016.3457262
https://doi.org/10.1145/3448016.3457262

Rethinking Learned Cost Models: Why Start from Scratch? 255:27

[45] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned Query Rewrite System using Monte
Carlo Tree Search. Proc. VLDB Endow. 15, 1 (2021), 46–58. https://doi.org/10.14778/3485450.3485456

[46] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance Prediction for Concurrent Queries
using Graph Embedding. Proc. VLDB Endow. 13, 9 (2020), 1416–1428. https://doi.org/10.14778/3397230.3397238

[47] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu, and Jingren Zhou. 2023. Lero: A
Learning-to-Rank Query Optimizer. Proc. VLDB Endow. 16, 6 (apr 2023), 1466–1479. https://doi.org/10.14778/3583140.
3583160

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 255. Publication date: December 2023.

https://doi.org/10.14778/3485450.3485456
https://doi.org/10.14778/3397230.3397238
https://doi.org/10.14778/3583140.3583160
https://doi.org/10.14778/3583140.3583160

	Abstract
	1 Introduction
	2 System Overview
	2.1 Problem Definition
	2.2 Basic Idea
	2.3 Architecture

	3 Offline Training Stage
	3.1 Formal Definition of the Tree
	3.2 Inital ParamTree Construction

	4 Online Refinement Stage
	4.1 Online Tree Expansion
	4.2 Few-shot Recommendation Model
	4.3 Template-Based Sample Generation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Performance of Cost Estimation
	5.3 Generalization Performance
	5.4 Performance on Dynamic Scenarios
	5.5 Training and Inference Overhead
	5.6 Ablation Studies

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

