
Analyzing the Impact of Cardinality Estimation on Execution
Plans in Microsoft SQL Server

Kukjin Lee
Microsoft Research

kulee@microsoft.com

Anshuman Dutt
Microsoft Research

andut@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
Cardinality estimation is widely believed to be one of the most
important causes of poor query plans. Prior studies evaluate the
impact of cardinality estimation on plan quality on a set of Select-
Project-Join queries on PostgreSQL DBMS. Our empirical study
broadens the scope of prior studies in significant ways. First, we
include complex SQL queries containing group-by, aggregation,
outer joins and sub-queries from real-world workloads and indus-
try benchmarks. We evaluate on both row-oriented and column-
oriented physical designs. Our empirical study uses Microsoft SQL
Server, an industry-strength DBMS with a state-of-the-art query
optimizer that is equipped with techniques to optimize such com-
plex queries. Second, we analyze the sensitivity of plan quality to
cardinality errors in two ways by: (a) varying the subset of query
sub-expressions for which accurate cardinalities are used, and (b)
introducing progressively larger cardinality errors. Third, query
processing techniques such as bitmap filtering and adaptive join
have the potential to mitigate the impact of cardinality estimation
errors by reducing the latency of bad plans. We evaluate the impor-
tance of accurate cardinalities in the presence of these techniques.

PVLDB Reference Format:
Kukjin Lee, Anshuman Dutt, Vivek Narasayya, and Surajit Chaudhuri.
Analyzing the Impact of Cardinality Estimation on Execution Plans in
Microsoft SQL Server. PVLDB, 16(11): 2871 - 2883, 2023.
doi:10.14778/3611479.3611494

1 INTRODUCTION
Cardinality estimation, the task of estimating the number of output
rows for a SQL expression, is one of the challenging problems in
query optimization. Due to the richness of SQL operators, limited
data statistics available during query optimization, and the need
to keep the time and resources used for query optimization small,
today’s query optimizers typically use simplifying assumptions for
cardinality estimation [8, 15, 16, 29]. Therefore, large errors can
occur in cardinality estimation of query sub-expressions during
query optimization and may lead to sub-optimal execution plans.

Existing cardinality estimation (CE) benchmarks provide a set
of select-project-join (SPJ) queries against real datasets - JOB [33]
includes 113 queries on the IMDB dataset, and STATS [28] includes
146 queries on the Stats Stack Exchange dataset. These benchmarks

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611494

use row-oriented physical design with B+Tree indexes on primary-
key and foreign-key columns of tables to enrich the plan search
space on the PostgreSQL database engine. The studies using these
benchmarks [28, 33] demonstrate that plan quality can be signif-
icantly improved through accurate CE. While these studies are a
valuable starting point to understand the impact of CE on plan
quality, they leave several important open questions regarding the
importance of CE.

First, real workloads often consist of complex queries that use
SQL constructs that go well beyond SPJ (e.g., group-by, sub-queries)
and the state-of-the-art query optimizers are equipped with tech-
niques to handle such complex queries. Also, a "simpler" physical
design that uses only columnar indexes is widely used, particularly
in analytical workloads. Since the query optimizer faces different
challenges in these realistic scenarios, we need to evaluate if the
conclusions from prior studies [28, 33] hold. Second, since accurate
CE can be quite expensive for complex queries [17, 40], under-
standing the extent to which CE errors can be tolerated without
compromising plan quality is another worthy goal that has received
limited attention. Finally, query optimizers on modern execution en-
gines have the ability to use query execution techniques at runtime
that can potentially mask (i.e., mitigate) the adverse impact of CE
errors by reducing the latency of the plan obtained using estimated
cardinalities. Examples of such techniques include adaptive join
operator [6, 34] and bitmap (a.k.a. bitvector) filtering [5, 18]. Bitmap
filters can reduce the work done in an otherwise sub-optimal join-
order, and adaptive join can dynamically switch to Hash Join at
runtime if Index Nested Loop Join turns out to be expensive. Prior
studies have not evaluated the extent of such mitigation, and to
what extent accurate CE is relevant in the presence of these runtime
techniques.

We take a step towards answering these important open ques-
tions discussed above:

• First, we use Microsoft SQL Server, an industry-strength DBMS
that uses a state-of-the-art query optimizer. It explores a large
plan search space for queries due to transformation rules such
as outer join reordering and group-by/aggregate push down.

• Second, we use a variety of query workloads with different SQL
constructs including group by, outer joins, nested subqueries etc.
Specifically, we complement the CE benchmarks noted above
with 100+ queries across 6 real workloads, the industry bench-
mark TPC-DS [13], and modified industry benchmarks TPC-H
with skew [2] and DSB [20], and additional queries on the IMDB
dataset [38]. Thus our empirical studies go well beyond SPJ
queries that were studied in [28, 33, 38].

• Third, we evaluate both kinds of physical database designs: the
traditional row-oriented physical design with B+Tree indexes
(rowstores) as well as columnar indexes (columnstores).

2871

https://doi.org/10.14778/3611479.3611494
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611494
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3611479.3611494&domain=pdf&date_stamp=2023-07-01


• Fourth, we measure: (a) whether it is sufficient to eliminate CE
errors for only a subset of query sub-expressions without affect-
ing plan quality, (b) how increasing CE errors in a controlled
manner impacts plan quality.

• Finally, for bitvector filtering and adaptive join techniques in
Microsoft SQL Server, we perform a set of controlled experiments
to quantify the additional improvement in plan quality that arises
through the use of accurate cardinalities in the presence of these
techniques.

To conduct our evaluation on the Microsoft SQL Server query
optimizer, we needed to develop a new cardinality injection API,
such that when the query optimizer requests the cardinality of a
logical sub-expression of the query, we are able to inject a value that
overrides the cardinality estimated by the optimizer’s built-in cardi-
nality estimation model. Since Microsoft SQL Server is built using
the Cascades [27] optimizer framework, the cardinality injection
API needs to work with the existing data structures and enumer-
ation architecture. The implementation of this API, as well as its
limitations, are described in Section 2.3. We use the API to inject ex-
act cardinality (i.e., no error) for each logical sub-expression whose
cardinality is requested by the optimizer. This approach allows us
to quantify the impact of cardinality estimation by comparing the
elapsed times of the original plan and the plan obtained by injecting
exact cardinalities. In the rest of this section, we present a few high-
lights of the findings and discuss open questions. A more complete
description of the experimental results, along with explanations
and examples of observed impact can be found in Sections 4− 6.

1.1 Key Findings
Results on JOB (Section 4): The results presented in [33] uses
rowstore physical design in PostgreSQL. With the same setting on
Microsoft SQL Server, we observe that about 30% of the queries
in JOB improve by 2× or more when we inject exact cardinality.
This is consistent with the results reported in [33]. However, on
columnstores only around 5% JOB queries improve by 2× or more.
This is because a vast majority of JOB queries on rowstores have
index seeks as the most expensive operator (also noted in [33])
whereas in columnstores index seeks are absent.
Results on STATS (Section 4): STATS [28] queries contain a
COUNT aggregate. Microsoft SQL Server, unlike PostgreSQL, lever-
ages aggregate pushdown transformations to significantly bring
down the elapsed times even with optimizer-estimated cardinalities.
Consequently, STATS queries show significantly smaller magnitude
of improvements on Microsoft SQL Server rowstores when the op-
timizer’s cardinality estimates are replaced with exact cardinality
for each sub-expression requested by the optimizer.
Variation across workloads (Section 4): We find that the impact
of accurate CE varies considerably across different real workloads
and industry benchmarks. The plan quality of all queries (i.e., across
all workloads) we evaluated is shown in Figure 1 for rowstores. We
find that 13% of the queries improve by 2× or more, and 5% of all
queries improve by 10× or more. However, in 6 out of 17 workloads
that we evaluated, more than 20% of the queries improved by 2×
or more, whereas in 4 out of 17 workloads, fewer than 10% of the
queries improved by 2× or more, including one workload where
no queries improved at all. On columnstore, despite the simpler

(a) Distribution of plan quality im-
provements/regressions

(b) Log-Log scale scatter plot

Figure 1: Impact of exact cardinalities in Microsoft SQL
Server: rowstore configuration

physical design, we find that accurate cardinalities help almost as
many queries as in rowstore across all workloads (see Figure 8), e.g.,
13% queries improve by 2× or more and 3% of queries improved
by 10× or more. The variability across workloads is even more
pronounced in columnstores where, for 9 out of 17 workloads,
there were fewer than 10% of the queries that improved by 2× or
more.
Regressions (Section 4.3): On both rowstores and columnstores,
for a relatively small fraction of the queries (1% and 3% respectively),
injecting accurate cardinalities increases their elapsed time by 2× or
more . We determine the cause to be inaccuracies of the optimizer’s
cost model. This is consistent with findings in [33].
"Essential" query sub-expressions (Section 5.1): For queries that
improve significantly (2× or more) on rowstores when all logical
sub-expressions are injected with exact cardinality, we a posteriori
identify an essential subset of logical sub-expressions, i.e., a minimal
subset of logical sub-expressions such that injecting exact CE only
for that subset and using optimizer-estimates for all other logical
sub-expressions, is sufficient to yield the same plan as when exact
CE are used for all logical sub-expressions. Intriguingly, we find
that the essential subsets for the above queries are relatively small,
i.e., only 1%-5% of the logical sub-expressions for queries with more
than 100 logical sub-expressions.
Impact of increasing CE errors (Section 5.2): For queries that
improve 2× or more, i.e., are sensitive to errors in CE, we use
the cardinality injection API to inject erroneous cardinalities by
systematically varying the magnitude of error for each logical sub-
expression. We use q-error, an error metric widely used to evaluate
CE techniques (e.g., [22, 30, 33, 35, 37]). Our experiment sheds more
light on the relationship between q-error and plan quality that goes
beyond previous studies.
Bitmap filtering (Section 6.1): We find that bitmap filtering is
more frequently used in columnstores than rowstores because they
require Index Scan and Hash Join operators, which are more pre-
dominant in columnstores. Bitmap filtering leads to significant
improvement in elapsed time even without use of exact cardinali-
ties (e.g., on columnstores 36% of queries improve by ≥ 2×), thereby
significantly masking the negative impact of inaccurate CE. How-
ever, using exact cardinalities with bitmap filtering causes the above
percentage to modestly rise to 42% due to better choice of physical

2872



operators (e.g., Stream Aggregate vs. Hash Aggregate) and join
orders, and pushdown of group by and aggregation.
Adaptive join (Section 6.2): Adaptive join is designed to mitigate
the impact of choosing the wrong physical join operator. Specifi-
cally, it chooses between Hash Join and Index Nested Loops join at
runtime depending on the actual number of rows observed from the
execution of the first input. We find that use of Adaptive Joins alone
improves elapsed time of less than 1% of queries by 2× or more,
whereas when using both exact cardinalities and adaptive join 14%
of the queries improve by 2× or more. The ability of adaptive join
to mask the negative impact of CE errors is limited.

1.2 Open Questions
Based on our empirical study, we outline some potentially important
questions for database system engineers and researchers:

• Since our empirical study is conducted on Microsoft SQL Server,
follow-up studies on other DBMSs would be needed to under-
stand the extent to which the above findings generalize.

• Our results point to the need to augment benchmarks used for
evaluating query optimizers (e.g., [28, 33]) with new queries so
that they can be more representative of data skew and correla-
tion across predicates observed in real workloads. Additionally,
queries in these benchmarks need to be modified since state-of-
the-art query optimizers use transformation rules to optimize
queries containing commonly used operators such as group-by
and aggregation.

• Further work is required to understand the characteristics and
significance of essential query sub-expressions.

• Since runtime execution techniques (e.g., bitmap filtering) are
commonly used in practice, and can partially mask the negative
impact of CE errors, empirical evaluations of the optimizer using
CE benchmarks should also include use of these techniques.

• The choice of appropriate physical operators for aggregation
and join is an important area where existing runtime execution
techniques are unable to mask the impact of inaccurate CE. Thus
developing new physical operators that are more resilient to
errors in CE (see [19] for a survey) can be beneficial.

2 MICROSOFT SQL SERVER QUERY
OPTIMIZER

In this section, we provide a brief overview of the relevant aspects of
Microsoft SQL Server’s query optimizer, and describe the extensions
we made to obtain query plans with exact cardinality injection.

2.1 Overview
Microsoft SQL Server’s query optimizer uses the Cascades frame-
work’s [27] extensible optimizer architecture. In this framework,
rules are used to represent the knowledge of the search space. The
optimizer uses two kinds of rules: transformation rules that map
one algebraic expression into another (i.e., logical expression →
logical expression) and implementation rules that map an algebraic
expression into an operator tree (i.e., logical expression → phys-
ical operator tree). For efficiency, the optimizer uses a top-down
enumeration algorithm withmemoization, and performs cost-based
pruning of the search space. The memo data structure compactly

stores all explored alternatives by grouping together logically equiv-
alent query sub-expressions, called memogroups (or groups for
short), and their physical operator trees (i.e., plans). We use the
terms memogroup and logical sub-expressions interchangeably in
this paper. The memo also captures the parent-child relationships
among memogroups, e.g., (𝐴) and (𝐵) are children of (𝐴 ⊲⊳ 𝐵), and
((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶) is a parent of (𝐴 ⊲⊳ 𝐵). Thus each memogroup has a
set of ancestor nodes and a set of descendant nodes. Logical proper-
ties such as the cardinality of a group and physical properties such
as the cost of a plan are stored in the memo. Additional information
about Microsoft SQL Server’s optimizer can be found in [24, 25].
Cardinality estimation in Microsoft SQL Server (see [8, 23] for
more details) relies upon statistics such as histograms on individual
columns of a table for estimating the selectivity of selection and
join predicates, single and multi-column density information for
estimating the number of distinct values, and information about
constraints such as primary key and foreign key.
Bitmap filtering:Microsoft SQL Server uses bitmaps to perform a
semi-join reduction for plans containing Hash Join operators [5].
This technique performs early filtering of rows that will not qualify
a join [24]. At a high level, each Hash Join operator creates a single
bitmap filter from the equi-join columns on the build side. This
bitmap filter is then pushed down to the lowest possible level on the
subtree rooted at the probe side so that it can eliminate tuples from
that subtree as early as possible [26]. The optimizer also exposes a
secondmode in which it places bitmap filters in a physical execution
tree based on estimated selectivity of the filter(s). In this mode,
bitmap filters are not always pushed down as much as possible, but
may be placed in alternative locations in the physical tree depending
on the estimated selectivities. The results reported in this paper
are for the first mode only. Bitmap pushdown in Microsoft SQL
Server are performed on operators in the final plan chosen by the
optimizer.
Adaptive join: The Microsoft SQL Server optimizer can use the
adaptive join operator [6], which enables the choice of Hash Join or
Nested Loops join method to be deferred to runtime until after the
first join input has been scanned. If the row count of the first input
is below a threshold, the Adaptive Join operator uses a Nested Loops
join, otherwise it performs a Hash Join. A query plan can therefore
dynamically choose a better join strategy during execution, and
potentially reduce the impact of cardinality mis-estimation on join
performance.

2.2 Physical design
Microsoft SQL Server supports a rich set of options for physical
design of a database including indexes, materialized views and
partitioning. In this study, we focus only on indexes. In Microsoft
SQL Server, indexes fall into one of two categories: rowstore and
columnstore described below.
Rowstore indexes: These are clustered and non-clustered B+-Tree
indexes over data stored in row format. Indexes can have one or
more key columns, and optional included (i.e., non-key) columns.
Columnstore indexes: Columnstore indexes store data in colum-
nar format, broken into segments (of approximately 1M rows each).
Columnstore indexes allows greater compression than B+Tree in-
dexes and are thus effective in analytic workloads that need to scan

2873



large amounts of data. Although columnstore indexes do not sup-
port index seek capabilities, optimizations such as zone maps allows
skipping of segments of the data during scan. Details of columnstore
indexes in Microsoft SQL Server can be found in [31, 32].

2.3 API for exact cardinality injection
To analyze the impact of cardinality estimation on plan quality,
we compare the plan obtained by the optimizer using the its built-
in cardinality estimator to the plan obtained when all cardinality
values are exact i.e., have no errors. We extend the Microsoft SQL
Server query optimizer with two APIs (see Figure 2): (1) cardinality
injection, which allows a client to inject a cardinality value for a
specific memogroup during optimization, thereby overriding the op-
timizer estimated cardinality, and (2) SQL decoding, which enables a
client to obtain a valid and logically equivalent SQL statement corre-
sponding to a memogroup. Note that the exact cardinality injection
API is significantly more comprehensive in terms of supported SQL
constructs such as group-by, aggregation, nested subqueries etc.,
compared to the API used in prior empirical studies [28, 33] that
supported SPJ queries on PostgreSQL.

Injection 
Client

Optimize
(with injection enabled)

Microsoft SQL Server

Query
Optimizer

Insert/Update
<signature, cardinality>

Showplan XML
(with signature 

and decoding info)
Lookup

System table
for injection

Figure 2: Cardinality injection API in Microsoft SQL Server

Extensions to the query optimizer: We extend the optimizer to
derive two additional properties for each logical memogroup. First,
we compute a signature (a 64-bit hash value) that uniquely identi-
fies the memogroup. We derive this value by recursively traversing
all nodes in the subtree rooted at that memogroup, and collect-
ing unique properties of the group, e.g., columns references in the
projections, filters, and grouping; outer vs inner join, filter pred-
icate bindings, etc. Second, we construct a valid SQL query (aka
SQL decoding) for the memogroup, using another recursive proce-
dure that first computes decodings for the children memogroups
and then combines these decodings based on the semantics of the
memogroup’s logical operator1. The signature and SQL decoding
associated with each memogroup is returned via a newly added
<𝑀𝑒𝑚𝑜> element in the XML version of the output plan (i.e., Show-
plan output), which the client can then use to obtain the exact
cardinality plan.
Steps to obtain exact cardinality plan: The client computes the
exact cardinality for each memogroup by executing its SQL decod-
ing and inserts the <signature, exact cardinality> tuple into a system
table. Then, it invokes the query optimizer along with a flag that
redirects the optimizer to use cardinality from the system table, if
available, rather than use its default cardinality estimate. Note that

1We implemented these functions for ≈30 logical operators in Microsoft SQL Server -
these functions accounted for the majority of our implementation effort. We skip a
few infrequent logical operators in the current implementation.

the query optimizer may encounter new memogroups for which
exact cardinality information is not available in the system table,
since they were not considered in previous optimizer invocations.
Therefore, we repeat the above steps of signature generation, decod-
ing, exact cardinality computation and optimizer invocation until
no new memogroups are explored. Note that this iterative proce-
dure can be quite expensive due to exact cardinality computations,
which can be optimized e.g, using techniques described in [17].
Re-costing a plan with injected cardinality We can also use
the above API to re-cost a plan with exact cardinalities by enabling
cardinality injection while using the USE PLAN hint functionality
of Microsoft SQL Server. We use such re-costing to identify whether
the cost model of the query optimizer is responsible for regression
in elapsed time after exact cardinality injection.
Injecting cardinality for a subset of memogroups We note
that the cardinality injection API can also be used for injecting
cardinalities for a subset of memogroups (Section 5). In this case,
the cardinalities of non-injected memogroups are derived by the
optimizer as usual. However, since existing methods in Microsoft
SQL Server use the cardinality of a child memogroup to derive its
cardinality, the cardinalities injected for a memogroup can affect
the cardinality of its non-injected ancestor memogroups.
Limitations of cardinality injection: There are some cardinali-
ties used by the optimizer for which we are unable to inject cardi-
nalities, and therefore the optimizer falls back to its default cardi-
nality estimation logic in these cases. We outline such cases below.
First, our cardinality injection API only injects cardinalities for
memogroups. However, before the memo is created, the optimizer
performs an initial n-ary join reordering using cardinalities that
can prune certain join orders. Second, for a memogroup that cor-
responds to a correlated sub-query its cardinality can vary with
each invocation depending on the value from the outer relation,
which is not known at compile time. Third, when we execute the
decoded SQL expression for a memogroup to obtain its cardinality,
in some cases the query times out2, and therefore we are unable to
obtain the exact cardinality. Finally, we note that in addition to the
primary cardinality estimator of Microsoft SQL Server described in
Section 2, it also uses two special estimators: (1) rowgoal selectivity
estimator (e.g., when the query contains a TOP clause), and (2)
bitmap selectivity estimator. While we can inject exact cardinalities
for the primary estimator using the above API, the final cardinalities
used by the optimizer can be modified by the other two estimators.

3 EVALUATION SETUP AND METHODOLOGY
3.1 Workloads
We use multiple workloads in our experiments: (1) CE bench-
marks: JOB [33], CEB [38], STATS [28]. (2) Industry benchmarks:
TPC-DS, modified industry benchmarks DSB [20] which uses the
same schema as TPC-DS but varies the data distribution and query
generation, and TPC-H (with data skew, Z=1 Zipfian skew fac-
tor). (3) Real workloads: a suite of real queries over 6 different
real databases. Both databases and queries were collected from
customers of Microsoft SQL Server, and were unmodified for this
evaluation.
2We use a timeout of 1500 seconds.

2874



• REAL1: Analyzes sales and inventory data for a US bookstore
chain using dimensions of time, item, store, merchant etc.

• REAL2: Analyzes products and orders for an international cos-
metic retailer.

• REAL3: Internal application that stores and queries the catalog
of a source control system.

• REAL4: ERP application that analyzes retail invoices and sales
by time, customer, point of sale etc.

• REAL5 and REAL6: Internal applications tracking agreements,
customers and sales of products/services.

(4)Real templates: We generate additional queries by treating each
real query above as a template and instantiating bindings in their
filter predicates. This way we systematically introduce variations
in the selectivity of predicates of real templates without modifying
the database or the template. To create a template corresponding to
each real query we convert each filter predicate on an attribute of
a base table into a parameterized predicate. We then generate new
instances of each template by choosing parameter binding(s) for
each predicate independently, and choosing binding values such
that the resulting filter has geometrically increasing selectivities.

This ensures that across instances, we cover a large range of
selectivities for that predicate with more emphasis on small selectiv-
ities. We obtain binding values from the histogram of that column
which is stored as part of Microsoft SQL Server’s statistics object
for that column. We handle equality, range, and IN predicates.

These workloads are summarized in Table 1. In contrast to
queries in the CE benchmarks that focus on SPJ queries with count
aggregate, real queries and industry benchmark queries contain
outer joins, nested sub-queries, group by and other aggregate func-
tions. Moreover, data sizes and the number of relations per query
tend to be significantly larger. Finally, we note that for each work-
load we only include queries for which exact cardinality injection
is possible for all memogroups in the query (see Section 2.3).

Table 1: Workloads used in the evaluation

Workload Data/Index Query #relations Group Outer- Sub- CTE Union
(DB) sizes(GB) Count (min-max) By join query /Intersect
JOB 5.4/3 88 4-17 - - - - -

(IMDB)
STATS 0.2/0.03 138 2-7 - - - - -
(Stacks

-Exchange)
CEB 6/3 38 4-17 17 - - - -

(IMDB)
TPC-H 12.7/28 126 1-7 92 11 34 - -
(z=1)

TPC-DS 16.3/0.03 174 3-32 143 5 56 23 19
DSB 11.2/20 63 3-34 30 11 5 8 3

REAL1 97/0.3 14 1-9 6 3 2 10 -
(Real DB1)
REAL2 49.4/39 13 2-10 11 - 11 - -

(Real DB2)
REAL3 262.4/129 11 1-6 - 4 - - -

(Real DB3)
REAL4 2888/265 8 1-20 7 2 1 - -

(Real DB4)
REAL5 377/325 16 5-33 16 15 - 16 2

(Real DB5)
REAL6 10.4/13 47 5-25 47 45 - 47 7

(Real DB6)

3.2 Methodology
Our evaluation varies the following dimensions: (1) Cardinality:
{Optimizer-Est, Exact} (2) Physical Design: {Rowstore, Columnstore}.
For rowstore, for real workloads, we retain the original physical
design present in the database. For all other workloads, we create
indexes recommended by Microsoft SQL Server Database Engine
Tuning Advisor (DTA) tool. For columnstores, we create one clus-
tered columnstore index on each table. (3) For Parallelism, Bitmaps
and Adaptive Join, we run with each feature turned On/Off. We
run each query in isolation with a cold cache i.e., the buffer pool is
reset prior to each execution using dbcc dropcleanbuffers [11]. We
record the plan, elapsed time and CPU time of each query execution.
The experiments were carried out on Windows Server machines
with AMD EPYC 7352 2.3 GHz processors (24 cores, 2 sockets), 256
GB RAM and 1.6TB SSD.

For each query, we measure the elapsed time of the original plan
obtained with optimizer-estimated cardinalities (𝑃𝑜𝑟𝑖𝑔), and the
elapsed time of the plan obtained with exact cardinality injection
(𝑃𝑒𝑥𝑎𝑐𝑡 ). Then, we define the Impact on plan quality of using exact
cardinality for a query as:

𝐼𝑚𝑝𝑎𝑐𝑡 =
𝐸𝑙𝑎𝑝𝑠𝑒𝑑_𝑇𝑖𝑚𝑒 (𝑃𝑜𝑟𝑖𝑔)
𝐸𝑙𝑎𝑝𝑠𝑒𝑑_𝑇𝑖𝑚𝑒 (𝑃𝑒𝑥𝑎𝑐𝑡 )

(1)

Observe that 𝐼𝑚𝑝𝑎𝑐𝑡 > 1 represents an improvement due to
cardinality injection whereas 𝐼𝑚𝑝𝑎𝑐𝑡 < 1 is a regression.

4 RESULTS: EXECUTION-TIME
OPTIMIZATIONS TURNED OFF

In this section we discuss the impact of injecting exact cardinalities
on plan quality in the setting where all execution time techniques
are disabled. In particular, we use serial plans only (i.e., disablemulti-
core parallelism), and turn off bitmap filtering and adaptive join
techniques. This is also the setting used in prior studies including
JOB [33] and STATS [28]. We first present our results for rowstore
databases in Sections 4.1- 4.3 followed by results for columnstore
databases in Section 4.4. We conclude this section with takeaways
in Section 4.5.

4.1 Overview in rowstores
Query-level improvements and regressions: Figure 1(a) (in Sec-
tion 1) shows the distribution of Impact across queries from all
workloads. In 70% of the queries the Impact is between 0.8× and
1.2×. In other words, these queries improve or regress by less than
20%. In 8% of the queries we see 2×-10× improvement, in 3% of the
queries we see 10×-100× improvement, and in 2% of the queries
we see over 100× improvement in elapsed time. We also observe re-
gressions, although they are significantly fewer than improvements
- 1% queries regress by 2× or more. Figure 1(b) shows a scatter plot
(log-log scale) of elapsed time of each query for 𝑃𝑜𝑟𝑖𝑔 (x-axis) and
𝑃𝑒𝑥𝑎𝑐𝑡 (y-axis). Points below the diagonal are queries that improve
due to exact cardinality injection, whereas points above the diag-
onal are queries that regress. First, as the plot shows, there is a
large range of elapsed times of the queries across workloads. They
vary between just a few milliseconds to 1000’s of seconds. Second,
the number of queries that improve as well as the magnitude of
their improvements is significantly higher than those of queries

2875



(a) Percentage of queries im-
proving/regressing by ≥ 2×

(b) Workload level improve-
ment or regression

Figure 3: Impact of exact CE across workloads (rowstore)

that regress. Third, a large fraction of the largest improvements
that arise due to use of exact cardinality occur in queries with large
original elapsed time. We drill down into reasons for improvement
and regressions in Sections 4.2 and 4.3 respectively.
Workload-level improvements and regressions: Figure 3(a)
shows for each workload the percentage of queries that improve
(green bar) or regress (red bar) 2× or more when using exact cardi-
nalities. The impact of using exact cardinalities varies significantly
with no queries improving in REAL3 and more than 30% of the
queries improving in JOB. Regressions are less frequent, absent in
11 workloads and happen only in a few workloads such as TPC-DS,
and REAL4_inst. Figure 3(b) shows the improvement or regression
in total elapsed time, i.e., sum of elapsed time over all queries in the
workload. In 7 workloads we observe more than 40% improvement
in total elapsed time, and in 2 workloads, DSB and REAL4_inst,
we observe more than 80% improvement. In contrast, the regres-
sions result in 12% or less degradation in total elapsed time for 2
workloads.
Significant regression for TPC-DS/REAL1_inst: We did deeper
analysis of workload level regression for TPC-DS and found that
it is due to large absolute time regression of a small percentage of
queries that nullify the improvements in much larger percentage
of queries. To elaborate, 19% of TPC-DS queries improve by at
least 1.2×, however the resulting 60% improvement in execution
time is cancelled by significant absolute time regression for only 3%
regressing queries. It is worth noting that the improvements in TPC-
DS queries are limited to a small number of query templates, i.e.,
26 out of 32 improving queries were instances of 7 query templates.
Similarly, all regressing queries correspond to only 2 TPC-DS query
templates. Our observations are similar for REAL1_inst, that large
absolute regression of a small number of queries nullify the gains
in larger fraction of queries.
Limited impact of accurate CE for STATS/REAL3: Recall that
in the STATS benchmark, the table sizes are small, but intermediate
result sizes of joins are very large due to FK-FK joins, making join
size estimation very important. In [28] the authors note that in
PostgreSQL, using exact CE results in huge improvement (50% end-
to-end gains ≈5.5 hours). In contrast, the Microsoft SQL Server
optimizer takes advantage of aggregate pushdown optimization to
push the COUNT aggregate computation below joins. Thus, for
many STATS queries the intermediate join sizes are small, leading

to efficient plans even with its native cardinality estimation model
- most queries execute in few hundred milliseconds with estimated
cardinalities. The scope of improvement due to exact CE is therefore
limited in Microsoft SQL Server, only 7% queries improve by 2× or
more and maximum per query improvement is only ≈ 7 seconds.

We also analyzed the reason why REAL3 does not exhibit any
improvement due to exact CE. We found that, while some of the
tables referenced in these queries are large, many queries contain
a conjunction of 4 − 5 selective predicates on these large tables.
As a result, the actual number of rows that qualify after selection
predicates are applied are small (usually below 10) and the optimizer
estimates for base table expressions are also quite accurate. The
original plan uses Index Seeks and index intersections in some cases
to access rows in these large tables. Since join sizes are also very
small, there is minimal scope (with the exception of one query) for
improving the elapsed times of such queries by making CE more
accurate.

4.2 Drill-down into improvements
We now drill down to characterize in what ways exact cardinalities
help in finding a better plan. We find that an explanation such as
𝑃𝑒𝑥𝑎𝑐𝑡 has a "better join order" than 𝑃𝑜𝑟𝑖𝑔 often does not capture
real reason for improvement even though the join order changes.
Our approach is triggered by the observation in [33] that for most
queries in JOB, the reason for a slow plan 𝑃𝑜𝑟𝑖𝑔 on PostgreSQL
is excessive use of index seeks. This motivated us to understand
whether the queries from industry benchmarks and real workloads
also follow a similar pattern, where the improvements in the elapsed
time of 𝑃𝑒𝑥𝑎𝑐𝑡 when compared to 𝑃𝑜𝑟𝑖𝑔 is dominated by speeding
up or eliminating expensive index seek operators, or whether there
also exist other patterns of improvement. Our analysis therefore
focuses on the most resource consuming operations in 𝑃𝑜𝑟𝑖𝑔 , and
we ask how using accurate CE helps avoid or mitigate them in
𝑃𝑒𝑥𝑎𝑐𝑡 .
Methodology: For all queries that improved by 2× or more and
whose elapsed time is ≥ 50𝑚𝑠 , we analyze the plans 𝑃𝑜𝑟𝑖𝑔 and
𝑃𝑒𝑥𝑎𝑐𝑡 , and compute the actual time spent in seek, scan and non-
leaf operators for both 𝑃𝑜𝑟𝑖𝑔 and 𝑃𝑒𝑥𝑎𝑐𝑡 . With this information, we
categorize each query into one of the following four categories
based on which class of operators contributes to the majority, i.e., >
50%, of the observed improvement: (1) Seek operators, i.e., operators
that access base tables using random I/O, (2) Scan operators, i.e. ,
operators that access base tables using sequential I/O, (3) Non-leaf
operators (e.g., physical join operators, sort, hash aggregate, ...) (4)
A catch-all category where none of the conditions (1)-(3) apply and
the elapsed time improvement is spread across multiple leaf and/or
non-leaf operators.

Note that each category can have examples of changes in join
order. For example, a query where 𝑃𝑜𝑟𝑖𝑔’s join order ((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶)
changes to ((𝐴 ⊲⊳ 𝐶) ⊲⊳ 𝐵) in 𝑃𝑒𝑥𝑎𝑐𝑡 , can be assigned to category
1 if access path for 𝐶 was an expensive seek and majority of the
observed improvement happened because this expensive seek on
𝐶 is avoided, or category 2 if access path for 𝐵 was an expensive
scan and majority of the observed improvement happened because
expensive scan on 𝐵 is avoided, or category 4, if none of the two

2876



reason was individually dominant (more than 50%) and the execu-
tion cost improvement was spread across table access path and join
operators.

Table 2: Queries across improvement categories

Category 1 Category 2 Category 3 Category 4
Dominant improvement in:

Workload set Seek Scan Non-leaf Other
operators operators operators (catch all)

CE benchmarks 33 13 2 4
Industry-benchmarks 14 14 0 3

Real workloads 8 4 4 2
Real templates 12 23 17 1

The distribution of queries in these categories is shown in Ta-
ble 2. We find that for CE benchmarks, the number of queries in
Category 1 (Seek operators) exceeds the number of queries in all
other categories combined. Specifically, in JOB, we often find heavy
use of index seeks in 𝑃𝑜𝑟𝑖𝑔 due to a series of severe underestima-
tions starting from the first join and hence the dominant cause of
improvement is replacing seeks with scan operators, or changing
join order such that the number of seeks are significantly reduced.
In STATS queries, severe underestimates originate much later in
the plan due to a many-to-many join that either results in exces-
sive seeks (category 1) or spills to disk during hash-build operator
(category 3 or 4). In both of these cases for STATS, Microsoft SQL
Server’s ability to push-down COUNT(*) as partial aggregate op-
erator leads to a faster plan 𝑃𝑒𝑥𝑎𝑐𝑡 . In contrast to CE benchmarks
where Category 1 is predominant, for industry benchmarks, real
workloads, and real templates, we find that Category 1 constitutes
a significantly smaller percentage, and the speed up of index scans
and other non-leaf operators often are the dominating reasons for
plan improvements.

In the rest of this subsection we describe one example query from
each category, and we show 𝑃𝑜𝑟𝑖𝑔 and 𝑃𝑒𝑥𝑎𝑐𝑡 . For clarity, we only
show plan fragments with relevant operators - missing operators
are represented with dashed edges.

Example 4.1. An example query of first category, JOB Q17a, with
its before and after plans are shown in Figure 4. The expensive
Index Seek operators in 𝑃𝑜𝑟𝑖𝑔 which contributes most to its elapsed
time are shown in color. In 𝑃𝑒𝑥𝑎𝑐𝑡 the Index Nested Loops Join with
table "name" is replaced with a Merge Join with an Index Scan of
the "name" table, and the number of seeks for the table "cast_info"
are significantly reduced due to join order change.

Example 4.2. As an example for category 2 improvements, Fig-
ure 5 shows 𝑃𝑜𝑟𝑖𝑔 and 𝑃𝑒𝑥𝑎𝑐𝑡 for an query instance of TPC-H Q3.
𝑃𝑜𝑟𝑖𝑔 spends a large fraction of its total elapsed time scanning the
"lineitem" table (with 60M total rows). Once exact cardinalities
are injected, the optimizer finds a different join order where it is
sufficient to seek on the "lineitem" table.

Example 4.3. Figure 6 shows an example of category 3 improve-
ment, using plans 𝑃𝑜𝑟𝑖𝑔 and 𝑃𝑒𝑥𝑎𝑐𝑡 for a query from REAL1. The
most expensive operators in 𝑃𝑜𝑟𝑖𝑔 are the Sort and StreamAgg oper-
ators highlighted in color, due to severe underestimation (est=100k,
exact=6M) in the input of the Sort operator. 𝑃𝑒𝑥𝑎𝑐𝑡 uses a partial
aggregate push down operator after the second join that drastically
reduces the input size of the Sort operator later on in the plan.

INLJ

INLJ

Est:454,
Act:2.8M

CI_Seek(4.2M)

[name] [n]

Est:1,
Act:0.3M

0

Est:38,
Act:0.3M

INLJ

Est:80,
Act:0.1M

I_Seek(36.2M)

[cast_info] [ci]

Est:15,
Act:2.8M

INLJ

Est:33,
Act:41.8K

I_Seek(2.6M)

[movie_companies] [mc]

Est:2,
Act:0.1M

CI_Scan(0.1M)

[keyword] [k]

Est:1,
Act:1

I_Seek(4.5M)

[movie_keyword] [mk]

Est:33,
Act:41.8K

(a) With estimated cards

HashJoin

MergeJoin

Est:93.3K,
Act:93.3K

CI_Scan(2.6M)

[movie_companies] [mc]

Est:2.6M,
Act:2.6M

0

Est:0.1M,
Act:0.1M

CI_Scan(4.2M)

[name] [n]

Est:0.3M,
Act:0.3M

INLJ

Est:1.0M,
Act:1.0M

HashJoin

Est:41.8K,
Act:41.8K

I_Seek(36.2M)

[cast_info] [ci]

Est:24,
Act:1.0M

CI_Scan(0.1M)

[keyword] [k]

Est:1,
Act:1

CI_Scan(4.5M)

[movie_keyword] [mk]

Est:4.5M,
Act:4.5M

(b) With exact cards

Figure 4: Plan fragments for category 1 example (JOB Q17a):
Majority of improvement is due to avoiding expensive seeks
to access tables "name" and "cast_info"

Sort

INLJ

Est:3.6K,
Act:0.2M

HashJoin

Est:0.8M,
Act:0.6M

I_Seek(1.5M)

[customer]

Est:1,
Act:0.2M

I_Seek(15.0M)

[orders]

Est:0.2M,
Act:0.2M

I_Scan(60.0M)

[lineitem]

Est:59.9M,
Act:59.9M

(a) With estimated cards

Sort

INLJ

Est:0.2M,
Act:0.2M

HashJoin

Est:38.1K,
Act:38.1K

I_Seek(60.0M)

[lineitem]

Est:3,
Act:0.2M

T_Scan(1.5M)

[customer]

Est:0.3M,
Act:0.3M

I_Seek(15.0M)

[orders]

Est:0.2M,
Act:0.2M

(b) With exact cards

Figure 5: Plan fragments for category 2 example (TPC-H Q3-
i6 query): Scan operator for the "lineitem" table is eliminated

StreamAgg

Sort

Est:96.6K,
Act:5.8M

0

Est:95.9K,
Act:41.6K

HashJoin

Est:96.6K,
Act:5.8M

CI_Scan(0.7M)

[Tbl_Dim_Item] [Dim_Item]

Est:0.7M,
Act:0.7M

HashJoin

Est:0.6M,
Act:5.8M

(a) With estimated cards

StreamAgg

Sort

Est:41.6K,
Act:41.6K

0

Est:41.6K,
Act:41.6K

HashJoin

Est:41.6K,
Act:41.6K

HashAgg

Est:41.6K,
Act:41.6K

CI_Scan(0.7M)

[Tbl_Dim_Item] [Dim_Item]

Est:0.7M,
Act:0.7M

HashJoin

Est:5.8M,
Act:5.8M

(b) With exact cards

Figure 6: Plan fragments for category 3 example (REAL1
query): Non-leaf operators (Sort and StreamAgg) process
much smaller input due to push down aggregate

2877



Top

INLJ

Est:2.5K,
Act:14

Sort

Est:2.5K,
Act:10.2K

CI_Seek(14.4M)

[catalog_sales]

Est:1,
Act:14

HashJoin

Est:1.4M,
Act:0.2M

CI_Scan(73.0K)

[date_dim] [d1]

Est:104,
Act:30

CI_Scan(28.8M)

[store_sales]

Est:28.8M,
Act:28.8M

(a) With estimated cards

Top

INLJ

Est:137,
Act:137

HashJoin

Est:223,
Act:223

CI_Seek(28.8M)

[store_sales]

Est:1,
Act:137

HashJoin

Est:0.2M,
Act:0.2M

CI_Scan(14.4M)

[catalog_sales]

Est:14.4M,
Act:14.4M

CI_Scan(73.0K)

[date_dim] [d2]

Est:61,
Act:61

CI_Scan(7.2M)

[store_returns]

Est:7.2M,
Act:7.2M

(b) With exact cards

Figure 7: Plan fragments for category 4 example (TPC-DS
Q29): change in join order leads to improvement across mul-
tiple operators

Example 4.4. An example for category 4 improvement where
join order change helps in improving multiple expensive operators,
the before and after plans for query TPC-DS Q29 are shown in
Figure 7. The most expensive operators in 𝑃𝑜𝑟𝑖𝑔 are clustered index
scan of "store_sales" (29M rows) and an index nested loop operator
with seek on "catalog_sales". With exact cards, the optimizer find
a new join order in 𝑃𝑒𝑥𝑎𝑐𝑡 where it avoids both expensive scan of
"store_sales" and expensive seek of "catalog_sales" table.

4.2.1 Observed root causes of CE errors. The root causes of CE
errors that lead to bad plans in JOB and STATS have been noted
earlier. Here we describe the root causes of CE errors we find in real
workloads and industry benchmarks. In real workloads, the most
common reason we see for CE errors that lead to poor plans is data
skew in one or more join columns. Data skew in join columns can
lead to heavy underestimation or overestimation based on the skew
value and whether infrequent or frequent values are filtered out
by the filter conditions. Unlike real workloads, the data skew and
filter conditions in JOB queries typically favor underestimations.
In DSB Q101, we see a complex join predicate spanning two date
dimension tables "d2.d_date between d1.d_date and dateadd(day,
90, d1.d_date)" which leads to large cardinality underestimation in
the output of the join of these two dimension tables, and in turn
leads to a bad plan involving an Index Seek on the large𝑤𝑒𝑏_𝑠𝑎𝑙𝑒𝑠
table. In TPC-H Q12 we observe that even single-table predicate
"l_commitdate < l_receiptdate and l_shipdate < l_commitdate" lead
to large overestimation due to assumptions made by the optimizer
about correlation across columns.

4.3 Drill-down into regressions
The three major components of the query optimizer are cardinality
estimation, cost model and search [15]. With exact cardinality injec-
tion we eliminate cardinality estimation as the cause of a regression.
To reduce the likelihood of regressions due to plan search, we dis-
able the early exit criteria used in plan search based on the time

spent on query optimization exceeding a threshold or optimizer es-
timated cost of the best plan dropping below a threshold. Therefore,
two potential causes of regression are: (a) errors in cost modeling
such as relative cost of Index seek vs scan, or errors in deciding
whether to use row-mode or batch-mode operators and (b) cases
where injected cardinalities are overridden with another heuristic
estimator during optimization, such as rowgoal estimator [3, 9].

We analyzed queries where the elapsed time of 𝑃𝑒𝑥𝑎𝑐𝑡 is 2× or
more higher than the elapsed time of 𝑃𝑜𝑟𝑖𝑔 . The most common
cases we see are an incorrect "crossover point" in the estimated cost
between a pair of physical operators: (a) Index Seek vs. Index Scan
or (b) Index Nested Loop Join vs. Hash Join, since the seek to scan
cost ratio is overestimated. This is because the machines we run
the experiments on are equipped with SSDs having relatively low
ratio of random access to scan cost, whereas the optimizer’s cost
model is calibrated for storage devices with a higher ratio. In other
cases, the plan determined by the optimizer after exact cardinality
injection has a different join order than original plan with smaller
optimizer estimated but has larger execution cost. Finally, we find
cases where the rowgoal estimator, invoked for queries with TOP
clause (as noted in Section 2.1), overrides the injected cardinalities
and leads to a worse plan in execution cost.

4.4 Columnstores
The overall distribution of improvements and regressions for queries
in columnstore databases is shown in Figure 8(a). We observe that
around 13% of queries improve in elapsed time by 2× or more and
about 3% of the queries regress by 2× or more. The scatter plot
in Figure 8(b) shows that large improvements occur for both inex-
pensive and expensive queries. Next, we breakdown the impact of
exact cardinalities on plan quality by workload. Figure 8(a) shows
the percentage of queries for each workload with 2× or more im-
provement in elapsed time (green bar) and 2× or more regression
in elapsed time (red bar). Overall, these aggregate improvement
and regression numbers are similar to what we see on rowstore
databases (Figure 1). Thus, the impact of accurate cardinality esti-
mation remains significant even for columnstore databases. We do
however observe an even larger variation in impact across work-
loads when compared to rowstores with large improvements in
CEB and almost none to negative improvements in 5 workloads.
Improvement categories: In comparison to rowstores (see Sec-
tion 4.2), we find a few differences for queries where elapsed time
improves by 2× or more. First, Category 1 (Seek operators) is absent
and most of the queries fall in category 2 or 3. For CE benchmarks,
90% of the queries lie in category 3 where underestimated cardinali-
ties lead to spills in non-leaf operators (hash build or aggregate). In
contrast, industry benchmarks have more than 30% queries and real
workloads have more than 80% queries in category 2 (scans) where
𝑃𝑒𝑥𝑎𝑐𝑡 has a different join order found by fixing overestimated car-
dinalities, which helps in avoiding expensive scans in 𝑃𝑜𝑟𝑖𝑔 , e.g., the
query has empty output or a row mode index scan changes to batch
mode index scan (which processes multiple rows at a time rather
than one row at a time) [4] or vice versa. Compared to rowstore,
we see that JOB sees much fewer queries that benefit from use of
exact cardinalities. As noted in Section 4.2 virtually all queries that
improved significantly were in Category 1. In columnstore, Index

2878



(a) Distribution of plan quality im-
provement or regression

(b) Log-Log scale scatter plot

Figure 8: Impact of exact cardinalities: columnstore configu-
ration

(a) Percentage of queries im-
proving/regressing by ≥ 2×

(b) Percentage improvement in
total elapsed time

Figure 9: Impact by workloads on columnstore

Seek and Index Nested Loops join are not typically considered by
the optimizer and the optimizer usually picks Index Scan and Hash
Join plans in 𝑃𝑜𝑟𝑖𝑔 . Hence, the opportunities to improve plans with
exact cardinality are significantly reduced.

4.5 Takeaways
(1) Accurate CE results in significant improvements both in terms
of percentage of queries and total workload execution time im-
provement. However, there are large variations in degree of im-
provement depending on the workload. (2) There is opportunity
to enhance our CE benchmarks to: (a) increase coverage of addi-
tional categories of improvement that appear in real workloads
and industry benchmarks. For example, include queries on IMDB
(or other real datasets) where the optimizer also has to deal with
significantly overestimated cardinalities due to join skew and com-
plex filter/join predicates similar to DSB [20] and TPC-H. (b) In-
clude queries that challenge state-of-the-art query optimizers that
are capable of GROUP BY and aggregation push-down. For exam-
ple, in STATS, using an aggregate function such as MEDIAN or
a user-defined aggregate, can ensure that accurate CE for joins is
important even in DBMSs with sophisticated query optimizers. (3)
Columnstore physical design are generally considered "simpler"
than rowstore. Our experiments show that accurate CE remains
important even in such simpler physical designs. However, large
improvements (over 60%) in total elapsed time occurs in fewer
workloads than in rowstores.

Figure 10: (a) Sizes of essential sets are much smaller than
total number of memogroups. (b) Plan quality evaluation of
simple heuristics for identifying essential memogroups (see
Appendix).

5 SENSITIVITY TO CARDINALITY ERRORS
We take a first step towards quantifying the sensitivity of plan qual-
ity to CE errors with two experiments: (1) How few memogroups
can we inject with exact CE and still get to the same plan as inject-
ing all memogroups with exact CE? (2) How large CE errors can
be tolerated by the optimizer without significantly affecting plan
quality?

5.1 Essential set of memogroups
We define an essential set of memogroups as any subset (E) of mem-
ogroups of the query that satisfies two conditions. First, injecting
exact cardinalities only for E and using optimizer-estimated cardi-
nalities for all other memogroups3, yields the same plan as when
exact cardinalities are used for all memogroups (𝑃𝑒𝑥𝑎𝑐𝑡 ). Second, E
is minimal in the sense that injecting exact cardinalities for only a
proper subset of E does not yield 𝑃𝑒𝑥𝑎𝑐𝑡 .

The above definition leads to the following straightforward al-
gorithm to identify potentially one of potentially many essential
sets for a query a posteriori, i.e., after all exact cardinalities have
been computed. The algorithm initializes the essential set to the
set of all memogroups and then iteratively shrinks the set by at-
tempting to remove a memogroup in each iteration. For each query
that improves at least 2× in elapsed time due to injection of exact
CE, we use the above algorithm to identify an essential set for the
query. While different order of removal of memogroups can lead
to different essential sets for the same query, in our experiments
we rarely find queries with more then one essential set. Even in
cases where we find multiple essential sets for a given query, there
are typically only 1-2 memogroups that are not in common across
all essential sets. Figure 10(a) shows a scatter plot of total number
of memogroups vs. essential set size. The median essential set size
is 5 and the 95th percentile is 26. For queries where the memo is
"large" (i.e., contains more than 100 memogroups), a median of 3%
and 95th percentile of 10% of all groups are essential.

While the above observation is intriguing, more work is needed
along a few key dimensions to understand the importance of essen-
tial memogroups: (a) Assess how accurate the cardinalities must
be for essential memogroups before we no longer obtain 𝑃𝑒𝑥𝑎𝑐𝑡 .
Although we know that if we use optimizer estimated cardinality

3Note that, in Microsoft SQL Server, the optimizer estimated cardinality of a mem-
ogroup can change when we inject exact cardinality for a descendent memogroup.

2879



Figure 11: Sensitivity of plan quality to cardinality errors

for any essential memogroup, then we no longer get 𝑃𝑒𝑥𝑎𝑐𝑡 , how-
ever for any essential memogroup there is potentially a large gap
between its exact cardinality and its optimizer estimated cardinal-
ity. (b) We know that injecting exact cardinalities for all essential
memogroups is sufficient to obtain 𝑃𝑒𝑥𝑎𝑐𝑡 when we use optimizer
estimated cardinalities for other memogroups, but we do not know
if injecting exact cardinalities for all memogroups in the essential
set is necessary. (c) Thus far, by examining essential memogroups
in our experiments, we do not find any obvious patterns (e.g., num-
ber of relations in memogroup, logical operator etc.). It remains
an open question as to whether the characterization of essential
memogroups can be learned automatically.

Finally, given the high cost of obtaining exact cardinalities for all
memogroups, we tried a few simple heuristics to identify essential
memogroups a priori, and evaluated the impact of injecting exact
cardinalities only for memogroups identified by each heuristic – see
Figure 10(b) and Appendix A for details. However, these heuristics
lead to obtaining 𝑃𝑒𝑥𝑎𝑐𝑡 in only between 15% to 31% of the queries.
Therefore, although the cost of experiments using essential sets are
expensive, to ensure accuracy of the results reported in this paper,
we do not use these heuristics.

5.2 Impact of varying CE error
In this experiment, we evaluate the sensitivity of plan quality (i.e.,
elapsed time) to cardinality estimates by introducing errors in the
injected cardinalities of all memogroups. As inmost previous results
presented in this paper, we use rowstore databases, and focus on
queries which improved by 2× or more when using exact cardinali-
ties. These are queries sensitive to accurate cardinality estimates.
We use q-error [36], since it is a widely used error metric for evalu-
ating CE techniques e.g., [22, 30, 33, 35, 37]. We vary themagnitude
of error 𝜖 of q-error over the values: 1.1, 2, 5, 10, 50, 100 and for each
memogroup we inject a cardinality such that its error is 𝜖 . Thus we
empirically bound the error for each memogroup. Since q-error is
symmetric, for a given value of 𝜖 we can potentially inject one of
two values, each in a different direction. Thus, for each memogroup,
there are two choices possible, leading to many possible combina-
tions of cardinality injection for the query for a given value of 𝜖 .
For the experiments reported in this section, we invoke four such
combinations for every value of 𝜖 . In two invocations, we choose
the direction of error with respect to exact cardinality for each
memogroup at random. In the other two invocations, we choose

the direction of error with respect to exact cardinality for all mem-
ogroups to be the same, one in each direction. We measure the
elapsed time for each execution. Note that each of these invoca-
tions can potentially lead to a different plan for a given 𝜖 value.
The impact of varying q-error on plan quality is captured using box
plots for each 𝜖 value in Figure 11. The outliers are shown as dots
in the figure. The y-axis is the suboptimality ratio of the plan with
respect to elapsed time of 𝑃𝑒𝑥𝑎𝑐𝑡 and x-axis is 𝜖 . The rightmost box
plot in each figure shows the distribution of suboptimality ratio of
𝑃𝑜𝑟𝑖𝑔 , the plan with optimizer estimated cardinalities. For clarity,
we truncate the y-axis at 100, and hence a few points above that
are omitted.

First, we observe that as the q-error increases so does the median
suboptimality ratio compared to 𝑃𝑒𝑥𝑎𝑐𝑡 . At q-error of 10 the median
and 75th percentile suboptimality ratios are 1.2 and 2.1 respectively.
We also note that the variability of plan quality is significant for
a given q-error. Further, consider the case when we empirically
limit q-error for each memogroup to a small value, e.g., 𝜖 = 1.1.
We observe that although the median and 75th percentile subopti-
mality ratios are 1 and 1 respectively, for 3.5% of the queries the
suboptimality ratios are large: ranging from 2× up to almost 100×.
By examining these queries we find that plan changes typically
correspond to cases where the plans have only a small difference in
optimizer estimated cost compared to 𝑃𝑒𝑥𝑎𝑐𝑡 , but exhibit a large dif-
ference in elapsed time due to errors in cost model. Thus, while we
find as expected that reducing q-error is beneficial to plan quality,
given the large variability observed for a given q-error, the above
experiment reinforces the point that it is not sufficient to measure
q-error alone [28, 38] when evaluating CE techniques, and that
evaluation of plan quality is critically important.

Finally, we see that when the q-error for each memogroup is
large, e.g., 𝜖 = 100, the median and 75th percentile suboptimality
ratios are 2.5 and 4.6 respectively. For a small number of queries
the suboptimality ratio reaches as high as 200. While these subop-
timality ratios are significant, we also observe that for 𝑃𝑜𝑟𝑖𝑔 the
corresponding median suboptimality ratios are 5.8 and 46.6 respec-
tively, and the largest suboptimality ratios we observed are in excess
of 500. When we examine queries where the plan at 𝜖 = 100 is sig-
nificantly improved compared to 𝑃𝑜𝑟𝑖𝑔 , not surprisingly we find
that this is due to memogroups where the optimizer’s estimates are
significantly worse, e.g., with q-errors exceeding 1000.

6 EFFECT OF RUNTIME TECHNIQUES:
BITMAP FILTERING AND ADAPTIVE JOIN

In this section, we focus on the the impact of accurate CE in the
presence of: (1) the bitmap filtering technique [5, 18], and (2) the
adaptive join operator [6]. We refer the reader to Section 2 for
a description of these techniques in Microsoft SQL Server. Each
of these techniques has the potential to mitigate the impact of
inaccurate CE that leads to choice of bad plans. Thus, our goal
is to quantify the extent to which these techniques can mask the
shortcomings of inaccurate CE.

For each technique (bitmap filtering, adaptive join), our method-
ology is as follows. We measure the elapsed time of the query in
four different configurations: (i) {Opt-Est cardinalities, Technique-
off} (ii) {Exact cardinality, Technique-off} (iii) {Opt-Est cardinalities,

2880



(a) Plan quality impact of en-
abling bitmap filtering with es-
timated cardinalities

(b) Combined plan quality im-
pact of bitmap filtering and ex-
act CE

Figure 12: Impact of enabling bitmap filtering and injecting
exact CE in Microsoft SQL Server, columnstore configuration

Technique-on} (iv) {Exact cardinality, Technique-on}. We use con-
figuration (i) as the baseline, and compare the elapsed time of the
query in each of the remaining configurations with (i). Using this
methodology allows us to compare the individual impact of using
exact cardinalities and the technique, as well as the combined im-
pact of using both exact cardinalities and the technique; thereby
helping to quantify the extent to which runtime techniques mask
the inadequacies of inaccurate CE.

6.1 Bitmap filtering
For this experiment, we use columnstores since bitmap filtering
is used more extensively in columnstores when compared to row-
store. This is because bitmap filtering is applicable when the plan
contains Hash Joins and Index Scans, which is typical of plans
on columnstore databases, whereas on rowstore databases, other
join operators find considerable usage. Figure 8(a) (discussed in Sec-
tion 4.4) and Figure 12(a) respectively show the individual impact of
using exact cardinalities only and bitmap filtering only. We find that
using bitmap filtering alone results in 36% of the queries improving
by 2× or more. In contrast, when using exact cardinalities alone,
13% of the queries improve by 2× or more. As expected, bitmap
filtering results in almost no regressions since the overheads of
creating and evaluating bitmap filters are relatively low, and they
can often reduce the number of input rows to a join very signifi-
cantly. Thus, they are a safe technique when applied to the final
plan chosen by the optimizer.

When we turn on both exact cardinalities and bitmap filtering
(see Figure 12(b)), we find that 42% of the queries improve by 2× or
more. Thus, while the shortcomings of inaccurate CE are indeed
masked by bitmap filtering to a significant degree, accurate CE does
bring additional benefits. Among the 6% of queries that improve
by 2× or more when exact CE and bitmap filtering are both used
but not when using bitmap filtering alone, we find that in more
than 75% of such queries the inability of bitmap filtering to mask
the negative impact of inaccurate CE can be largely attributed to
one of the following three reasons: (i) aggregation or group by
pushdown (ii) change in aggregation operator (Steam Aggregate vs.
Hash Aggregate), and (iii) a better join order and/or join method is
chosen when intermediate results sizes are severely mis-estimated
by the optimizer. A special case of (iii) that occurs frequently is
when the actual result size of an intermediate result is 0. When
exact CE is available, the optimizer places a scan of a large table

(a) Plan quality impact of en-
abling adaptive joins with esti-
mated cardinalities

(b) Combined impact of adap-
tive joins and exact CE

Figure 13: Impact of enabling adaptive joins and injecting
exact CE for serial plans in Microsoft SQL Server, rowstore
configuration

on the inner side of a Nested Loops join operator, which is never
invoked at runtime, whereas in the original plan the expensive scan
occurs on the outer side of a Hash Join operator and cannot be
avoided.

Finally, recollect from Section 2 that the placement of bitmap
filters in Microsoft SQL Server is done on the final plan chosen by
the optimizer. There are other techniques in the literature (e.g., [21])
where placement of bitmaps is part of plan enumeration. In such
cases, the degree to which bitmap filtering masks the impact on
inaccurate CE needs to be evaluated.

6.2 Adaptive join
An adaptive join operator aims to mitigate the impact of CE errors
that could lead the optimizer to pick the worse operator between
Index Nested Loops join and Hash Join. Note that adaptive join can
potentially make the plan resilient to CE errors only when CE error
can be detected at runtime in the outer child of the join. In this
experiment, we focus on rowstores where Index Seek is available
as an option to the query optimizer.

When using only exact cardinalities (see Figure 1(a)) 13% of
the queries improve by 2× or more. In contrast, when using only
adaptive join (see Figure 13(a)), we find only a few queries (less than
1%) that improve by 2× or more. This indicates that while adaptive
join has clear benefits with few regressions, its ability to mask the
negative impact of inaccurate CE is limited. This is also reflected
when comparing Figure 13(a) with Figure 13(b), where we observe
a substantial increase in percentage of queries (from less than 1% to
14%) that improve when using both exact cardinalities and adaptive
join. We find several reasons why adaptive join is unable to mask
the impact of inaccurate CE, e.g., change in join order, change in
physical operator, aggregation push-down (as noted in Section 4.2).
Such changes that lead to plan improvements are not achievable
using adaptive join alone.

6.3 Other techniques and combinations
Microsoft SQL Server and other DBMSs support additional runtime
techniques to speedup execution of query plans. Two examples of
widely-used techniques are multi-core parallelism [1, 7, 10, 12] and
batch mode vs. row mode versions of physical operators [4]. Query
optimizers rely upon cardinality estimation to decide whether to

2881



use techniques such as parallelism, and whether to use row mode
or batch mode version of operators. Although the interaction of CE
with these other techniques is beyond the scope of our study, we
did perform an evaluation of impact of exact cardinalities in the
presence of parallelism. We find that exact CE brings additional
benefits beyond the use of parallelism. We find two reasons for
such complementary improvements: (i) the decision to use paral-
lel vs. serial operators is cost-based, and hence relies on accurate
cardinality estimation. In our study, for many queries, the opti-
mizer uses parallelism only after exact cardinality injection. (ii)
Some of the largest improvements in elapsed time (e.g., 100× or
more) arise due to better join orders, which is not possible through
use of parallelism alone. Observe that in contrast to adaptive join
and bitmap filtering which achieve speedup by doing less work
and reducing the resources consumed by the plan, parallelism in-
creases the resources (e.g., CPU, memory) consumed by the query
to achieve speedup. Finally, we also experimented with turning on
bitmap filtering, adaptive join and parallelism together, which is
the default setting of Microsoft SQL Server. In rowstores we find
that the additional benefits of exact CE continue to be significant
despite the use of all three techniques, although the impact of exact
CE is less significant in columnstores due to the masking effect of
bitmap filtering.

7 RELATEDWORK
JOB [33] focuses on impact of CE, search and cost model of the
PostgreSQL query optimizer. The study introduces a new bench-
mark – the Join Order Benchmark (JOB) using hand-crafted queries
over the IMDB database. CEB [38] provides additional queries over
the IMDB schema. STATS [28], uses a real-world dataset similar
to JOB, a snapshot of Stats Stack Exchange data, and also define a
set of benchmark queries to compare the effectiveness of different
CE techniques in PostgreSQL query optimizer. These queries con-
tain both one-to-many and many-to-many joins, as well as a large
number of filter predicates. Other than the above CE specific bench-
marks, there are multiple traditional benchmarks (TPC-H [14], TPC-
DS [13] and SSB [39]) that, however, are not well suited to study
impact of cardinality estimation due to lack of skew and correla-
tions. We include TPC-DS, in addition to TPC-H with skew [2]
and DSB [20], due to their non-uniform data distributions, to rep-
resent the industry benchmarks. As noted in the introduction, in
addition to the variety of query workloads, our study covers new
and important facets of CE evaluated not covered in prior work
including: (i) evaluation on a industry-strength DBMS Microsoft
SQL Server with state-of-the-art optimizer and execution engine
with run-time optimizations, and (ii) quantification of the degree
to which CE errors impact plan quality. Unlike JOB, we do not
focus on the cost model and search components of the optimizer.
Also, CEB [38] presents an error metric to approximate important
cardinalities for a query, while we focus on empirically identifying
an essential query sub-expressions. Finally, while earlier works
have considered improving efficiency of exact cardinality query
optimization [17, 40], our work focuses primarily on the impact of
exact CE on plan quality.

8 CONCLUSION
Our empirical study quantifies the importance of accurate CE with
both rowstore and columnstore physical designs, and commonly
used query runtime techniques such as adaptive join and bitmap
filtering. Some of our key findings are: (i) The impact of accurate
CE on plan quality is significant on both rowstore and column-
store physical designs. (ii) There is large variability in impact of CE
on plan quality across workloads. (iii) Bitmap filtering noticeably
masks the shortcoming of inaccurate CE on columnstores, but ac-
curate CE additionally improves plans. (iv) Adaptive join is limited
in terms of diminishing the negative impact of inaccurate CE. (v)
For most queries, we find that it is sufficient to use accurate CE
for a small subset of logical sub-expressions of the query to ensure
that plan quality is not degraded when compared to using accurate
CE for all logical sub-expressions. Finally, we refer the reader to
Section 1.2 for a few open questions arising from our empirical
study.

ACKNOWLEDGMENTS
We thank our colleagues Nico Bruno and Cesar Galindo Legaria for
their insightful comments on the paper.

A HEURISTICS TO IDENTIFY ESSENTIAL
MEMOGROUPS

We experimented with a few simple heuristics to identify essential
memogroups. These heuristics share the property that the percent-
age of memogroups they inject grows slowly as a function of the
number of memogroups of the query. The first technique limits
cardinality injection to the set of memogroups that occur in the
original plan 𝑃𝑜𝑟𝑖𝑔 , denoted by 𝑆 {𝑜𝑟𝑖𝑔} The second technique re-
stricts injection of exact CE to memogroups containing one or two
relations only (𝑆 {1,2} ). The third technique injects exact cardinal-
ities for the union of above two sets (𝑆 {1,2,𝑜𝑟𝑖𝑔} ). Among queries
with 100 or more memogroups, the median sizes of the above three
sets are 5%, 11%, and 15% of all memogroups respectively, and the
plan quality impact is summarized in Figure 10(b).

First, the percentage of queries with the same plan as 𝑃𝑒𝑥𝑎𝑐𝑡
is captured by the lowest bin named 𝑝𝑙𝑎𝑛_𝑚𝑎𝑡𝑐ℎ. These percent-
ages vary between 15% and 31% across the different heuristics.
Second, for the queries where these heursitics lead to a different
plan than 𝑃𝑒𝑥𝑎𝑐𝑡 , the bin marked [1, 1.2) captures the percentage
of the queries where the elapsed time is within 1.2× of the elapsed
time of 𝑃𝑒𝑥𝑎𝑐𝑡 . We observe that by removing the requirement of
having to match 𝑃𝑒𝑥𝑎𝑐𝑡 , the coverage of the above techniques in-
creases significantly. In particular, 𝑆 {1,2,𝑜𝑟𝑖𝑔} results in a plan that
has no more than 20% slowdown compared to 𝑃𝑒𝑥𝑎𝑐𝑡 for 69% of
the queries. Third, we illustrate a limitation of the above heuris-
tics using the example query JOB 17a shown in Figure 4, where
injecting all exact cardinalities results in avoiding expensive index
seeks on both tables 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 and 𝑛𝑎𝑚𝑒 . In contrast, when we
restrict injection to 𝑆 {1,2,𝑜𝑟𝑖𝑔} , we can only avoid expensive seeks
on 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 but the plan still incurs expensive seeks on the table
𝑛𝑎𝑚𝑒 , since we do not fix the severe underestimation of the three
table memogroup ((𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ⊲⊳ 𝑚𝑜𝑣𝑖𝑒_𝑘𝑒𝑦𝑤𝑜𝑟𝑑) ⊲⊳ 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜),
which is not captured by memogroups in 𝑆 {1,2,𝑜𝑟𝑖𝑔} .

2882



REFERENCES
[1] 2011. Understanding parallel query plans. https://infocenter.sybase.com/help/

index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/
CHDHHIIF.htm. accessed on 07/25/2023.

[2] 2016. Program for TPC-H Data Generation with Skew. https://www.microsoft.
com/en-us/download/details.aspx?id=52430. last accessed on 07/25/2023.

[3] 2018. https://sqlperformance.com/2018/02/sql-plan/setting-and-identifying-
row-goals. last accessed on 07/25/2023.

[4] 2019. Columnstore Index Performance: BatchMode Execution.
https://techcommunity.microsoft.com/t5/sql-server-blog/columnstore-
index-performance-batchmode-execution/ba-p/385054. last accessed on
07/25/2023.

[5] 2019. Intro to Query Execution Bitmap Filters. https://techcommunity.microsoft.
com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175.
last accessed on 07/25/2023.

[6] 2019. Introducing Batch Mode Adaptive Joins. https://techcommunity.microsoft.
com/t5/sql-server-blog/introducing-batch-mode-adaptive-joins/ba-p/385411.
last accessed on 07/25/2023.

[7] 2019. Parallel Execution with Oracle Database. (Feb 2019). https:
//www.oracle.com/technetwork/database/bi-datawarehousing/twp-parallel-
execution-fundamentals-133639.pdf last accessed on 07/25/2023.

[8] 2021. Optimizing Your Query Plans with the SQL Server 2014 Cardinality Esti-
mator. https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.
10)?redirectedfrom=MSDN. last accessed on 07/25/2023.

[9] 2022. https://www.erikdarlingdata.com/a-row-goal-riddle/. last accessed on
07/25/2023.

[10] 2022. Parallel Query (PostgreSQL 13). https://www.postgresql.org/docs/13/
parallel-query.html. last accessed on 07/25/2023.

[11] 2023. DBCC DROPCLEANBUFFERS (Transact-SQL). https://learn.microsoft.
com/en-us/sql/t-sql/database-console-commands/dbcc-dropcleanbuffers-
transact-sql?view=sql-server-ver16. last accessed on 07/25/2023.

[12] 2023. Query processing architecture guide (Parallel Query Processing).
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-
architecture-guide?view=sql-server-ver16#parallel-query-processing. last
accessed on 07/25/2023.

[13] 2023. TPC-DS decision support benchmark. https://www.tpc.org/tpcds/. last
accessed on 07/25/2023.

[14] 2023. TPC-H decision support benchmark. https://www.tpc.org/tpch/. last
accessed on 07/25/2023.

[15] Surajit Chaudhuri. 1998. An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. 34–43.

[16] Surajit Chaudhuri. 2009. Query Optimizers: Time to Rethink the Contract?. In
ACM SIGMOD. 961–968.

[17] Surajit Chaudhuri, Vivek Narasayya, and Ravi Ramamurthy. 2009. Exact Car-
dinality Query Optimization for Optimizer Testing. PVLDB 2, 1 (aug 2009),
994–1005.

[18] Dinesh Das, Jiaqi Yan, Mohamed Zait, Satyanarayana R. Valluri, Nirav Vyas, Ra-
marajan Krishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy Mukherjee.
2015. Query Optimization in Oracle 12c Database In-Memory. Proc. VLDB Endow.
8, 12 (aug 2015), 1770–1781. https://doi.org/10.14778/2824032.2824074

[19] Amol Deshpande, Zachary Ives, Vijayshankar Raman, et al. 2007. Adaptive query
processing. Foundations and Trends® in Databases 1, 1 (2007), 1–140.

[20] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya. 2021.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional
Database Systems. Proc. VLDB Endow. 14, 13 (sep 2021), 3376–3388. https:
//doi.org/10.14778/3484224.3484234

[21] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. 2020. Bitvector-aware
query optimization for decision support queries. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 2011–2026.

[22] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.

[23] Campbell Fraser, Leo Giakoumakis, Vikas Hamine, and Katherine F. Moore-Smith.
2012. Testing Cardinality Estimation Models in SQL Server. In DBTest. Article
12.

[24] Cesar A Galindo-Legaria, Torsten Grabs, Sreenivas Gukal, Steve Herbert, Alek-
sandras Surna, Shirley Wang, Wei Yu, Peter Zabback, and Shin Zhang. 2008.
Optimizing star join queries for data warehousing in microsoft sql server. In 2008
IEEE 24th International Conference on Data Engineering. IEEE, 1190–1199.

[25] Cesar A. Galindo-Legaria, Torsten Grabs, Sreenivas Gukal, Steve Herbert, Alek-
sandras Surna, Shirley Wang, Wei Yu, Peter Zabback, and Shin Zhang. 2008.
Optimizing Star Join Queries for Data Warehousing in Microsoft SQL Server
(ICDE ’08). IEEE Computer Society, USA, 1190–1199. https://doi.org/10.1109/
ICDE.2008.4497528

[26] Goetz Graefe. 1993. Query evaluation techniques for large databases. ACM
Computing Surveys (CSUR) 25, 2 (1993), 73–169.

[27] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[28] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (dec 2021),
752–765. https://doi.org/10.14778/3503585.3503586

[29] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of
Errors in the Size of Join Results. In ACM SIGMOD. 268–277.

[30] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[31] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, Eric N Hanson, Mostafa Mokhtar,
Michal Nowakiewicz, Vassilis Papadimos, Susan L Price, Srikumar Rangarajan,
Remus Rusanu, et al. 2013. Enhancements to SQL server column stores. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. 1159–1168.

[32] Per-Åke Larson, Eric N Hanson, and Susan L Price. 2012. Columnar Storage in
SQL Server 2012. IEEE Data Eng. Bull. 35, 1 (2012), 15–20.

[33] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3
(nov 2015), 204–215.

[34] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pira-
hesh, and Miso Cilimdzic. 2004. Robust Query Processing through Progressive
Optimization. In ACM SIGMOD. 659–670.

[35] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. Proceedings of the
VLDB Endowment 2, 1 (2009), 982–993.

[36] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1 (aug
2009), 982–993.

[37] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved selectivity
estimation by combining knowledge from sampling and synopses. Proceedings
of the VLDB Endowment 11, 9 (2018), 1016–1028.

[38] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinal-
ity Estimates That Matter. Proc. VLDB Endow. 14, 11 (jul 2021), 2019–2032.
https://doi.org/10.14778/3476249.3476259

[39] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009. The
Star Schema Benchmark and Augmented Fact Table Indexing. Springer-Verlag,
Berlin, Heidelberg, 237–252. https://doi.org/10.1007/978-3-642-10424-4_17

[40] Immanuel Trummer. 2019. Exact Cardinality Query Optimization with Bounded
Execution Cost. In ACM SIGMOD. 2–17.

2883

https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/CHDHHIIF.htm
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/CHDHHIIF.htm
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/CHDHHIIF.htm
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://sqlperformance.com/2018/02/sql-plan/setting-and-identifying-row-goals
https://sqlperformance.com/2018/02/sql-plan/setting-and-identifying-row-goals
https://techcommunity.microsoft.com/t5/sql-server-blog/columnstore-index-performance-batchmode-execution/ba-p/385054
https://techcommunity.microsoft.com/t5/sql-server-blog/columnstore-index-performance-batchmode-execution/ba-p/385054
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/introducing-batch-mode-adaptive-joins/ba-p/385411
https://techcommunity.microsoft.com/t5/sql-server-blog/introducing-batch-mode-adaptive-joins/ba-p/385411
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-parallel-execution-fundamentals-133639.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-parallel-execution-fundamentals-133639.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-parallel-execution-fundamentals-133639.pdf
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://www.erikdarlingdata.com/a-row-goal-riddle/
https://www.postgresql.org/docs/13/parallel-query.html
https://www.postgresql.org/docs/13/parallel-query.html
https://learn.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-dropcleanbuffers-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-dropcleanbuffers-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-dropcleanbuffers-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16##parallel-query-processing
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16##parallel-query-processing
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://doi.org/10.14778/2824032.2824074
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1007/978-3-642-10424-4_17

	Abstract
	1 Introduction
	1.1 Key Findings
	1.2 Open Questions

	2 Microsoft SQL Server query optimizer
	2.1 Overview
	2.2 Physical design
	2.3 API for exact cardinality injection

	3 Evaluation Setup and Methodology
	3.1 Workloads
	3.2 Methodology

	4 Results: execution-time optimizations turned off
	4.1 Overview in rowstores
	4.2 Drill-down into improvements
	4.3 Drill-down into regressions
	4.4 Columnstores
	4.5 Takeaways

	5 Sensitivity to Cardinality Errors
	5.1 Essential set of memogroups
	5.2 Impact of varying CE error

	6 Effect of Runtime Techniques: Bitmap Filtering and Adaptive Join
	6.1 Bitmap filtering
	6.2 Adaptive join
	6.3 Other techniques and combinations

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Heuristics to identify essential memogroups
	References

