
The VLDB Journal (2018) 27:643–668
https://doi.org/10.1007/s00778-017-0480-7

SPECIAL ISSUE PAPER

Query optimization through the looking glass, and what we found
running the Join Order Benchmark

Viktor Leis1 · Bernhard Radke1 · Andrey Gubichev1 · Atanas Mirchev1 ·
Peter Boncz2 · Alfons Kemper1 · Thomas Neumann1

Received: 22 January 2017 / Revised: 8 August 2017 / Accepted: 11 August 2017 / Published online: 18 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Finding a good join order is crucial for query
performance. In this paper, we introduce the Join Order
Benchmark that works on real-life data riddled with cor-
relations and introduces 113 complex join queries. We
experimentally revisit the main components in the classic
query optimizer architecture using a complex, real-world
data set and realistic multi-join queries. For this purpose, we
describe cardinality-estimate injection and extraction tech-
niques that allow us to compare the cardinality estimators
of multiple industrial SQL implementations on equal foot-
ing, and to characterize the value of having perfect cardinality
estimates. Our investigation shows that all industrial-strength
cardinality estimators routinely produce large errors: though
cardinality estimation using table samples solves the prob-
lem for single-table queries, there are still no techniques in
industrial systems that can deal accurately with join-crossing
correlated query predicates. We further show that while esti-

B Viktor Leis
leis@in.tum.de

Bernhard Radke
radke@in.tum.de

Andrey Gubichev
gubichev@in.tum.de

Atanas Mirchev
mirchev@in.tum.de

Peter Boncz
p.boncz@cwi.nl

Alfons Kemper
kemper@in.tum.de

Thomas Neumann
neumann@in.tum.de

1 Technische Universität München, Garching, Germany

2 CWI, Amsterdam, The Netherlands

mates are essential for finding a good join order, query
performance is unsatisfactory if the query engine relies too
heavily on these estimates. Using another set of experiments
that measure the impact of the cost model, we find that it has
much less influence on query performance than the cardinal-
ity estimates. We investigate plan enumeration techniques
comparing exhaustive dynamic programming with heuristic
algorithms and find that exhaustive enumeration improves
performance despite the suboptimal cardinality estimates.
Finally,we extend our investigation frommain-memory only,
to also include disk-based query processing. Here, we find
that though accurate cardinality estimation should be the
first priority, other aspects such as modeling random versus
sequential I/O are also important to predict query runtime.

Keywords Query optimization · Join ordering · Cardinality
estimation · Cost models

1 Introduction

The problem of finding a good join order is one of the most
studied problems in the database field. Figure 1 illustrates the
classical, cost-based approach, which dates back to System
R [45]. To obtain an efficient query plan, the query optimizer
enumerates some subset of the valid join orders, for example
using dynamic programming. Using cardinality estimates as
its principal input, the cost model then chooses the cheapest
alternative from semantically equivalent plan alternatives.

Theoretically, as long as the cardinality estimations and
the cost model are accurate, this architecture obtains the opti-
mal query plan. In reality, cardinality estimates are usually
computed based on simplifying assumptions like uniformity
and independence. In real-world data sets, these assump-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0480-7&domain=pdf

644 V. Leis et al.

Fig. 1 Traditional query optimizer architecture

tions are frequently wrong, which may lead to suboptimal
and sometimes disastrous plans.

In this paper, we experimentally investigate the threemain
components of the classical query optimization architecture
in order to answer the following questions:

– How good are cardinality estimators and when do bad
estimates lead to slow queries?

– How important is an accurate cost model for the overall
query optimization process?

– How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that
allows us to isolate the influence of the individual optimizer
components on query performance.Our experiments are con-
ducted using a real-world data set and 113 multi-join queries
that provide a challenging, diverse, and realistic workload.
The main contributions of this paper are:

– We design a challenging workload named Join Order
Benchmark (JOB), which is based on the IMDB data set.
The benchmark is publicly available to facilitate further
research.

– To the best of our knowledge, this work is the first end-to-
end study of the join ordering problem using a real-world
data set and realistic queries.

– By quantifying the contributions of cardinality estima-
tion, the cost model, and the plan enumeration algorithm
on query performance, we provide guidelines for the
complete design of a query optimizer. We also show that
many disastrous plans can easily be avoided.

The rest of this paper is organized as follows: We first dis-
cuss important background and the Join Order Benchmark
in Sect. 2. Section 3 shows that the cardinality estimators
of the major relational database systems produce bad esti-
mates for many realistic queries, in particular for multi-join
queries. The conditions under which these bad estimates
cause slow performance are analyzed in Sect. 4. We show
that it very much depends on how much the query engine
relies on these estimates and on how complex the physi-
cal database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table

scans are quite robust even in the presence of large cardi-
nality estimation errors. The more indexes are available, the
harder the problem becomes for the query optimizer result-
ing in runtimes that are far away from the optimal query
plan. Section 5 shows that with the currently used cardinal-
ity estimation techniques, the influence of cost model errors
is dwarfed by cardinality estimation errors and that even
quite simple cost models seem to be sufficient. Section 6
investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and suboptimal
cost models—exhaustive join order enumeration improves
performance and that using heuristics leaves performance
on the table. To augment the understanding obtained from
aggregated statistics, Sect. 7 looks at two particular queries
in our workload and analyzes their query plans. While most
experiments use the in-memory setting, Sect. 8 repeats the
important experiments with a cold cache and reading data
from disk. Related work is discussed in Sect. 9.

We conclude this paper by repeating all important insights
in Sect. 10. Time-constrained readersmay start with Sect. 10,
and selectively read the sections referenced there.

2 Background and methodology

Many query optimization papers ignore cardinality estima-
tion and only study search space exploration for join ordering
with randomly generated, synthetic queries (e.g., [14,39]).
Other papers investigate only cardinality estimation in isola-
tion either theoretically (e.g., [22]) or empirically (e.g., [53]).
As important and interesting both approaches are for under-
standing query optimizers, they do not necessarily reflect
real-world user experience.

The goal of this paper is to investigate the contribution of
all relevant query optimizer components to end-to-end query
performance in a realistic setting. We therefore perform our
experiments using a workload based on a real-world data
set and the widely used PostgreSQL system. PostgreSQL
is a relational database system with a fairly traditional
architecture making it a good subject for our experiments.
Furthermore, its open-source nature allows one to inspect
and change its internals. In this section we introduce the
Join Order Benchmark, describe all relevant aspects of Post-
greSQL, and present our methodology.

2.1 The IMDB data set

Many research papers on query processing and optimization
use standard benchmarks like TPC-H, TPC-DS, or the Star
Schema Benchmark (SSB) [4,41,43]. While these bench-
marks have proven their value for evaluating query engines,
we argue that they are not good benchmarks for the cardinal-
ity estimation component of query optimizers. The reason is

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 645

Fig. 2 IMDB schema with key/foreign-key relationships. Underlined attributes are primary keys. Italic font indicates a foreign key attribute

that in order to easily be able to scale the benchmark data, the
data generators are using the very same simplifying assump-
tions (uniformity, independence, principle of inclusion) that
query optimizers make. Real-world data sets, in contrast, are
full of correlations and non-uniformdata distributions, which
makes cardinality estimationmuch harder. Section 3.3 shows
that PostgreSQL’s simple cardinality estimator indeed works
unrealistically well for TPC-H. TPC-DS is slightly harder in
that it has a number of non-uniformly distributed (skewed)
attributes, but is still too easy due to not having correlations
between attributes.

Therefore, instead of using a synthetic data set, we chose
the InternetMovie Data Base1 (IMDB). It contains a plethora
of information about movies and related facts about actors,
directors, production companies, etc. The data are freely
available2 for non-commercial use as text files. In addition,
we used the open-source imdbpy3 package to transform the
text files into a relational database. The schema and the
key/foreign-key relationships are depicted in Fig. 2. The
data set allows one to answer queries like “Which actors
played in movies released between 2000 and 2005 with rat-

1 http://www.imdb.com/.
2 ftp://ftp.fu-berlin.de/pub/misc/movies/database/.
3 https://bitbucket.org/alberanid/imdbpy/get/5.0.zip.

ings above 8?”. Like most real-world data sets IMDB is full
of correlations and non-uniform data distributions, and is
therefore much more challenging than most synthetic data
sets. Our snapshot is from May 2013 and occupies 3.6GB
when exported to CSV files.

2.2 The JOB queries

Based on the IMDBdatabase, we have constructed analytical
SQL queries. Each query consists of one select-project-join
block.4 Since we focus on join ordering, which arguably is
themost important query optimization problem, we designed
the queries to have between 3 and 16 joins, with an average
of 8 joins per query. Query 13d, which is shown in Fig. 3, is
a typical example that computes the ratings and release dates
for all movies produced by US companies.

The join graph of query 13d is shown in Fig. 4. The solid
edges in the graph represent key/foreign key edges (1 : n)

4 Since in this paper we do not model or investigate aggregation, we
omitted GROUP BY from our queries. To avoid communication from
becoming the performance bottleneck for queries with large result sizes,
we wrap all attributes in the projection clause with MIN(...) expres-
sions when executing (but not when estimating). This change has no
effect on PostgreSQL’s join order selection because its optimizer does
not push down aggregations.

123

http://www.imdb.com/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

646 V. Leis et al.

Fig. 3 Example JOB query 13d computes the ratings and release dates
for all movies produced by US companies

Fig. 4 Join graph for JOB queries 13a, 13b, 13c, 13d

with the arrow head pointing to the primary key side. Dotted
edges represent foreign key/foreign key joins (n : m), which
appear due to transitive join predicates.Our query set consists
of 33 query structures, each with 2-6 variants that differ in
their selections only, resulting in a total of 113 queries—all
depicted in detail in “Appendix A”. Note that depending on
the selectivities of the base table predicates, the variants of the
same query structure have different optimal query plans that
yield widely differing (sometimes by orders of magnitude)
runtimes. Also, some queries have more complex selection
predicates than the example (e.g., disjunctions or substring
search using LIKE).

Our queries, which are shown in “Appendix A”, are “real-
istic” and “ad hoc” in the sense that they answer questions
that may reasonably have been asked by a movie enthusiast.
We also believe that despite their simple SPJ-structure, the
queries model the core difficulty of the join ordering prob-
lem. For cardinality estimators, the queries are challenging
due to the significant number of joins and the correlations
contained in the data set. However, we did not try to “trick”
the query optimizer, e.g., by picking attributes with extreme
correlations. Indeed, we believe that real-world predicates
on real-world data sets more often than not are correlated
(i.e., not independent). The prevalence of correlated predi-
cates is nicely illustrated by the well-known Honda Accord
example [35], which is often used in IBM papers. We inten-

tionally did not include more complex join predicates like
inequalities or non-surrogate-key predicates, because cardi-
nality estimation for JOB is already quite challenging.

We do not claim that the specific quantitative results
obtained using JOB are directly transferable to other work-
loads. On the other hand, we also do not see any excuse for
why the JOB should not run well in a relational database sys-
tems. Thus, we propose JOB for future research in cardinality
estimation and join order optimization.

2.3 PostgreSQL

PostgreSQL’s optimizer follows the traditional textbook
architecture. Join orders, including bushy trees but excluding
treeswith cross products, are enumerated using dynamic pro-
gramming. The cost model, which is used to decide which
plan alternative is cheaper, is described in more detail in
Sect. 5.1. The cardinalities of base tables are estimated using
histograms (quantile statistics), most common values with
their frequencies, and domain cardinalities (distinct value
counts). These per-attribute statistics are computed by the
analyze command using a sample of the relation. For
complex predicates, where histograms cannot be applied,
the system resorts to ad hoc methods that are not theoreti-
cally grounded (“magic constants”). To combine conjunctive
predicates for the same table, PostgreSQL simply assumes
independence and multiplies the selectivities of the individ-
ual selectivity estimates.

The result sizes of joins are estimated using the formula

|T1 ��x=y T2| = |T1||T2|
max(dom(x), dom(y))

,

where T1 and T2 are arbitrary expressions and dom(x) is the
domain cardinality of attribute x , i.e., the number of distinct
values of x . This value is the principal input for the join car-
dinality estimation. To summarize, PostgreSQL’s cardinality
estimator is based on the following assumptions:

– uniformity: all values, except for the most-frequent ones,
are assumed to have the same number of tuples

– independence: predicates on attributes (in the same table
or from joined tables) are independent

– principle of inclusion: the domains of the join keys over-
lap such that the keys from the smaller domain have
matches in the larger domain

The query engine of PostgreSQL takes a physical operator
plan and executes it using Volcano-style interpretation. The
most important access paths are full table scans and lookups
in unclustered B+Tree indexes. Joins can be executed using
either nested-loop joins (with or without index-lookups), in-
memory hash joins, or sort-merge joins where the sort can
spill to disk if necessary. The decision which join algorithm

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 647

is used is made by the optimizer and cannot be changed at
runtime.

2.4 Cardinality extraction and injection

We loaded the IMDB data set into 5 relational database sys-
tems: PostgreSQL, HyPer, and 3 commercial systems. Next,
we ran the statistics gathering command of each database
systemwith default settings to generate the database-specific
statistics (e.g., histograms or samples) that are used by the
estimation algorithms. We then obtained the cardinality esti-
mates for all intermediate results of our test queries using
database-specific commands (e.g., using theEXPLAIN com-
mand for PostgreSQL). We will later use these estimates
of different systems to obtain optimal query plans (w.r.t.
respective systems) and run these plans in PostgreSQL. For
example, the intermediate results of the chain query

σx=5(A) ��A.bid=B.id B ��B.cid=C.id C

are σx=5(A), σx=5(A) �� B, B �� C , and σx=5(A) �� B ��
C . Additionally, the availability of indexes on foreign keys
and index-nested-loop joins introduces the need for addi-
tional intermediate result sizes. For instance, if there exists a
non-unique index on the foreign key A.bid, it is also neces-
sary to estimate A �� B and A �� B �� C . The reason is that
the selection A.x = 5 can only be applied after retrieving all
matching tuples from the index on A.bid, and therefore the
system produces two intermediate results, before and after
the selection. Besides cardinality estimates from the different
systems, we also obtain the true cardinality for each interme-
diate result by executing SELECT COUNT(*) queries.5

We further modified PostgreSQL to enable cardinality
injection of arbitrary join expressions, allowing its optimizer
to use the estimates of other systems (or the true cardinali-
ties) instead of its own. This allows one to directly measure
the influence of cardinality estimates from different sys-
tems on query performance. Note that IBM DB2 supports
a limited form of user control over the estimation process
by allowing users to explicitly specify the selectivities of
predicates. However, selectivity injection cannot fully model
inter-relation correlations and is therefore less general than
the capability of injecting cardinalities.

2.5 Experimental setup

The cardinalities of the commercial systems were obtained
using a laptop running Windows 7. All performance experi-
mentswere performed on a serverwith two IntelXeonX5570
CPUs (2.9GHz) and a total of 8 cores running PostgreSQL

5 For our workload, it was still feasible to do this naïvely. For larger
data sets, the approach by Chaudhuri et al. [8] may become necessary.

9.4 on Linux. Version 9.4 does not support intra-query par-
allelism and since we do not execute multiple queries at the
same time, only a single core was used in all experiments.
The system has 64GB of RAM, which means that the entire
IMDB database is fully cached in RAM. Intermediate query
processing results (e.g., hash tables) also easily fit into RAM,
unless a very bad plan with extremely large intermediate
results is chosen.

We set the memory limit per operator (work_mem) to
2GB, which results in much better performance due to
the more frequent use of in-memory hash joins instead
of external memory sort-merge joins. Additionally, we set
the buffer pool size (shared_buffers) to 4GB and
the size of the operating system’s buffer cache used by
PostgreSQL (effective_cache_size) to 32GB. For
PostgreSQL it is generally recommended to use OS buffer-
ing in addition to its own buffer pool and keep most of the
memory on the OS side. The defaults for these three set-
tings are very low (MBs, not GBs), which is why increasing
them is generally recommended. Finally, by increasing the
geqo_threshold parameter to 18 we forced PostgreSQL
to always use dynamic programming instead of falling back
to a heuristic for queries with more than 12 joins.

3 Cardinality estimation

Cardinality estimates are the most important ingredient for
finding a good query plan. Even exhaustive join order enu-
meration and a perfectly accurate cost model are worthless
unless the cardinality estimates are (roughly) correct. It is
well known, however, that cardinality estimates are some-
times wrong by orders of magnitude, and that such errors are
usually the reason for slow queries. In this section, we exper-
imentally investigate the quality of cardinality estimates in
relational database systems by comparing the estimates with
the true cardinalities.

3.1 Estimates for base tables

To measure the quality of base table cardinality estimates,
we use the q-error, which is the factor by which an estimate
differs from the true cardinality. For example, if the true car-
dinality of an expression is 100, the estimates of 10 or 1000
both have a q-error of 10. Using the ratio instead of an abso-
lute or quadratic difference captures the intuition that for
making planning decisions only relative differences matter.
The q-error furthermore provides a theoretical upper bound
for the plan quality if the q-errors of a query are bounded [37].

Table 1 shows the 50th, 90th, 95th, and 100th percentiles
of the q-errors for the 629 base table selections in our work-
load. The median q-error is close to the optimal value of 1
for all systems, indicating that the majority of all selections

123

648 V. Leis et al.

Table 1 Q-errors for base table selections

Median 90th 95th Max

PostgreSQL 1.00 2.08 6.10 207

DBMS A 1.01 1.33 1.98 43.4

DBMS B 1.00 6.03 30.2 104000

DBMS C 1.06 1677 5367 20471

HyPer 1.02 4.47 8.00 2084

are estimated correctly. However, all systems produce mis-
estimates for some queries, and the quality of the cardinality
estimates differs strongly between the different systems.

Looking at the individual selections, we found that
DBMS A andHyPer can usually predict even complex predi-
cates like substring search usingLIKE verywell. To estimate
the selectivities for base tables HyPer uses a random sam-
ple of 1000 rows per table and applies the predicates on that
sample.6 This allows one to get accurate estimates for arbi-
trary base table predicates as long as the selectivity is not
too low. When we looked at the selections where DBMS A
and HyPer produce errors above 2, we found that most of
them have predicates with extremely low true selectivities
(e.g., 10−5 or 10−6). This routinely happens when the selec-
tion yields zero tuples on the sample, and the system falls
back on an ad hoc estimation method (“magic constants”).
It therefore appears to be likely that DBMS A also uses the
sampling approach.

The estimates of the other systems are worse and seem
to be based on per-attribute histograms, which do not work
well formanypredicates and cannot detect (anti-)correlations
between attributes. Note that we obtained all estimates using
the default settings after running the respective statistics
gathering tool. Some commercial systems support the use
of sampling for base table estimation, multi-attribute his-
tograms (“column group statistics”), or ex post feedback
from previous query runs [47]. However, these features are
either not enabled by default or are not fully automatic.

3.2 Estimates for joins

Let us now turn our attention to the estimation of interme-
diate results for joins, which are more challenging because
sampling or histograms do not work well. Figure 5 sum-
marizes over 100,000 cardinality estimates in a single figure.
For each intermediate result of our query set, we compute the
factor by which the estimate differs from the true cardinal-
ity, distinguishing between over- and underestimation. The
graph shows one “boxplot” (note the legend in the bottom-

6 The sample is stored in the DataBlock [26] format, which enables
fast scans (and therefore fast estimation). The sample is (re-)generated
when computing the statistics of a table.

left corner) for each intermediate result size, which allows
one to compare how the errors change as the number of joins
increases. Thevertical axis uses a logarithmic scale to encom-
pass underestimates by a factor of 108 and overestimates by
a factor of 104.

Despite the better base table estimates of DBMS A, the
overall variance of the join estimation errors, as indicated
by the boxplot, is similar for all systems with the exception
of DBMS B. For all systems, we routinely observe misesti-
mates by a factor of 1000 or more. Furthermore, as witnessed
by the increasing height of the box plots, the errors grow
exponentially (note the logarithmic scale) as the number of
joins increases [22]. For PostgreSQL, 16% of the estimates
for 1 join are wrong by a factor of 10 or more. This per-
centage increases to 32% with 2 joins, and to 52% with 3
joins. For DBMS A, which has the best estimator of the sys-
tems we compared, the corresponding percentages are only
marginally better at 15, 25, and 36%.

Another striking observation is that all tested systems—
though DBMS A to a lesser degree—tend to systematically
underestimate the results sizes of queries with multiple joins.
This can be deduced from the median of the error distribu-
tions in Fig. 5. For our query set, it is indeed the case that
the intermediate results tend to decrease with an increas-
ing number of joins because more base table selections get
applied. However, the true decrease is less than the inde-
pendence assumption used by PostgreSQL (and apparently
by the other systems) predicts. Underestimation is most pro-
nouncedwithDBMS B,which frequently estimates 1 row for
queries with more than 2 joins. The estimates of DBMS A,
on the other hand, have medians that are much closer to the
truth, despite their variance being similar to some of the other
systems. We speculate that DBMS A uses a damping factor
that depends on the join size, similar to howmany optimizers
combinemultiple selectivities. Many estimators combine the
selectivities of multiple predicates (e.g., for a base relation or
for a subexpression with multiple joins) not by assuming full
independence, but by adjusting the selectivities “upwards”,
using a damping factor. The motivation for this stems from
the fact that the more predicates need to be applied, the less
certain one should be about their independence.

Given the simplicity of PostgreSQL’s join estimation
formula (cf. Sect. 2.3) and the fact that its estimates are
nevertheless competitive with the commercial systems, we
can deduce that the current join size estimators are based on
the independence assumption. No system tested was able to
detect join-crossing correlations.

Note that this section does not benchmark the query opti-
mizers of the different systems. In particular, our results do
not imply that theDBMS B’s optimizer or the resulting query
performance is necessarily worse than that of other systems,
despite larger errors in the estimator. The query runtime heav-
ily depends on how the system’s optimizer uses the estimates

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 649

Fig. 5 Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distri-
bution of all subexpressions with a particular size (over all queries in the workload)

Fig. 6 PostgreSQL cardinality estimates for 6 JOB queries and 3 TPC-H queries

and how much trust it puts into these numbers. A sophisti-
cated engine may employ adaptive operators (e.g., [5,9]) and
thus mitigate the impact of misestimations, while another
enginemight have very complex access paths or joinmethods
that requiremore accurate estimates. The results do, however,
demonstrate that the state-of-the-art in cardinality estimation
is far from perfect and its brittleness is further illustrated by
the following anecdote: In PostgreSQL, we observed dif-
ferent cardinality estimates of the same simple 2-join query
depending on the syntactic order of the relations in the from
and/or the join predicates in the where clauses! Simply by
swapping predicates or relations, we observed the estimates
of 3, 9, 128, or 310 rows for the same query (with a true
cardinality of 2600).7

7 The reasons for this surprising behavior are two implementation arti-
facts: First, estimates that are less than 1 are rounded up to 1, making

3.3 Estimates for TPC-H

We have stated earlier that cardinality estimation in TPC-H
is a rather trivial task. Figure 6 substantiates that claim by
showing the distributions of PostgreSQL estimation errors
for 3 of the larger TPC-H queries and 4 of our JOB queries.
Note that in the figure we report estimation errors for indi-
vidual queries (not for all queries like in Fig. 5). Clearly, the
TPC-H query workload does not present many hard chal-
lenges for cardinality estimators. In contrast, our workload
contains queries that routinely lead to severe overestimation

Footnote 7 contined
subexpression estimates sensitive to the (usually arbitrary) join enu-
meration order, which is affected by the from clause. The second is
a consistency problem caused by incorrect domain sizes of predicate
attributes in joins with multiple predicates.

123

650 V. Leis et al.

Fig. 7 PostgreSQL cardinality estimates based on the default distinct
count estimates, and the true distinct counts

and underestimation errors and hence can be considered a
challenging benchmark for cardinality estimation.

3.4 Better statistics for PostgreSQL

Asmentioned inSect. 2.3, themost important statistic for join
estimation in PostgreSQL is the number of distinct values.
These statistics are estimated from a fixed-sized sample, and
we have observed severe underestimates for large tables. To
determine whether the misestimated distinct counts are the
underlying problem for cardinality estimation, we computed
these values precisely and replaced the estimated with the
true values.

Figure 7 shows that the true distinct counts slightly
improve the variance of the errors. Surprisingly, however,
the trend to underestimate cardinalities becomes even more
pronounced. The reason is that the original, underestimated
distinct counts resulted in higher estimates, which, acciden-
tally, are closer to the truth. This is an example for the
proverbial “two wrongs that make a right”, i.e., two errors
that (partially) cancel each other out. Such behavior makes
analyzing and fixing query optimizer problems very frustrat-
ing because fixing one query might break another.

4 When do bad cardinality estimates lead to slow
queries?

While the large estimation errors shown in the previous sec-
tion are certainly sobering, large errors do not necessarily
lead to slow query plans. For example, the misestimated
expression may be cheap in comparison with other parts of
the query, or the relevant plan alternative may have been
misestimated by a similar factor thus “canceling out” the
original error. In this section, we investigate the conditions
underwhich bad cardinalities are likely to cause slowqueries.

One important observation is that query optimization is
closely intertwined with the physical database design: the
type and number of indexes heavily influence the plan search
space, and therefore affects how sensitive the system is to

cardinality misestimates. We therefore start this section with
experiments using a relatively robust physical design with
only primary key indexes and show that in such a setup the
impact of cardinality misestimates can largely be mitigated.
After that, we demonstrate that for more complex configura-
tions with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

4.1 The risk of relying on estimates

To measure the impact of cardinality misestimation on query
performance, we injected the estimates of the different sys-
tems into PostgreSQL and then executed the resulting plans.
Using the same query engine allows one to compare the
cardinality estimation components in isolation by (largely)
abstracting away from the different query execution engines.
Additionally, we inject the true cardinalities, which com-
putes the—with respect to the cost model—optimal plan.We
group the runtimes based on their slowdownw.r.t. the optimal
plan and report the distribution in the following table, where
each column corresponds to a group of slowdown factors
(the group [2,10), for example, contains all queries where
the slowdown is between 2 and 10):

<0.9 (%) [0.9,1.1) (%) [1.1,2) (%) [2,10) (%) [10,100) (%) >100 (%)

PostgreSQL 1.8 38 25 25 5.3 5.3
DBMS A 2.7 54 21 14 0.9 7.1
DBMS B 0.9 35 18 15 7.1 25
DBMS C 1.8 38 35 13 7.1 5.3
HyPer 2.7 37 27 19 8.0 6.2

A small number of queries become slightly slower using
the true instead of the erroneous cardinalities. This effect is
caused by cost model errors, which we discuss in Sect. 5.
However, as expected, the vast majority of the queries are
slower when estimates are used. Using DBMSA’s estimates,
78% of the queries are less than 2× slower than using the true
cardinalities, while for DBMSB this is the case for only 53%
of the queries. This corroborates the findings about the rel-
ative quality of cardinality estimates in the previous section.
Unfortunately, all estimators occasionally lead to plans that
take an unreasonable time and lead to a timeout. Surpris-
ingly, however, many of the observed slowdowns are easily
avoidable despite the bad estimates as we show in the fol-
lowing.

When looking at the queries that did not finish in a reason-
able time using the estimates, we found that most have one
thing in common: PostgreSQL’s optimizer decides to intro-
duce a nested-loop join (without an index-lookup) because
of a very low-cardinality estimate, whereas in reality the
true cardinality is larger. As we saw in the previous section,

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 651

(a) (b) (c)

Fig. 8 Slowdown of queries using PostgreSQL estimates w.r.t. using
true cardinalities. Only primary key indexes are enabled and we mod-
ified the query engine: a shows the performance of PostgreSQL 9.4, b
disables nested-loop joins that do not use indexes, and c additionally
enables dynamic rehashing of the hash tables that are used in hash joins

systematic underestimation happens very frequently, which
occasionally results in the introduction of nested-loop joins.

The underlying reason why PostgreSQL chooses nested-
loop joins is that it picks the join algorithm on a purely cost-
based basis. For example, if the cost estimate is 1,000,000
with the nested-loop join algorithm and 1,000,001 with a
hash join, PostgreSQL will always prefer the nested-loop
algorithm even if there is a equality join predicate, which
allows one to use hashing. Of course, given the O(n2) com-
plexity of nested-loop join and O(n) complexity of hash join,
and given the fact that underestimates are quite frequent, this
decision is extremely risky. And even if the estimates hap-
pen to be correct, any potential performance advantage of a
nested-loop join in comparison with a hash join is very small,
so taking this high risk can only result in a very small payoff.

Therefore, we disabled nested-loop joins (but not index-
nested-loop joins) in all following experiments. As Fig. 8b
shows,when rerunning all querieswithout these risky nested-
loop joins, we observed no more timeouts despite using
PostgreSQL’s estimates.

Also, none of the queries performed slower than before
despite having less join algorithm options, confirming our
hypothesis that nested-loop joins (without indexes) seldom
have any upside. However, this change does not solve all
problems, as there are still a number of queries that are more
than a factor of 10 slower (cf., red bars) in comparison with
the true cardinalities.

When investigating the reason why the remaining queries
still did not perform as well as they could, we found that most
of them contain a hash join where the size of the build input
is underestimated. PostgreSQL up to and including version
9.4 chooses the size of the in-memory hash table based on the
cardinality estimate. Underestimates can lead to undersized
hash tables with very long collisions chains and therefore bad
performance.Theupcomingversion9.5 resizes the hash table
at runtime based on the number of rows actually stored in the
hash table. We backported this patch to our code base, which

is based on 9.4, and enabled it for all remaining experiments.
Figure 8c shows the effect of this change in addition with
disabled nested-loop joins. Less than 4% of the queries are
off bymore than 2× in comparisonwith the true cardinalities.

To summarize, being “purely cost-based”, i.e., not taking
into account the inherent uncertainty of cardinality esti-
mates and the asymptotic complexities of different algorithm
choices, can lead to very badquery plans.Algorithms that sel-
dom offer a large benefit over more robust algorithms should
not be chosen. Furthermore, query processing algorithms
should, if possible, automatically determine their parameters
at runtime instead of relying on cardinality estimates.

4.2 Good plans despite bad cardinalities

The query runtimes of plans with different join orders often
vary by many orders of magnitude (cf. Sect. 6.1). Neverthe-
less, when the database has only primary key indexes, as in
all experiments so far, and once nested-loop joins have been
disabled and rehashing has been enabled, the performance
of most queries is close to the one obtained using the true
cardinalities. Given the bad quality of the cardinality esti-
mates, we consider this to be a surprisingly positive result. It
is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes, most
large (“fact”) tables need to be scanned using full table scans,
which dampens the effect of different join orders. The join
order still matters, but the results indicate that the cardinality
estimates are usually good enough to rule out all disastrous
join order decisions like joining two large tables using an
unselective join predicate. Another important reason is that
in main-memory picking an index-nested-loop join where a
hash join would have been faster is never disastrous. With all
data and indexes fully cached, we measured that the perfor-
mance advantage of a hash join over an index-nested-loop
join is at most 5× with PostgreSQL and 2× with HyPer.
Obviously, when the index must be read from disk, random
IO may result in a much larger factor. Therefore, the main-
memory setting is much more forgiving.

4.3 Complex access paths

So far, all query executions were performed on a database
with indexes on primary key attributes only. To see if the
query optimization problem becomes harder when there
are more indexes, we additionally indexed all foreign key
attributes. Figure 9b shows the effect of additional foreign
key indexes. We see large performance differences with 40%
of the queries being slower by a factor of 2! Note that these
results do not mean that adding more indexes decreases per-
formance (although this can occasionally happen). Indeed,
overall performance generally increases significantly, but the

123

652 V. Leis et al.

(a) (b)

Fig. 9 Slowdown of queries using PostgreSQL estimates w.r.t. using
true cardinalities. Nested-loop joins that do not use indexes are disabled
and rehashing is enabled, i.e., plot (a) is the same as Fig. 8c. Adding
foreign key indexes makes finding optimal plans much more difficult

more indexes are available the harder the job of the query
optimizer becomes.

4.4 Join-crossing correlations

There is consensus in our community that estimation of inter-
mediate result cardinalities in the presence of correlated
query predicates is a frontier in query optimization research.
Many industrial query optimizers keep only individual col-
umn statistics (e.g., histograms) and use the independence
assumption for combining predicates on multiple columns.
There has been previous work in detecting correlations
between value distributions of different columns in the same
table, for which then multi-column histograms or samples
can be kept, e.g. [20]. The JOBworkload studied in this paper
consists of real-world data, and its queries contain many cor-
related predicates.Our experiments that focus on single-table
subquery cardinality estimation quality (cf. Table 1) show
that systems that keep table samples (HyPer and presumably
DBMSA) can achieve almost perfect estimation results, even
for correlated predicates (inside the same table). As such,
the cardinality estimation research challenge appears to lie
in queries where the correlated predicates involve columns
from different tables, connected by joins. Thesewe call “join-
crossing correlations”. Such correlations frequently occur in
the IMDB data set, e.g., actors born in Paris are likely to play
in French movies.

Given these join-crossing correlations one could won-
der if there exist complex access paths that allow one to
exploit these. One example relevant here despite its original
setting in XQuery processing is ROX [23]. It studied run-
time join order query optimization in the context of DBLP
co-authorship queries that count how many Authors had
published Papers in three particular venues, out of many.
These queries joining the author sets from different venues
clearly have join-crossing correlations, since authors who

publish in VLDB are typically database researchers, likely to
also publish in SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship
that links the relation Authors with the relation Papers.
The optimal query plans in [23] used an index-nested-loop
join, looking up each author into Authorship.author (the
leading column of the indexed primary key of Authorship)
followed by a filter restriction on Paper.venue, which needs
to be looked up with yet another join. This filter on venue
would normally have to be calculated after these two joins.
However, the physical design of [23] storedAuthorshippar-
titioned by Paper.venue.8 This partitioning has startling
effects: instead of one Authorship table and primary key
index, one physically has many, one for each venue par-
tition. This means that by accessing the right partition, the
filter is implicitly enforced (for free), before the join happens.
This specific physical design therefore causes the optimal
plan to be as follows: first join the smallish authorship set
from SIGMODwith the large set for Nature producing almost
no result tuples, making the subsequent nested-loops index-
lookup join into VLDB very cheap. If the tableswould not have
been partitioned, index-lookups from all SIGMOD authors into
Authorships would first find all co-authored papers, of
which the great majority is irrelevant because they are from
database venues, and were not published in Nature. Without
this partitioning, there is no way to avoid this large interme-
diate result, and there is no query plan that comes close to
the partitioned case in efficiency: even if cardinality estima-
tion would be able to predict join-crossing correlations, there
would be no physical way to profit from this knowledge.

The lesson to draw from this example is that the effects
of query optimization are always gated by the available
options in terms of access paths. This is similar to our exper-
iments with and without indexes on foreign keys, where
the latter, richer, scenario is more challenging for optimiz-
ers. Having a partitioned index on a join-crossing correlated
predicate as in [23] is a non-obvious physical design alter-
native which even modifies the schema by bringing in a
join-crossing column (Paper.venue) as partitioning key of
a table (Authorship). We did not try to apply such opti-
mizations in our IMDB experiments, because a physical
design similar to [23] would help only a minority of the join-
crossing correlations in our 113 queries, and this type of
indexing is by no means common practice. The partitioned
DBLP setup is just one example of how one particular join-
crossing correlation can be handled, rather than a generic
solution. Join-crossing correlations remain an open fron-

8 In fact, rather than relational table partitioning, there was a sepa-
rate XML document per venue, e.g., separate documents for SIGMOD,
VLDB, Nature and a few thousand more venues. Storage in a sep-
arate XML document has roughly the same effect on access paths as
partitioned tables.

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 653

tier for database research involving the interplay of physical
design, query execution and query optimization. In our JOB
experiments, we do not attempt to chart this mostly unknown
space, but rather characterize the impact of (join-crossing)
correlations on the current state-of-the-art of query process-
ing, restricting ourselves to standard PK and FK indexing.

5 Cost models

The cost model guides the selection of plans from the search
space. The cost models of contemporary systems are sophis-
ticated software artifacts that are resulting from 30+ years of
research and development, mostly concentrated in the area
of traditional disk-based systems. PostgreSQL’s cost model,
for instance, is comprised of over 4000 lines of C code, and
takes into account various subtle considerations, e.g., it takes
into account partially correlated index accesses, interesting
orders, tuple sizes, etc. It is interesting, therefore, to evaluate
how much a complex cost model actually contributes to the
overall query performance.

First, we will experimentally establish the correlation
between the PostgreSQL cost model—a typical cost model
of a disk-based DBMS—and the query runtime. Then, we
will compare the PostgreSQL cost model with two other cost
functions. The first cost model is a tuned version of Post-
greSQL’s model for a main-memory setup where all data fits
into RAM. The second cost model is an extremely simple
function that only takes the number of tuples produced during
query evaluation into account. We show that, unsurprisingly,
the difference between the cost models is dwarfed by the car-
dinality estimates errors. We conduct our experiments on a
database instance with foreign key indexes. We begin with
a brief description of a typical disk-oriented complex cost
model, namely the one of PostgreSQL.

5.1 The PostgreSQL cost model

PostgreSQL’s disk-oriented cost model combines CPU and
I/O costs with certain weights. Specifically, the cost of an
operator is defined as a weighted sum of the number of
accessed disk pages (both sequential and random) and the
amount of data processed inmemory. The cost of a query plan
is then the sum of the costs of all operators. The default val-
ues of the weight parameters used in the sum (cost variables)
are set by the optimizer designers and are meant to reflect the
relative difference between random access, sequential access
and CPU costs.

The PostgreSQL documentation contains the following
note on cost variables: “Unfortunately, there is no well-
defined method for determining ideal values for the cost
variables. They are best treated as averages over the entire
mix of queries that a particular installation will receive. This

means that changing them on the basis of just a few experi-
ments is very risky.” For a database administrator, who needs
to actually set these parameters these suggestions are not very
helpful; no doubtmostwill not change these parameters. This
comment is of course, not PostgreSQL-specific, since other
systems feature similarly complex cost models. In general,
tuning and calibrating cost models (based on sampling, vari-
ous machine learning techniques etc.) has been a subject of a
number of papers (e.g, [32,51]). It is important, therefore, to
investigate the impact of the cost model on the overall query
engine performance. This will indirectly show the contribu-
tion of cost model errors on query performance.

5.2 Cost and runtime

The main virtue of a cost function is its ability to predict
which of the alternative query plans will be the fastest, given
the cardinality estimates; in other words, what counts is its
correlation with the query runtime. The correlation between
the cost and the runtime of queries in PostgreSQL is shown in
Fig. 10a. Additionally, we consider the case where the engine
has the true cardinalities injected, and plot the correspond-
ing data points in Fig. 10b. For both plots, we fit the linear
regression model (displayed as a straight line) and highlight
the standard error. The predicted cost of a query correlates
with its runtime in both scenarios. Poor cardinality estimates,
however, lead to a large number of outliers and a very wide
standard error area in Fig. 10a. Only using the true cardinal-
ities makes the PostgreSQL cost model a reliable predictor
of the runtime, as has been observed previously [51].

Intuitively, a straight line in Fig. 10 corresponds to an
ideal cost model that always assigns (predicts) higher costs
for more expensive queries. Naturally, any monotonically
increasing function would satisfy that requirement, but the
linear model provides the simplest and the closest fit to the
observed data. We can therefore interpret the deviation from
this line as the prediction error of the cost model. Specif-
ically, we consider the absolute percentage error of a cost

model for a query Q: ε(Q) = |Treal(Q)−Tpred(Q)|
Treal(Q)

, where Treal
is the observed runtime, and Tpred is the runtime predicted
by our linear model. Using the default cost model of Post-
greSQL and the true cardinalities, the median error of the
cost model is 38%.

5.3 Tuning the cost model for main memory

As mentioned above, a cost model typically involves param-
eters that are subject to tuning by the database administrator.
In a disk-based system such as PostgreSQL, these parame-
ters can be grouped into CPU cost parameters and I/O cost
parameters, with the default settings reflecting an expected

123

654 V. Leis et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Predicted cost versus runtime for different cost models. Car-
dinality estimation has a much larger effect on query performance than
the cost model and even a simple cost model seems sufficient for in-
memory workloads

proportion between these two classes in a hypothetical work-
load.

In many settings, the default values are suboptimal. For
example, the default parameter values in PostgreSQL suggest
that processing a tuple is 400× cheaper than reading it from
a page. However, modern servers are frequently equipped
with very large RAM capacities, and in many workloads the
data set actually fits entirely into available memory (admit-
tedly, the core of PostgreSQL was shaped decades ago when
database servers only had a few megabytes of RAM). This
does not eliminate the page access costs entirely (due to
buffer manager overhead), but significantly bridges the gap
between the I/O and CPU processing costs.

Arguably, themost important change that needs to be done
in the cost model for a main-memory workload is to decrease
the proportion between these two groups. We have done so
by multiplying the CPU cost parameters by a factor of 50.9

The results of theworkload runwith improved parameters are
plotted in the two middle subfigures of Fig. 10. Comparing
Fig. 10b with d, we see that tuning does indeed improve the

9 We did not run extensive experiments to find the “best” parameter
and do not claim that 50 is the best setting. Our goal is to measure the
effect of adjusting cost parameters into a significantly more accurate
direction to determine how important it is to tune the cost model.

correlation between the cost and the runtime. On the other
hand, as is evident from comparing Fig. 10c and d, parameter
tuning improvement is still overshadowed by the difference
between the estimated and the true cardinalities. Note that
Fig. 10c features a set of outliers for which the optimizer has
accidentally discovered very good plans (runtimes around
1 ms) without realizing it (hence very high costs). This is
another sign of “oscillation” in query planning caused by
cardinality misestimates.

In addition, we measure the prediction error ε of the tuned
cost model, as defined in Sect. 5.2. We observe that tuning
improves the predictive power of the cost model: the median
error decreases from 38% to 30%.

5.4 Are complex cost models necessary?

As discussed above, the PostgreSQL cost model is quite
complex. Presumably, this complexity should reflect vari-
ous factors influencing query execution, such as the speed of
a disk seek and read, CPU processing costs, etc. In order to
find out whether this complexity is actually necessary in a
main-memory setting, we will contrast it with a very simple
cost functionCmm. This cost function is tailored for themain-
memory setting in that it does not model I/O costs, but only
counts the number of tuples that pass through each operator
during query execution:

Cmm(T)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ · |R| if T = R ∨ T = σ(R)

|T | + |T1| + Cmm(T1) + Cmm(T2) if T = T1 ��HJ T2
Cmm(T1)+ if T = T1 ��INL T2,

λ · |T1| · max(|T1��R|
|T1| , 1) (T2 = R ∨ T2 = σ(R))

In the formula above R is a base relation, and τ ≤ 1 is a
parameter that discounts the cost of a table scan in compari-
son with joins. The cost function distinguishes between hash
��HJ and index-nested-loop ��INL joins: the latter scans T1
and performs index-lookups into an index on R, thus avoid-
ing a full table scan of R. A special case occurs when there is
a selection on the right side of the index-nested-loop join,
in which case we take into account the number of tuple
lookups in the base table index and essentially discard the
selection from the cost computation (hence the multiplier
max(|T1��R|

|T1| , 1)). For index-nested-loop joins, we use the
constantλ ≥ 1 to approximate by howmuch an index-lookup
is more expensive than a hash table lookup. Specifically, we
set λ = 2 and τ = 0.2. As in our previous experiments, we
disable nested-loop joins when the inner relation is not an
index-lookup.

The results of our workload run with Cmm as a cost func-
tion are depicted in Fig. 10e, f. We see that even our trivial
cost model is able to fairly accurately predict the query run-
time using the true cardinalities. To quantify this argument,
we measure the improvement in the runtime achieved by
changing the cost model for true cardinalities: In terms of the

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 655

Fig. 11 Cost distributions for 6 queries and different index configurations. The vertical lines represent the cost of the optimal plan

geometric mean over all queries, our tuned cost model yields
41% faster runtimes than the standard PostgreSQL model,
but even a simple Cmm makes queries 34% faster than the
built-in cost function. This improvement is not insignificant,
but on the other hand, it is dwarfed by improvement in query
runtime observed when we replace estimated cardinalities
with the real ones (cf. Fig. 8b). This allows us to reiterate
our main message that cardinality estimation is much more
crucial than the cost model.

6 Plan space

Besides cardinality estimation and the cost model, the final
important query optimization component is a plan enu-
meration algorithm that explores the space of semantically
equivalent join orders. Many different algorithms, both
exhaustive (e.g., [13,36]) as well as heuristic (e.g, [39,46]),
have been proposed. These algorithms consider a different
number of candidate solutions (that constitute the search
space) when picking the best plan. In this section we inves-
tigate how large the search space needs to be in order to find
a good plan.

The experiments of this section use a standalone query
optimizer, which implements Dynamic Programming (DP)
and a number of heuristic join enumeration algorithms. Our
optimizer allows the injection of arbitrary cardinality esti-
mates. In order to fully explore the search space, we do not
actually execute the query plans produced by the optimizer
in this section, as that would be infeasible due to the number
of joins our queries have. Instead, we first run the query opti-
mizer using the estimates as input. Then, we recompute the
cost of the resulting plan with the true cardinalities, giving

us a very good approximation of the runtime the plan would
have in reality.

We use the in-memory cost model from Sect. 5.4 and
assume that it perfectly predicts the query runtime, which,
for our purposes, is a reasonable assumption since the errors
of the cost model are negligible in comparison with the car-
dinality errors. This approach allows us to compare a large
number of plans without executing all of them.

Note that due to a data handling mistake, the numbers
reported in Section 7 of the conference version of this
paper [28] differ from the ones reported in this section. How-
ever, the qualitative conclusions are largely unaffected.

6.1 How important is the join order?

We use the Quickpick [49] algorithm to visualize the costs of
different join orders.Quickpick is a simple, randomized algo-
rithm that picks join edges at random until all joined relations
are fully connected. Each run produces a correct, but usually
slow, query plan. By running the algorithm 10,000 times per
query and computing the costs of the resulting plans, we
obtain an approximate distribution for the costs of random
plans [49]. Figure 11 shows density plots for 6 representative
example queries and for three physical database designs: no
indexes, primary key indexes only, and primary+ foreign key
indexes. The costs are normalized by the optimal plan (with
foreign key indexes), whichwe obtained by running dynamic
programming and the true cardinalities.

The graphs, which use a logarithmic scale on the hori-
zontal cost axis, clearly illustrate the importance of the join
ordering problem: The slowest or even median cost is gen-
erally multiple orders of magnitude more expensive than
the cheapest plan. The shapes of the distributions are quite
diverse. For some queries, there are many good plans (e.g.,

123

656 V. Leis et al.

Fig. 12 Geometricmeanof plan costwith varying index configurations

25c), for others few (e.g., 16d). The distributions are some-
times wide (e.g., 16d) and sometimes narrow (e.g., 25c). The
plots for the “no indexes” and the “PK indexes” configura-
tions are very similar implying that for our workload primary
key indexes alone do not improve performance very much,
since we do not have selections on primary key columns. In
many cases, the “PK+FK indexes” distributions have addi-
tional small peaks on the left side of the plot, which means
that the optimal plan in this index configuration ismuch faster
than in the other configurations.

Indexes only on primary keys and on foreign as well as
primary keys are two extremes of the spectrum. In reality,
one would typically have only some foreign keys indexes.
We therefore generated a random permutation of all foreign
key indexes and enabled them one-by-one. The effect on plan
quality as measured by the geometric mean of the plan cost
is shown in Fig. 12. Generally, the more indexes exist, the
better performance is. However, with PostgreSQL, adding
an index (e.g., 9) may even cause average performance to
decrease (slightly). The curve is not smooth but has a num-
ber of large “jumps” due to the fact that certain foreign key
indexes are particularly important for query performance.
One final important point is that the relative performance dif-
ference increases dramatically from 13% to 2.2× as indexes
are added because having more indexes makes finding the
optimal plan harder.

6.2 Are bushy trees necessary?

Most join ordering algorithms do not enumerate all possi-
ble tree shapes. Virtually all optimizers ignore join orders
with cross products, which results in a dramatically reduced
optimization time with only negligible query performance
impact. Oracle goes even further by not considering bushy
join trees [1], andSystemRonly enumeratedpipelined (right-
deep) query plans. We define the left input of a join to be the
build side of the hash join and the right input to be the probe
side. In order to quantify the effect of restricting the search
space on query performance, we modified our DP algorithm
to only enumerate left-deep, right-deep, or zig-zag trees.

Table 2 Slowdown for restricted tree shapes in comparison with the
optimal plan (true cardinalities)

PK indexes PK+FK indexes

Median 95% Max Median 95% Max

zig-zag 1.00 1.04 1.38 1.00 1.16 1.88

left-deep 1.00 1.23 1.66 1.94 48.2 1252

right-deep 1.12 1.63 1.69 6.46 140 6108

Aside from the obvious tree shape restriction, each of
these classes implies constraints on the joinmethod selection.
We follow the definition of Garcia-Molina et al.’s textbook,
which is reverse from the one in Ramakrishnan and Gehrke’s
book: Using hash joins, right-deep trees are executed by first
creating hash tables out of each relation except one before
probing in all of these hash tables in a pipelined fashion,
whereas in left-deep trees, a new hash table is built from the
result of each join. In zig-zag trees, which are a super set of
all left- and right-deep trees, each join operator must have at
least one base relation as input. For index-nested-loop joins,
we additionally employ the following convention: the left
child of a join is a source of tuples that are looked up in the
index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the
optimal plan for each of the three restricted tree shapes. We
divide these costs by the optimal tree (which may have any
shape, including “bushy”) thereby measuring howmuch per-
formance is lost by restricting the search space. The results
in Table 2 show that zig-zag trees offer decent performance
in most cases, with the worst case being 1.88× more expen-
sive than the best bushy plan. Left-deep trees are worse than
zig-zag trees, as expected, but still result in reasonable per-
formance. Right-deep trees, on the other hand, performmuch
worse than the other tree shapes and thus should not be
used exclusively. The bad performance of right-deep trees
is caused by the large intermediate hash tables that need to
be created from each base relation and the fact that only the
bottom-most join can be done via index-lookup.

6.3 Are heuristics good enough?

So far in this paper, we have used the dynamic programming
algorithm, which computes the optimal join order. However,
given the bad quality of the cardinality estimates, one may
reasonably ask whether an exhaustive algorithm is even nec-
essary. We therefore compare dynamic programming with a
randomized approach and two greedy heuristics.

The “Quickpick-1000” heuristics is a randomized algo-
rithm that chooses the cheapest (based on the estimated
cardinalities) 1000 random plans. Among all greedy heuris-
tics, we pick Greedy Operator Ordering (GOO) since it was
shown to be superior to other deterministic approximate algo-

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 657

Table 3 Comparison of exhaustive dynamic programming with the Quickpick-1000 [49] (best of 1000 random plans), the Greedy Operator
Ordering [12], and BSizePP [6]

PK indexes PK+FK indexes

PostgreSQL estimates True cardinalities PostgreSQL estimates True cardinalities

Median 95% Max Median 95% Max Median 95% Max Median 95% Max

Dynamic Programming 1.03 1.69 4.79 1.00 1.00 1.00 1.42 15.3 35.3 1.00 1.00 1.00

Quickpick-1000 1.05 7.99 42.4 1.00 1.08 1.21 2.10 77.6 3303 1.08 9.82 26.2

GOO/MinCard 1.01 1.85 3.42 1.01 1.37 1.92 1.84 34.1 766 1.55 28.6 766

GOO/MinCost 1.13 1.84 2.36 1.06 1.43 1.97 2.04 20.3 136 1.21 4.69 21.0

BSizePP 1.16 2.40 3.41 1.04 1.39 1.93 2.03 21.1 126 1.15 4.66 21.0

All costs are normalized by the optimal plan of that index configuration

rithms [12]. GOOmaintains a set of join trees, each of which
initially consists of one base relation. The algorithm then cal-
culates ranks for each pair of join trees and combines the pair
with lowest rank to a single join tree. In addition to the origi-
nally proposed rank functionMinCard, which minimizes the
sizes of intermediate results, we use the Cmm cost function
for ranking pairs of join trees, thus making GOO aware of
indexes.

We also implemented the “BSizePP” heuristics proposed
byBruno et al. [6], which is based onGreedyOperatorOrder-
ing but takes index-nested-loop joins into account explicitly.
BSizePP starts with the same set of trees as GOO and also
picks two join trees to combine based on an index-aware rank
function (again we use Cmm for ranking). Additional plans
are explored by applying the following two transformations
each time a pair of join trees has been selected:

– Push each tree inside the other to correct mistakes that
the greedy nature of the approach might have caused in
previous steps.

– Pull leaves out of the resulting tree to allow for index
joins that might become cheaper now due to a decreased
input cardinality.

The cheapest of the generated alternatives is selected as the
join tree for the set of relations it contains. This process
repeats until all trees are combined to a single remaining
solution covering the complete set of relations.

Quickpick-1000 aswell as the two deterministic heuristics
can produce bushy plans, but obviously only explore parts of
the search space. All algorithms in this experiment internally
use the PostgreSQL cardinality estimates to compute a query
plan, for which we compute the “true” cost using the true
cardinalities.

The results of optimizing the 113 JOB queries using the
aforementioned algorithms are summarized in Table 3. Apart
from the strong impact of cardinality misestimates, we iden-
tify the following factors influencing the quality of plans
generated by an algorithm:

– exploration depth Fully examining the search space using
DP yields better plans than using heuristics (especially if
many indexes are available).

– index-awareness Algorithms that take indexes into
account during join ordering, such as BSizePP and
GOO/MinCost, outperform GOO/MinCard, which
ignores indexes and orders joins solely by reducing the
size of intermediate results.

– exploration methodology Additional indexes add a few
very good plans to the search space, which are less likely
to be discovered by a randomized approach like Quick-
pick compared to systematic exploration as performed by
GOO and BSizePP.

The push and pull transformations introduced by BSizePP
have little effect compared to the index-awareGOO/MinCost.

To summarize, our results indicate that enumerating all
bushy trees exhaustively offers moderate but not insignifi-
cant performance benefits in comparisonwith algorithms that
enumerate only a subset of the search space. The performance
potential from good cardinality estimates is certainly much
larger. However, given the existence of exhaustive enumera-
tion algorithms that can find the optimal solution for queries
with dozens of relations very quickly (e.g., [13,36]), using
heuristics or disabling bushy trees should only be necessary
for queries with a large number of joins.

7 Join ordering by example

Up to now, when looking at plan quality, we mostly showed
aggregated statistics. In order to get a better understanding
of the effect of cardinality misestimation on plan quality,
this section looks at two particular queries in detail. We use
PostgreSQL as the source of cardinality estimates and the
two query variants 13d and 13a as examples. The queries
compute the ratings and release dates of movies produced
by US (respectively, German) production companies. The
two variants have the same structure (cf. Fig. 3) and join

123

658 V. Leis et al.

Fig. 13 Plan for both queries using PostgreSQL’s estimates. This plan
is fairly good for the US query, but not for the German query. The
numbers in parentheses represent the estimated sizes of the respective
intermediate results

graph (cf. Fig. 4). The only difference is the predicate on
cn.country_code, i.e., the base table selection on the
company_name table.10 In the remainder of this section,
we call query 13a the German query and 13d the US query.

As Fig. 6 shows, both queries exhibit the typical trend
of growing underestimates as the number of joins increases.
The base table predicate estimates, including the two differ-
ent cn.country_code selections, are very close to the
true cardinalities. PostgreSQL correctly estimates that the
company_name table contains more than 8 times as many
US companies than German companies. As a result, all inter-
mediate results containing the company_name table differ
by a similar factor in the two query variants. Interestingly,
however, the PostgreSQL estimates lead to the same plan,
which is shown in Fig. 13, for both variants.

10 Since the two query variants only differ in a constant within a
selection predicate, they could be executed using the same prepared
statement. Not statically knowing all constants statically presents addi-
tional, important, and well-researched challenges. However, we do not
consider prepared statements in this work and always send the full query
text.

Fig. 14 Optimal plan for the US query using true cardinalities. The
numbers in parentheses represent the true cardinalities of the respective
intermediate results

To find out how good this plan is, we re-optimized both
queries using the true cardinalities and obtained two different
plans (Figs. 14 and 15, respectively). Comparing those three
plans, we find that the PostgreSQL plan is quite good for the
US query, as its true cost is only 35% higher than the cost of
the optimal plan. Querying for the German movies using the
same plan, however, is 3 times as expensive as the optimal
plan.

The plan quality difference of the two variants (the subop-
timality of 1.35 vs. 3.05) is surprising given the fact that both
queries have similarly large estimation errors and the only
difference between the two queries is one predicate that is
estimated accurately in both cases. To understand this result,
one has to look at the different plans carefully. The optimal
plan for the US query, which is shown in Fig. 14, is fairly
similar to the one selected by PostgreSQL. The main differ-
ence is that index-nested-loop joins are more common due to
underestimated intermediate results. However, none of these
decisions have disastrous impact on the quality of the plan.
As Fig. 15 shows, the optimal plan for the German query, on
the other hand, has a completely different structure than the
one selected by PostgreSQL. In the following, we identify
three major differences between the plans and their impact
on plan quality.

For the relatively few movies produced by German com-
panies, using the index to join those movies with the
movie_info table (2 and 10) and afterward filtering for
the release date information (1 and 9) is the right decision.
However, performing this index-lookup for each of the many
movies produced by US companies is no longer the cheapest
solution. Instead, it would have been cheaper to first filter the

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 659

Fig. 15 Optimal plan for the German query using true cardinalities.
Thenumbers in parentheses represent the true cardinalities of the respec-
tive intermediate results

movie_info for the release dates (6) before joining them
with the US movies (5).

Even more costly is the decision to index join all the
movies rating information with the names of the involved
companies (4) and performing the required selection for
German (respectively, US) companies (3) on top of this
join. Due to the severe underestimation of the left-hand inter-
mediate result (1047 instead of 303K for both queries), the
index-nested-loop join looks much cheaper than it actually
is (cf. 7 and 8).

Finally, even though the estimates for the base table selec-
tion on company_name are almost perfect for both queries
(the maximum q-error is 1.03), PostgreSQL fails to detect
the cheap join of the filteredGermancompany_nameswith
the movie_companies (11) and hence does not use it as
the bottom-most join. Again the exponentially growing, sys-
tematic underestimation of intermediate cardinalities heavily
distorts the optimizer’s view: many intermediate results for
larger sets of relations are estimated to be much smaller than
the number of German production companies, causing the
optimizer to favor such subexpressions. This is the main
cause for the plan in Fig. 13 being significantly worse to
answer the query for German movies.

While these explanations are anecdotal since they only
concern two queries, we have seen similar phenomena more

(a) (b) (c)

Fig. 16 Disk version of the experiments in Fig. 8. Slowdown distribu-
tion when using PostgreSQL estimates w.r.t. using true cardinalities—
now on disk. On disk, the penalty for avoidable nested-loop joins (a,
default PostgreSQL) is much higher. Even with this and hash join per-
formance improved (cases b,c), more queries are 2–10 times slower
than optimal, compared to the main-memory case

frequently: (1) In many cases misestimations cancel out each
other—at least partially. (2) Sometimes even large estimation
errors have no influence on the optimality of a join ordering
for a certain subexpression. (3) In other cases, already slightly
misestimated cardinalities may lead to large differences in
plan quality.

8 Disk-based experiments

While main-memory databases are becoming widespread,
large databases are still often stored on disk. Thus we now
widen our investigation to include disk I/O cost as well.
Our system has a hardware controller implementing RAID5,
which, using magnetic disks, achieves a read throughput of
around 900MB/s.

Due to being a real-world data set, we cannot simply
increase the data size of the IMDB database (as would be
possible with most synthetic benchmarks). In order to be
able to run disk-based experiments, we instead decrease the
PostgreSQL buffer pool to only 16MB.11 Additionally, we
modified our JOB benchmark driver to flush the Linux (file)
system buffer cache12 before running each individual query.
We increased the query timeout to 10minutes. Repeating our
experiments of Figs. 8, 9 and 10 under these conditions lasted
roughly one week, and resulted in Figs. 16, 17, and 18.

8.1 Query execution engine

We now investigate the effects of the improvements to the
query execution engine introduced in Sect. 5.2. Comparing

11 We also ran experiments with a 128MB buffer pool where we
observed results that lie between the in-memory and the small buffer
pool configuration.
12 echo 3 > /proc/sys/vm/drop_caches.

123

660 V. Leis et al.

(a) (b)

Fig. 17 Disk version of the experiments in Fig. 9. Slowdown distri-
bution when using PostgreSQL estimates w.r.t. using true cardinalities.
Using PK+FK indexes with wrong estimates on disk causes 10% of the
queries to be slower than optimal by a factor of 100 or more; something
that does not occur in main-memory

(a) (b)

(c) (d)

(e) (f)

Fig. 18 Disk version of the experiments in Fig. 10. Note that the tuned
cost model differs from Fig. 10, as we increase the relative cost of
random to sequential I/O from the default factor of 4 to a more real-
istic factor of 100. On disk, true cardinalities are no longer perfect
predictors of runtime (regardless of the tested cost model), and some
high-cardinality queries timeout. Accurate estimates still correlate to
runtime, but performance predictions are now very frequently off by an
order of magnitude, giving rise to significant join order suboptimalities

Fig. 8a with Fig. 16a we see that the penalty for avoid-
able nested-loop joins is much higher on disk. Further,
even when these are avoided and hash join performance
is improved (cases a and c), significantly more queries are

2–10 times slower-than-optimal on-disk when compared
to the main-memory case. On-disk processing thus makes
the absolute cost distribution more extreme than in main-
memory: slow/bad query plans are further away in time than
fast/optimal query plans.

8.2 Adding foreign key indexes

Althoughworse than inmain-memory, query performance on
disk is, despite the errors in cardinality estimation, still quite
goodwith only primary key indexes available. As can be seen
from the on-disk Fig. 17, adding foreign key indexes widens
the cost distribution even further.UsingPK+FK indexeswith
wrong estimates on disk causes 24%of the queries to bemore
than 10x slower than optimal with 12% being evenmore than
a factor of 100 worse; something that occurs rarely in main-
memory.

An in-depth analysis of the plans of the queries that were
at least a factor of 10 slower than optimal revealed two main
causes for them being slow: First, cardinalities, especially
of small subexpressions (2-way and 3-way joins), are some-
times overestimated, resulting in a hash join to be used in
places where performing a few index-lookups would have
been significantly faster. The vast majority of plans, how-
ever, becomes that slow due to excessive use of indexes. The
optimal plans for the completeworkload use an overall of 669
index-nested-loop joins, whereas using the PostgreSQL esti-
mates results in 780 index-nested-loop joins being planned.
In disk-based settings, planning index-nested-loop joins is
risky due to expensive random IO required for the index-
lookups.

Not only are there more index-nested-loop joins planned,
often the same joins are performed, but in a different order.
Because of undetected join-crossing correlations, the opti-
mizer misses opportunities to eliminate irrelevant tuples
early. Thus,we often observe plans performing several orders
of magnitude more index lookups than the optimal plan.

8.3 Tuning the cost model for disk IO

One of the main findings so far was that physical cost mod-
eling has become relatively unimportant in join order opti-
mization for main-memory query processing, and research
should focus on improving cardinality estimation. Does this
conclusion also hold for disk-based query processing? Fig-
ure 18 which compares estimated cost with actual runtimes
does confirm that cardinality estimation is indeed key to cor-
rectly predicting performance: even our trivial cost model
that gets fed true cardinalities clearly correlates with on-
disk query runtime, whereas with bad estimates (left side)
there is no hope of good predictions. However, moving from
main-memory (Fig. 10) to disk-based query processing does
introduce significant errors to the predictions; on average one

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 661

order of magnitude. In other words, even with perfect esti-
mates, a join order optimizer is likely to pick a suboptimal
plan that could be an order of magnitude slower than opti-
mal. Thus, for disk-based systems, a good cost model is more
important than for systemspurely operating inmain-memory.

PostgreSQL’s standard cost model assumes costs for
fetching a random page to be 4× the cost of fetching pages
sequentially. In reality, this factor is much higher, causing
PostgreSQL to underestimate the cost of index-lookups. We
thus increased the cost of random IO to be 100× as expen-
sive as sequential IO. The results of running the Join Order
Benchmark with this tuned cost model are shown in subfig-
ures c and d of Fig. 18. Using true cardinalities, tuning the
cost model indeed improved the runtime prediction. About
63% of the queries are executed faster and 3 of the queries
suffering timeout with the default cost model now execute
successfully using the tuned costmodel. However, the perfor-
mance of 35%of the queries decreases significantly. Looking
into the query plans, we find that improvements are achieved
due to less planning of index-nested-loop joins. The num-
ber of such joins dropped from 669 to 628 due to the tuned
cost model. However, the cost model is still inaccurate in
predicting query runtime, thus performance also worsens for
a significant amount of queries. Finally, from the left-hand
subfigures in Fig. 18, we see that because of large errors
in cardinality estimation, there is not much hope for good
runtime predictions regardless of the cost model in use.

Summarizing the results of the on-disk experiments, we
can conclude that cost prediction gets harder in a disk-based
environment and the influence of the cost model on plan
quality is higher than in main memory. Besides the differ-
ent characteristics between main memory and disk, further
aspects, such as other storage devices, degree of parallelism
and newer access methods [25] have an impact on the cost
model. Thus, a cost model taking those factors into account
may further increase the effect on plan quality. However,
plan quality will generally still be dominated by the errors in
cardinality estimation.

9 Related work

Our cardinality estimation experiments show that systems
which keep table samples for cardinality estimation predict
single-table result sizes considerably better than those which
apply the independence assumption and use single-column
histograms [21]. We think systems should be adopting table
samples as a simple and robust technique, rather than earlier
suggestions to explicitly detect certain correlations [20] to
subsequently create multi-column histograms [42] for these.

However, many of our JOB queries contain join-crossing
correlations, which single-table samples do not capture,
and where the current generation of systems still apply

the independence assumption. There is a body of exist-
ing research work to better estimate result sizes of queries
with join-crossing correlations, mainly based on join sam-
ples [18], possibly enhanced against skew (end-biased sam-
pling [11], correlated samples [53], sampling-based query
re-optimization [52], index-based join sampling [30]), using
sketches [44] or graphical models [48]. This work confirms
that without addressing join-crossing correlations, cardi-
nality estimates deteriorate strongly with more joins [22],
leading to both the over- and underestimation of result sizes
(mostly the latter), so it would be positive if some of these
techniques would be adopted by systems.

Another way of learning about join-crossing correlations
is by exploiting query feedback, as in the LEO project [47],
though there itwas noted that deriving cardinality estimations
based on a mix of exact knowledge and lack of knowledge
needs a sound mathematical underpinning. For this, maxi-
mumentropy (MaxEnt [24,35])was defined, though the costs
for applying maximum entropy are high and have prevented
its use in systems so far. We found that the performance
impact of estimation mistakes heavily depends on the phys-
ical database design; in our experiments the largest impact
is in situations with the richest designs. From the ROX [23]
discussion in Sect. 4.4 one might conjecture that to truly
unlock the potential of correctly predicting cardinalities for
join-crossing correlations,we also need newphysical designs
and access paths.

Another finding in this paper is that the adverse effects of
cardinalitymisestimations can be strongly reduced if systems
would be “hedging their bets” and not only choose the plan
with the cheapest expected cost, but take the probabilistic
distribution of the estimate into account, to avoid plans that
are marginally faster than others but bear a high risk of strong
underestimation. There has been work both on doing this for
cardinality estimates purely [37], as well as combining these
with a cost model [2].

The problem with fixed hash table sizes for PostgreSQL
illustrates that cost misestimation can often be mitigated by
making the runtime behavior of the query engine more “per-
formance robust”. This can simply mean that operators do
not use estimates in their implementation (e.g., [27,29]).
More advanced techniques for making systems more adap-
tive include dynamically switch sides in a join or between
hashing and sorting (GJoin [16]), switch between sequential
scan and index-lookup (smooth scan [5]), adaptively reorder-
ing join pipelines during query execution [31], or change
aggregation strategies at runtime depending on the actual
number of group-by values [38] or partition-by values [3].

A radical approach is to move query optimization to
runtime, when actual value distributions become avail-
able [10,40]. However, runtime techniques typically restrict
the plan search space to limit runtime plan exploration cost,
and sometimes come with functional restrictions such as to

123

662 V. Leis et al.

only consider (sampling through) operators which have pre-
created indexed access paths (e.g., ROX [23]).

Our experiments with the second query optimizer compo-
nent besides cardinality estimation, namely the cost model,
suggest that tuning cost models provides less benefits than
improving cardinality estimates, and in a main-memory set-
ting even an extremely simple cost model can produce
satisfactory results. This conclusion resonates with some of
the findings in [51] which sets out to improve cost models but
shows major improvements by refining cardinality estimates
with additional sampling. In a disk-based setting, more accu-
rate cost models have more impact and can improve query
performance by an order of magnitude, but even this effect is
generally overshadowed by the large cardinality estimation
errors.

For testing the final query optimizer component, plan
enumeration, we borrowed in our methodology from the
Quickpick method used in randomized query optimiza-
tion [49] to characterize and visualize the search space.
Another well-known search space visualization method is
Picasso [19], which visualizes query plans as areas in a space
where query parameters are the dimensions. Interestingly,
[49] claims in its characterization of the search space that
good query plans are easily found, but our tests indicate that
the richer the physical design and access path choices, the
rarer good query plans become.

Query optimization is a core database research topic with
a huge body of related work, that cannot be fully represented
in this section. After decades of work still having this prob-
lem far from resolved [33], some have even questioned it and
argued for the need of optimizer application hints [7]. This
paper introduces the Join Order Benchmark based on the
highly correlated IMDB real-world data set and a methodol-
ogy for measuring the accuracy of cardinality estimation. Its
integration in systems proposed for testing and evaluating the
quality of query optimizers [15,17,34,50] is hoped to spur
further innovation in this important topic.

10 Conclusions

Throughout this paper, in which we look at Query Opti-
mization Through the Looking Glass, wemade observations,
some of which were already part of published literature or
database systems lore, and others new. In the following, we
list all of these numbered by the section in which they are
made, with the most important conclusions in bold:

Section 3.1: Estimate cardinalities by execution on
samples. Cardinality estimation by evaluating predicates on
small samples (e.g., 1000 tuples) and extrapolating from
these, is to be preferred over other options (e.g., keeping
histograms), since execution on samples automatically cap-
tures any predicate correlations between table columns, and

is capable of estimating any filter predicate. With large data
volumes in analytical queries and fast CPUs available now,
both the absolute and relative overhead of execution on sam-
ples during query optimization has dropped (in the past, this
overhead made this technique less attractive). In a main-
memory setting, sampling and existing index structures can
even be used to detect join-crossing correlations [30]. One
caveat is that execution on samples has a vulnerability for
very low-cardinality predicates (of which the sample holds 0
instances).

Sections 3.2, 5.1 and 5.4: Focus research on cardinality
estimation rather than cost models. Cardinality estimation
of joins is the most important problem in query optimization.
The estimates of all tested commercial systems routinely
yield large estimation errors. Improving the accuracy of
cardinality estimates is much more important for query opti-
mizer quality than improving the accuracy of cost models.
We tested an ultra-simple cost model that just sums the esti-
mated amounts of intermediate tuples produced in a query,
and this simple model performs just as well as the complex
cost model of PostgreSQL inmainmemory, even after tuning
it. In contrast, errors in cardinality estimation have a heavy
effect on optimization quality.

Section 3.2: Underestimation is more common than
overestimation. The more joins a real-life query has, the
more current optimizers will underestimate the cardinalities
due to applying the independence assumption. This implies
that real-life queries tend to look for the Honda Accord
(correlated predicates on brand and model) rather for the
Honda Mustang (anti-correlated) because queries tend to
be posed with certain embedded domain knowledge about
actual, existing, entities. Our observations on System A sug-
gests a heuristic that replaces simply applying selectivity
multiplication (mandated by the independence assumption)
by a “dampening”method that nudges selectivity downwards
more gracefully. This suggestion is still a heuristic; of course,
estimationmethods that effectively capture join-crossing cor-
relations would be better, but will be much harder to devise,
given the huge space of potential correlations to cover.

Section 3.3: Traditional benchmarks are not good tests
for join order optimization. TPC-H, TPC-DS, and SSB all
work on data sets where column values have uniform or (in
case of TPC-DS) stepwise-uniform frequency distributions,
and which almost completely lack both intra- and inter-table
correlations. This trivializes cardinality estimation. Further-
more, the queries in these benchmarks have a low number of
joins, and this paper has shown that the hardness of accurate
cardinality estimation increases directly with the number of
joins.

Sections 3.4 and 7:QueryOptimization is quirky business.
Two wrongs often make a right in query optimization. In
multiple cases, we illustrated the effect that multiple errors
cancel each other out. This phenomenon makes analyzing

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 663

and fixing query optimizer problems very frustrating because
fixing one query will break another. Also, sometimes large
estimation errors still lead the optimizer to find the right join
order, whereas in other cases already slight misestimations
have disastrous consequences.

Sections 4.1, 4.2 and 8: One should use cost estimations
in robust fashion. Rather than blindly picking the query plan
with the lowest estimated cost, query optimizers should take
the cardinality estimate error margins (or estimate proba-
bility density distribution) into account and avoid picking
plans where the expected estimated cost is only slightly bet-
ter but which run significant risk of being much slower than
a robust alternative. In general, hash joins should be favored
over nested-loop equi joins, because they are never much
slower yet fall in a better complexity class. A related princi-
ple is never to rely on estimation for making decisions that
can also be made at runtime, when the actual cardinalities
are known (such as determining the amount of buckets in a
hash table, created for a hash join). As a final example, a rule
that prefers to use index-nested-loops joins over hash joins is
a robust choice in query optimization for main-memory sys-
tems, since at worst there is only a small performance penalty
in case hash joins would be better, whereas the upside can be
large. In disk-based systems, where index-nested-loops joins
lead to (slow) random I/O, this is not the case.

Sections 4.3, 6.1 and 8: The richer the physical database
infrastructure, the harder query optimization becomes. We
observe the effect when adding unclustered foreign key
indexes to the schema,which typically did lead to faster query
times. However, with a richer schema, (i) the cost distribution
of the plan space gets more diverse, often introducing a few
(therefore hard-to-find) plans that are much faster and (ii)
the slowdown experienced due to misestimations (compared
to the optimal plan) is much higher than in the case without
indexes or with only primary key indexes. The effect of (ii)
is much larger in disk-based systems than in main-memory
systems.

Section 4.4:Access paths for join-crossing correlations
should be a research topic. Correlations are a research
frontier not only for correct estimation, but also in terms
of devising new data structures, access paths, and exe-
cution algorithms. We discussed a DBLP co-authorship
example query,where correctly predicting join-crossing anti-
correlations is knowledge that cannot be leveraged, unless
special physical database designs are deployed (in the exam-
ple, table partitioning on a join-crossing attribute is needed).
Thus, research in cost-estimation needs to be accompanied
by research into new types of access paths.

Sections 6.2 and 6.3: Superiority of exhaustive search.
In rich schemas with FK indexes, exhaustive plan enumera-
tion provides tangible benefits overmore restricted strategies.
Among these, restricting to zig-zag trees is better than con-
sidering only left-deep plans, which in turn is better than

only considering right-deep plans. Heuristic strategies such
as QuickPick, GOO, and BSizePP similarly find worse query
plans than exhaustive search, especially in schemas with FK
indexes,where index-aware approaches such asBSizePPper-
form better than the other heuristic approaches.

Acknowledgements We would like to thank Guy Lohman and the
anonymous reviewers for their valuable feedback.We also thankMoritz
Wilfer for his input in the early stages of this project.

A Appendix: Detailed query descriptions

JOB consists of 113 multi-join query variants based on 33
query structures. The query variants derive from the same
query structure differ only in their filter predicates; which
consist of a series of conjunctions. The join-relationships
connect the tables through multiple join relations; hence, we
draw the join graph for each template on the left side.We use
the alias from Fig. 2 as the tuple variable names for the joined
relations.On the right side,wefirst list all filter predicates that
are common to all variants of a query structure, followed by
a box containing all additional filter predicates, one box for
each query variant. On the bottom right, we list the projection
columns (retrieved as MIN() aggregates). The query set is
available online: http://www-db.in.tum.de/~leis/qo/job.tgz.

Q1 join-graph: filters: ct.kind = ’production companies’
ct

mc

mi_idx

t

it

mc.note NOT LIKE ’%(as Metro-Goldwyn-Mayer
Pictures)%’
1a: it.info = ’top 250 rank’
1a: (mc.note LIKE ’%(co-production)%’ OR
mc.note LIKE ’%(presents)%’)
1b: it.info = ’bottom 10 rank’
1b: t.production year BETWEEN 2005 AND 2010
1c: it.info = ’top 250 rank’
1c: (mc.note LIKE ’%(co-production)%’)
1c: t.production year > 2010
1d: it.info = ’bottom 10 rank’
1d: t.production year > 2000
projections: mc.note t.title t.production year

Q2 join-graph: filters: k.keyword = ’character-name-in-title’
cn

mc

t

mk

k

2a: cn.country code =’[de]’
2b: cn.country code =’[nl]’
2c: cn.country code =’[sm]’
2d: cn.country code =’[us]’

projections: t.title

Q3 join-graph: filters: k.keyword LIKE ’%sequel%’
t

mi

mk

k 3a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
3a: t.production year > 2005
3b: mi.info IN (’Bulgaria’)
3b: t.production year > 2010
3c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
3c: t.production year > 1990
projections: t.title

123

http://www-db.in.tum.de/~leis/qo/job.tgz

664 V. Leis et al.

Q4 join-graph: filters: it.info = ’rating’
t

mi_idx

mk

k

it

k.keyword LIKE ’%sequel%’
4a: t.production year > 2005
4b: t.production year > 2010
4c: t.production year > 1990

projections: mi idx.info t.title

Q5 join-graph: filters: ct.kind = ’production companies’
t

mi

mc

ct

it

5a: mc.note LIKE ’%(France)%’
5a: mc.note LIKE ’%(theatrical)%’
5a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
5a: t.production year > 2005
5b: mc.note LIKE ’%(1994)%’
5b: mc.note LIKE ’%(USA)%’
5b: mc.note LIKE ’%(VHS)%’
5b: mi.info IN (’USA’, ’America’)
5b: t.production year > 2010
5c: mc.note LIKE ’%(USA)%’
5c: mc.note NOT LIKE ’%(TV)%’
5c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
5c: t.production year > 1990
projections: t.title

Q6 join-graph: filters: (no common filter predicates)

k

mk

t

ci

n 6a: k.keyword = ’marvel-cinematic-universe’
6a: n.name LIKE ’%Downey%Robert%’
6a: t.production year > 2010
6b: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6b: n.name LIKE ’%Downey%Robert%’
6b: t.production year > 2014
6c: k.keyword = ’marvel-cinematic-universe’
6c: n.name LIKE ’%Downey%Robert%’
6c: t.production year > 2014
6d: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6d: n.name LIKE ’%Downey%Robert%’
6d: t.production year > 2000
6e: k.keyword = ’marvel-cinematic-universe’
6e: n.name LIKE ’%Downey%Robert%’
6e: t.production year > 2000
6f: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
6f: t.production year > 2000
projections: k.keyword n.name t.title

Q7 join-graph: filters: it.info = ’mini biography’
n

an

pi

ci

ml

t

lt

it 7a: an.name LIKE ’%a%’
7a: lt.link =’features’
7a: (n.gender=’m’ OR (n.gender = ’f’
7a: n.name LIKE ’B%’))
7a: n.name pcode cf BETWEEN ’A’ AND ’F’
7a: pi.note =’Volker Boehm’
7a: t.production year BETWEEN 1980 AND 1995
7b: an.name LIKE ’%a%’
7b: lt.link =’features’
7b: n.gender=’m’
7b: n.name pcode cf LIKE ’D%’
7b: pi.note =’Volker Boehm’
7b: t.production year BETWEEN 1980 AND 1984
7c: an.name is NOT NULL
7c: (an.name LIKE ’%a%’ OR an.name LIKE ’A%’)
7c: lt.link in (’references’, ’referenced in’, ’features’,
’featured in’)
7c: (n.gender=’m’ OR (n.gender = ’f’
7c: n.name LIKE ’A%’))
7c: n.name pcode cf BETWEEN ’A’ AND ’F’
7c: pi.note is NOT NULL
7c: t.production year BETWEEN 1980 AND 2010
projections: n.name t.title

Q8 join-graph: filters: (no common filter predicates)
an

n

ci

t

mc

rt

cn

8a: ci.note =’(voice: English version)’
8a: cn.country code =’[jp]’
8a: mc.note LIKE ’%(Japan)%’
8a: mc.note NOT LIKE ’%(USA)%’
8a: n.name LIKE ’%Yo%’
8a: n.name NOT LIKE ’%Yu%’
8a: rt.role =’actress’
8b: ci.note =’(voice: English version)’
8b: cn.country code =’[jp]’
8b: (mc.note LIKE ’%(2006)%’ OR mc.note LIKE
’%(2007)%’)
8b: mc.note LIKE ’%(Japan)%’
8b: mc.note NOT LIKE ’%(USA)%’
8b: n.name LIKE ’%Yo%’
8b: n.name NOT LIKE ’%Yu%’
8b: rt.role =’actress’
8b: t.production year BETWEEN 2006 AND 2007
8b: (t.title LIKE ’One Piece%’ OR t.title LIKE
’Dragon Ball Z%’)
8c: cn.country code =’[us]’
8c: rt.role =’writer’
8d: cn.country code =’[us]’
8d: rt.role =’costume designer’
projections: an.name t.title

Q9 join-graph: filters: cn.country code = ’[us]’

ci

t

mc

rt

cn

n chn

an n.gender = ’f’
rt.role = ’actress’
9a: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
9a: mc.note is NOT NULL
9a: n.name LIKE ’%Ang%’
9a: t.production year BETWEEN 2005 AND 2015
9b: ci.note = ’(voice)’
9b: mc.note LIKE ’%(200%)%’
9b: n.name LIKE ’%Angel%’
9b: t.production year BETWEEN 2007 AND 2010
9c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
9c: n.name LIKE ’%An%’
9d: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
projections: an.name chn.name t.title

Q10 join-graph: filters:(no common filter predicates)
t

mc

ci

chn rt

cn ct

10a: ci.note LIKE ’%(uncredited)%’
10a: ci.note LIKE ’%(voice)%’
10a: cn.country code = ’[ru]’
10a: rt.role = ’actor’
10a: t.production year > 2005
10b: ci.note LIKE ’%(producer)%’
10b: cn.country code = ’[ru]’
10b: rt.role = ’actor’
10b: t.production year > 2010
10c: ci.note LIKE ’%(producer)%’
10c: cn.country code = ’[us]’
10c: t.production year > 1990
projections: chn.name t.title

Q11 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mck

ct cn

11a: (cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
11a: ct.kind =’production companies’
11a: k.keyword =’sequel’
11a: lt.link LIKE ’%follow%’
11a: mc.note IS NULL
11a: t.production year BETWEEN 1950 AND 2000
11b: (cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
11b: ct.kind =’production companies’
11b: k.keyword =’sequel’
11b: lt.link LIKE ’%follows%’
11b: mc.note IS NULL
11b: t.production year = 1998
11b: t.title LIKE ’%Money%’
11c: (cn.name LIKE ’20th Century Fox%’ OR
cn.name LIKE ’Twentieth Century Fox%’)
11c: ct.kind is NOT NULL
11c: ct.kind != ’production companies’
11c: k.keyword in (’sequel’, ’revenge’, ’based-on-
novel’)
11c: mc.note is NOT NULL
11c: t.production year > 1950
11d: ct.kind is NOT NULL
11d: ct.kind != ’production companies’
11d: k.keyword in (’sequel’, ’revenge’, ’based-on-
novel’)
11d: mc.note is NOT NULL
11d: t.production year > 1950
projections: cn.name lt.link t.title

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 665

Q12 join-graph: filters:cn.country code = ’[us]’
t

mi

mi_idx

mc

it1

it2

ct cn 12a: ct.kind = ’production companies’
12a: it1.info = ’genres’
12a: it2.info = ’rating’
12a: mi.info in (’Drama’, ’Horror’)
12a: t.production year BETWEEN 2005 AND 2008
12b: ct.kind is NOT NULL
12b: (ct.kind =’production companies’ OR ct.kind =
’distributors’)
12b: it1.info =’budget’
12b: it2.info =’bottom 10 rank’
12b: t.production year > 2000
12b: (t.title LIKE ’Birdemic%’ OR t.title LIKE
’%Movie%’)
12c: ct.kind = ’production companies’
12c: it1.info = ’genres’
12c: it2.info = ’rating’
12c: mi.info in (’Drama’, ’Horror’, ’Western’, ’Fam-
ily’)
12c: t.production year BETWEEN 2000 AND 2010
projections: cn.name mi idx.info t.title

Q13 join-graph: filters:ct.kind = ’production companies’

mi

t

mc

mi_idx

it2

kt

cn ct

it1

it1.info = ’rating’
it2.info = ’release dates’
kt.kind = ’movie’
13a: cn.country code =’[de]’
13b: cn.country code =’[us]’
13b: t.title != ”
13b: (t.title LIKE ’%Champion%’ OR t.title LIKE
’%Loser%’)
13c: cn.country code =’[us]’
13c: t.title != ”
13c: (t.title LIKE ’Champion%’ OR t.title LIKE
’Loser%’)
13d: cn.country code =’[us]’
projections: mi.info mi idx.info t.title

Q14 join-graph: filters:it1.info = ’countries’
kt

t

mi

mk

mi_idx

k

it1

it2

it2.info = ’rating’
14a: k.keyword in (’murder’, ’murder-in-title’,
’blood’, ’violence’)
14a: kt.kind = ’movie’
14a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14a: t.production year > 2010
14b: k.keyword in (’murder’, ’murder-in-title’)
14b: kt.kind = ’movie’
14b: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14b: t.production year > 2010
14b: (t.title LIKE ’%murder%’ OR t.title LIKE
’%Murder%’ OR t.title LIKE ’%Mord%’)
14c: k.keyword in (’murder’, ’murder-in-title’,
’blood’, ’violence’)
14c: k.keyword is NOT null
14c: kt.kind in (’movie’, ’episode’)
14c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
14c: t.production year > 2005
projections: mi idx.info t.title

Q15 join-graph: filters:cn.country code = ’[us]’
t

at

mi

mk

mc

k

it1

cnct

it1.info = ’release dates’
mi.note LIKE ’%internet%’
15a: mc.note LIKE ’%(200%)%’
15a: mi.info LIKE ’USA:% 200%’
15a: t.production year > 2000
15b: cn.name = ’YouTube’
15b: mc.note LIKE ’%(200%)%’
15b: mi.info LIKE ’USA:% 200%’
15b: t.production year BETWEEN 2005 AND 2010
15c: mi.info is NOT NULL
15c: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
15c: t.production year > 1990
15d: t.production year > 1990
projections: mi.info t.title

Q16 join-graph: filters:cn.country code = ’[us]’
an

n

ci

t

mk

mc

k

cn

k.keyword = ’character-name-in-title’
16a: t.episode nr < 100
16a: t.episode nr > = 50
16c: t.episode nr < 100
16d: t.episode nr < 100
16d: t.episode nr > = 5

projections: an.name t.title

Q17 join-graph: filters:k.keyword = ’character-name-in-title’
n

ci

t

mk

mc

k

cn

17a: cn.country code =’[us]’
17a: n.name LIKE ’B%’
17b: n.name LIKE ’Z%’
17c: n.name LIKE ’X%’
17d: n.name LIKE ’%Bert%’
17e: cn.country code =’[us]’
17f: n.name LIKE ’%B%’

projections: n.name n.name

Q18 join-graph: filters:(no common filter predicates)
t

mi

mi_idx

ci

n

it1

it2

18a: ci.note in (’(producer)’, ’(executive producer)’)
18a: it1.info = ’budget’
18a: it2.info = ’votes’
18a: n.gender = ’m’
18a: n.name LIKE ’%Tim%’
18b: ci.note in (’(writer)’, ’(head writer)’, ’(written
by)’, ’(story)’, ’(story editor)’)
18b: it1.info = ’genres’
18b: it2.info = ’rating’
18b: mi.info in (’Horror’, ’Thriller’)
18b: mi.note is NULL
18b: n.gender = ’f’
18b: n.gender is NOT null
18b: t.production year BETWEEN 2008 AND 2014
18c: ci.note in (’(writer)’, ’(head writer)’, ’(written
by)’, ’(story)’, ’(story editor)’)
18c: it1.info = ’genres’
18c: it2.info = ’votes’
18c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)
18c: n.gender = ’m’
projections: mi.info mi idx.info t.title

Q19 join-graph: filters:cn.country code = ’[us]’
t

mi

mc

ci

an

cn

it

nrt chn

it.info = ’release dates’
n.gender = ’f’
rt.role = ’actress’
19a: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19a: mc.note is NOT NULL
19a: mi.info is NOT null
19a: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
19a: n.name LIKE ’%Ang%’
19a: t.production year BETWEEN 2005 AND 2009
19b: ci.note = ’(voice)’
19b: mc.note LIKE ’%(200%)%’
19b: mi.info is NOT null
19b: (mi.info LIKE ’Japan:%2007%’ OR mi.info
LIKE ’USA:%2008%’)
19b: n.name LIKE ’%Angel%’
19b: t.production year BETWEEN 2007 AND 2008
19b: t.title LIKE ’%Kung%Fu%PANDa%’
19c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19c: mi.info is NOT null
19c: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
19c: n.name LIKE ’%An%’
19c: t.production year > 2000
19d: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
19d: t.production year > 2000
projections: n.name t.title

123

666 V. Leis et al.

Q20 join-graph: filters:cct1.kind = ’cast’
kt

t

mk

ci

cc

chn n

k

cct1 cct2

cct2.kind LIKE ’%complete%’
kt.kind = ’movie’
20a: (chn.name LIKE ’%Tony%Stark%’ OR
chn.name LIKE ’%Iron%Man%’)
20a: chn.name NOT LIKE ’%Sherlock%’
20a: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
20a: t.production year > 1950
20b: (chn.name LIKE ’%Tony%Stark%’ OR
chn.name LIKE ’%Iron%Man%’)
20b: chn.name NOT LIKE ’%Sherlock%’
20b: k.keyword in (’superhero’, ’sequel’, ’second-
part’, ’marvel-comics’, ’based-on-comic’, ’tv-
special’, ’fight’, ’violence’)
20b: n.name LIKE ’%Downey%Robert%’
20b: t.production year > 2000
20c: chn.name is NOT NULL
20c: (chn.name LIKE ’%man%’ OR chn.name LIKE
’%Man%’)
20c: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
20c: t.production year > 2000

projections: t.title

Q21 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mc

mi

k

ctcn

(cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
ct.kind = ’production companies’
k.keyword = ’sequel’
lt.link LIKE ’%follow%’
mc.note IS NULL
21a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’)
21a: t.production year BETWEEN 1950 AND 2000
21b: mi.info IN (’Germany’, ’German’)
21b: t.production year BETWEEN 2000 AND 2010
21c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’English’)
21c: t.production year BETWEEN 1950 AND 2010
projections: cn.name lt.link t.title

Q23 join-graph: filters:cct.kind = ’complete+verified’
kt

t

mi

mk

mc

cc

k

it

cnct

cct

cn.country code = ’[us]’
it.info = ’release dates’
mi.note LIKE ’%internet%’
23a: kt.kind in (’movie’)
23a: mi.info is NOT NULL
23a: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
23a: t.production year > 2000
23b: k.keyword in (’nerd’, ’loner’, ’alienation’, ’dig-
nity’)
23b: kt.kind in (’movie’)
23b: mi.info LIKE ’USA:% 200%’
23b: t.production year > 2000
23c: mi.info is NOT NULL
23c: (mi.info LIKE ’USA:% 199%’ OR mi.info
LIKE ’USA:% 200%’)
23c: t.production year > 1990
projections: kt.kind t.title

Q22 join-graph: filters:cn.country code != ’[us]’
kt

t

mi

mk

mi_idx

mc

k

it1

it2

ctcn

it1.info = ’countries’
it2.info = ’rating’
k.keyword in (’murder’, ’murder-in-title’, ’blood’,
’violence’)
kt.kind in (’movie’, ’episode’)
22a: mc.note LIKE ’%(200%)%’
22a: mc.note NOT LIKE ’%(USA)%’
22a: mi.info IN (’Germany’, ’German’, ’USA’,
’American’)
22a: t.production year > 2008
22b: mc.note LIKE ’%(200%)%’
22b: mc.note NOT LIKE ’%(USA)%’
22b: mi.info IN (’Germany’, ’German’, ’USA’,
’American’)
22b: t.production year > 2009
22c: mc.note LIKE ’%(200%)%’
22c: mc.note NOT LIKE ’%(USA)%’
22c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
22c: t.production year > 2005
22d: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
22d: t.production year > 2005
projections: cn.name mi idx.info t.title

Q24 join-graph: filters:ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)

t

mi

mc

ci

mk an

cn

it

nrt chn

k

cn.country code = ’[us]’
it.info = ’release dates’
mi.info is NOT null
(mi.info LIKE ’Japan:%201%’ OR mi.info LIKE
’USA:%201%’)
n.gender = ’f’
n.name LIKE ’%An%’
rt.role = ’actress’
t.production year > 2010
24a: k.keyword in (’hero’, ’martial-arts’, ’hAND-to-
hAND-combat’)
24b: cn.name = ’DreamWorks Animation’
24b: k.keyword in (’hero’, ’martial-arts’, ’hAND-to-
hAND-combat’, ’computer-animated-movie’)
24b: t.title LIKE ’Kung Fu PANDa%’
projections: chn.name n.name t.title

Q25 join-graph: filters:ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)

t

mi

mi_idx

ci

mk

n

it1

it2

k

it1.info = ’genres’
it2.info = ’votes’
25a: k.keyword in (’murder’, ’blood’, ’gore’, ’death’,
’female-nudity’)
25a: mi.info = ’Horror’
25a: n.gender = ’m’
25b: k.keyword in (’murder’, ’blood’, ’gore’, ’death’,
’female-nudity’)
25b: mi.info = ’Horror’
25b: n.gender = ’m’
25b: t.production year > 2010
25b: t.title LIKE ’Vampire%’
25c: k.keyword in (’murder’, ’violence’, ’blood’,
’gore’, ’death’, ’female-nudity’, ’hospital’)
25c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)
25c: n.gender = ’m’
projections: mi.info mi idx.info n.name t.title

Q26 join-graph: filters:cct1.kind = ’cast’
kt

t

mk

ci

cc

mi_idx

chn n

k

cct1 cct2

it

cct2.kind LIKE ’%complete%’
chn.name is NOT NULL
(chn.name LIKE ’%man%’ OR chn.name LIKE
’%Man%’)
it.info = ’rating’
kt.kind = ’movie’
26a: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
26a: t.production year > 2000
26b: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’fight’)
26b: t.production year > 2005
26c: k.keyword in (’superhero’, ’marvel-comics’,
’based-on-comic’, ’tv-special’, ’fight’, ’violence’,
’magnet’, ’web’, ’claw’, ’laser’)
26c: t.production year > 2000

projections: chn.name mi idx.info n.name t.title

Q27 join-graph: filters:cn.country code != ’[pl]’
lt

ml

t

mk

mc

mi

cc

k

ct cn cct1cct2

(cn.name LIKE ’%Film%’ OR cn.name LIKE
’%Warner%’)
ct.kind = ’production companies’
k.keyword = ’sequel’
lt.link LIKE ’%follow%’
mc.note IS NULL
27a: cct1.kind in (’cast’, ’crew’)
27a: cct2.kind = ’complete’
27a: mi.info IN (’Sweden’, ’Germany’,’Swedish’,
’German’)
27a: t.production year BETWEEN 1950 AND 2000
27b: cct1.kind in (’cast’, ’crew’)
27b: cct2.kind = ’complete’
27b: mi.info IN (’Sweden’, ’Germany’,’Swedish’,
’German’)
27b: t.production year = 1998
27c: cct1.kind = ’cast’
27c: cct2.kind LIKE ’complete%’
27c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Denish’, ’Norwegian’, ’Ger-
man’, ’English’)
27c: t.production year BETWEEN 1950 AND 2010
projections: cn.name lt.link t.title

123

Query optimization through the looking glass, and what we found running the Join Order Benchmark 667

Q28 join-graph: filters:cn.country code != ’[us]’
kt

t

mi

mk

mi_idx

mc

cc

k

it1

it2

ctcn

cct1 cct2

it1.info = ’countries’
it2.info = ’rating’
k.keyword in (’murder’, ’murder-in-title’, ’blood’,
’violence’)
kt.kind in (’movie’, ’episode’)
mc.note LIKE ’%(200%)%’
mc.note NOT LIKE ’%(USA)%’
28a: cct1.kind = ’crew’
28a: cct2.kind != ’complete+verified’
28a: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
28a: t.production year > 2000
28b: cct1.kind = ’crew’
28b: cct2.kind != ’complete+verified’
28b: mi.info IN (’Sweden’, ’Germany’, ’Swedish’,
’German’)
28b: t.production year > 2005
28c: cct1.kind = ’cast’
28c: cct2.kind = ’complete’
28c: mi.info IN (’Sweden’, ’Norway’, ’Germany’,
’Denmark’, ’Swedish’, ’Danish’, ’Norwegian’, ’Ger-
man’, ’USA’, ’American’)
28c: t.production year > 2005

projections: cn.name mi idx.info t.title

Q29 join-graph: filters:cct1.kind = ’cast’
t

mi

mc

ci

mk

cc

an pi

cn

it1

nrt chn

it2k

cct1 cct2

cct2.kind = ’complete+verified’
cn.country code = ’[us]’
it1.info = ’release dates’
k.keyword = ’computer-animation’
n.gender = ’f’
n.name LIKE ’%An%’
rt.role = ’actress’
29a: chn.name = ’Queen’
29a: ci.note in (’(voice)’, ’(voice) (uncredited)’,
’(voice: English version)’)
29a: it2.info = ’trivia’
29a: mi.info is NOT null
29a: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
29a: t.production year BETWEEN 2000 AND 2010
29a: t.title = ’Shrek 2’
29b: chn.name = ’Queen’
29b: ci.note in (’(voice)’, ’(voice) (uncredited)’,
’(voice: English version)’)
29b: it2.info = ’height’
29b: mi.info LIKE ’USA:%200%’
29b: t.production year BETWEEN 2000 AND 2005
29b: t.title = ’Shrek 2’
29c: ci.note in (’(voice)’, ’(voice: Japanese version)’,
’(voice) (uncredited)’, ’(voice: English version)’)
29c: it2.info = ’trivia’
29c: mi.info is NOT null
29c: (mi.info LIKE ’Japan:%200%’ OR mi.info
LIKE ’USA:%200%’)
29c: t.production year BETWEEN 2000 AND 2010
projections: chn.name n.name t.title

Q30 join-graph: filters:cct2.kind = ’complete+verified’
t

mi

mi_idx

ci

mk

cc

n

it1

it2

k

cct1 cct2

ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)
it1.info = ’genres’
it2.info = ’votes’
k.keyword in (’murder’, ’violence’, ’blood’, ’gore’,
’death’, ’female-nudity’, ’hospital’)
n.gender = ’m’
30a: cct1.kind in (’cast’, ’crew’)
30a: mi.info in (’Horror’, ’Thriller’)
30a: t.production year > 2000
30b: cct1.kind in (’cast’, ’crew’)
30b: mi.info in (’Horror’, ’Thriller’)
30b: t.production year > 2000
30b: (t.title LIKE ’%Freddy%’ OR t.title LIKE
’%Jason%’ OR t.title LIKE ’Saw%’)
30c: cct1.kind = ’cast’
30c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)

projections: mi.info mi idx.info n.name t.title

Q31 join-graph: filters:ci.note in (’(writer)’, ’(head writer)’, ’(written by)’,
’(story)’, ’(story editor)’)

t

mi

mi_idx

ci

mk

mc

n

it1

it2

k

cn

cn.name LIKE ’Lionsgate%’
it1.info = ’genres’
it2.info = ’votes’
k.keyword in (’murder’, ’violence’, ’blood’, ’gore’,
’death’, ’female-nudity’, ’hospital’)
31a: mi.info in (’Horror’, ’Thriller’)
31a: n.gender = ’m’
31b: mc.note LIKE ’%(Blu-ray)%’
31b: mi.info in (’Horror’, ’Thriller’)
31b: n.gender = ’m’
31b: t.production year > 2000
31b: (t.title LIKE ’%Freddy%’ OR t.title LIKE
’%Jason%’ OR t.title LIKE ’Saw%’)
31c: mi.info in (’Horror’, ’Action’, ’Sci-Fi’,
’Thriller’, ’Crime’, ’War’)

projections: mi.info mi idx.info n.name t.title

Q32 join-graph: filters:(no common filter predicates)

mk

k

t1

ml

t2

lt 32a: k.keyword =’10,000-mile-club’
32b: k.keyword =’character-name-in-title’

projections: lt.link t1.title t2.title

Q33 join-graph: filters:it1.info = ’rating’

lt

ml

mi_idx1

mc1

mi_idx2

mc2

t1 t2

it1

kt1

cn1

it2

kt2

cn2

it2.info = ’rating’
33a: cn1.country code = ’[us]’
33a: kt1.kind in (’tv series’)
33a: kt2.kind in (’tv series’)
33a: lt.link in (’sequel’, ’follows’, ’followed by’)
33a: t2.production year BETWEEN 2005 AND
2008
33b: cn1.country code = ’[nl]’
33b: kt1.kind in (’tv series’)
33b: kt2.kind in (’tv series’)
33b: lt.link LIKE ’%follow%’
33b: t2.production year = 2007
33c: cn1.country code != ’[us]’
33c: kt1.kind in (’tv series’, ’episode’)
33c: kt2.kind in (’tv series’, ’episode’)
33c: lt.link in (’sequel’, ’follows’, ’followed by’)
33c: t2.production year BETWEEN 2000 AND 2010

projections: cn1.name cn2.name mi idx1.info
mi idx2.info t1.title t2.title

References

1. Ahmed, R., Sen, R., Poess, M., Chakkappen, S.: Of snowstorms
and bushy trees. PVLDB 7(13), 1452–1461 (2014)

2. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer:
a principled and practical approach. In: SIGMOD, pp. 119–130
(2005)

3. Bellamkonda, S., Li, H.G., Jagtap, U., Zhu, Y., Liang, V., Cru-
anes, T.: Adaptive and big data scale parallel execution in Oracle.
PVLDB 6(11), 1102–1113 (2013)

4. Boncz, P.A., Neumann, T., Erling, O.: TPC-H analyzed: hidden
messages and lessons learned from an influential benchmark. In:
TPCTC, pp. 61–76 (2013)

5. Borovica-Gajic, R., Idreos, S., Ailamaki, A., Zukowski,M., Fraser,
C.: Smooth scan: statistics-oblivious access paths. In: ICDE, pp.
315–326 (2015)

6. Bruno, N., Galindo-Legaria, C.A., Joshi,M.: Polynomial heuristics
for query optimization. In: ICDE, pp. 589–600 (2010)

7. Chaudhuri, S.: Query optimizers: time to rethink the contract? In:
SIGMOD, pp. 961–968 (2009)

123

668 V. Leis et al.

8. Chaudhuri, S., Narasayya, V.R., Ramamurthy, R.: Exact cardinality
query optimization for optimizer testing. PVLDB 2(1), 994–1005
(2009)

9. Colgan, M.: Oracle adaptive joins. https://blogs.oracle.com/
optimizer/entry/what_s_new_in_12c (2013)

10. Dutt, A., Haritsa, J.R.: Plan bouquets: query processing without
selectivity estimation. In: SIGMOD, pp. 1039–1050 (2014)

11. Estan, C., Naughton, J.F.: End-biased samples for join cardinality
estimation. In: ICDE, p. 20 (2006)

12. Fegaras, L.: A new heuristic for optimizing large queries. In:
DEXA, pp. 726–735 (1998)

13. Fender, P., Moerkotte, G.: Counter strike: generic top-down join
enumeration for hypergraphs. PVLDB 6(14), 1822–1833 (2013)

14. Fender, P., Moerkotte, G., Neumann, T., Leis, V.: Effective and
robust pruning for top-down join enumeration algorithms. In:
ICDE, pp. 414–425 (2012)

15. Fraser, C., Giakoumakis, L., Hamine, V., Moore-Smith, K.F.: Test-
ing cardinality estimationmodels in SQL Server. In: DBtest (2012)

16. Graefe, G.: A generalized join algorithm. In: BTW, pp. 267–286
(2011)

17. Gu, Z., Soliman, M.A., Waas, F.M.: Testing the accuracy of query
optimizers. In: DBTest (2012)

18. Haas, P.J., Naughton, J.F., Seshadri, S., Swami, A.N.: Selectivity
and cost estimation for joins based on random sampling. J. Comput.
Syst. Sci. 52(3), 550–569 (1996)

19. Haritsa, J.R.: The Picasso database query optimizer visualizer.
PVLDB 3(2), 1517–1520 (2010)

20. Ilyas, I.F.,Markl,V.,Haas, P.J., Brown, P.,Aboulnaga,A.: CORDS:
automatic discovery of correlations and soft functional dependen-
cies. In: SIGMOD, pp. 647–658 (2004)

21. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB,
pp. 19–30 (2003)

22. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors
in the size of join results. In: SIGMOD (1991)

23. Kader, R.A., Boncz, P.A., Manegold, S., van Keulen, M.: ROX:
run-time optimization of XQueries. In: SIGMOD, pp. 615–626
(2009)

24. Kaushik, R., Ré, C., Suciu, D.: General database statistics using
entropy maximization. In: DBPL, pp. 84–99 (2009)

25. Kester, M.S., Athanassoulis, M., Idreos, S.: Access path selection
in main-memory optimized data systems: Should I scan or should
I probe? In: SIGMOD (2017)

26. Lang, H., Mühlbauer, T., Funke, F., Boncz, P.A., Neumann, T.,
Kemper, A.: Data blocks: hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In: SIGMOD,
pp. 311–326 (2016)

27. Leis, V., Boncz, P., Kemper, A., Neumann, T.: Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the
many-core age. In: SIGMOD (2014)

28. Leis, V., Gubichev, A., Mirchev, A., Boncz, P.A., Kemper, A., Neu-
mann, T.: How good are query optimizers, really? PVLDB 9(3),
204–215 (2015)

29. Leis, V., Kundhikanjana, K., Kemper, A., Neumann, T.: Efficient
processing ofwindow functions in analytical SQLqueries. PVLDB
8(10), 1058 (2015)

30. Leis, V., Radke, B., Gubichev,A., Kemper, A., Neumann, T.: Cardi-
nality estimation done right: index-based join sampling. In: CIDR
(2017)

31. Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman,
G.M.: Adaptively reordering joins during query execution. In:
ICDE, pp. 26–35 (2007)

32. Liu, F., Blanas, S.: Forecasting the cost of processing multi-join
queries via hashing for main-memory databases. In: SoCC, pp.
153–166 (2015)

33. Lohman, G.: Is query optimization a solved problem? http://wp.
sigmod.org/?p=1075 (2014)

34. Mackert, L.F., Lohman, G.M.: R* optimizer validation and perfor-
mance evaluation for local queries. In: SIGMOD, pp. 84–95 (1986)

35. Markl, V., Megiddo, N., Kutsch, M., Tran, T.M., Haas, P.J., Sri-
vastava, U.: Consistently estimating the selectivity of conjuncts of
predicates. In: VLDB, pp. 373–384 (2005)

36. Moerkotte, G., Neumann, T.: Dynamic programming strikes back.
In: SIGMOD, pp. 539–552 (2008)

37. Moerkotte, G., Neumann, T., Steidl, G.: Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB 2(1),
982–993 (2009)

38. Müller, I., Sanders, P., Lacurie, A., Lehner, W., Färber, F.: Cache-
efficient aggregation: hashing is sorting. In: SIGMOD, pp. 1123–
1136 (2015)

39. Neumann, T.: Query simplification: graceful degradation for join-
order optimization. In: SIGMOD, pp. 403–414 (2009)

40. Neumann, T., Galindo-Legaria, C.A.: Taking the edge off cardi-
nality estimation errors using incremental execution. In: BTW, pp.
73–92 (2013)

41. O’Neil, P.E., O’Neil, E.J., Chen, X., Revilak, S.: The star schema
benchmark and augmented fact table indexing. In: TPCTC, pp.
237–252 (2009)

42. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the
attribute value independence assumption. In: VLDB, pp. 486–495
(1997)

43. Pöss, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-
DS: a workload analysis. In: PVLDB, pp. 1138–1149 (2007)

44. Rusu, F., Dobra, A.: Sketches for size of join estimation. TODS
33(3), 15 (2008)

45. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database manage-
ment system. In: SIGMOD, pp. 23–34 (1979)

46. Steinbrunn,M., Moerkotte, G., Kemper, A.: Heuristic and random-
ized optimization for the join ordering problem. VLDB J. 6(3),
191–208 (1997)

47. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO—DB2’s
learning optimizer. In: VLDB, pp. 19–28 (2001)

48. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical
models for selectivity estimation without independence assump-
tions. PVLDB 4(11), 852–863 (2011)

49. Waas, F., Pellenkoft, A.: Join order selection-good enough is easy.
In: BNCOD, pp. 51–67 (2000)

50. Waas, F.M., Giakoumakis, L., Zhang, S.: Plan space analysis: an
early warning system to detect plan regressions in cost-based opti-
mizers. In: DBTest (2011)

51. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton,
J.F.: Predicting query execution time: are optimizer cost models
really unusable? In: ICDE, pp. 1081–1092 (2013)

52. Wu, W., Naughton, J.F., Singh, H.: Sampling-based query re-
optimization. In: SIGMOD (2016)

53. Yu, F., Hou, W., Luo, C., Che, D., Zhu, M.: CS2: a new database
synopsis for query estimation. In: SIGMOD, pp. 469–480 (2013)

123

https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

	Query optimization through the looking glass, and what we found running the Join Order Benchmark
	Abstract
	1 Introduction
	2 Background and methodology
	2.1 The IMDB data set
	2.2 The JOB queries
	2.3 PostgreSQL
	2.4 Cardinality extraction and injection
	2.5 Experimental setup

	3 Cardinality estimation
	3.1 Estimates for base tables
	3.2 Estimates for joins
	3.3 Estimates for TPC-H
	3.4 Better statistics for PostgreSQL

	4 When do bad cardinality estimates lead to slow queries?
	4.1 The risk of relying on estimates
	4.2 Good plans despite bad cardinalities
	4.3 Complex access paths
	4.4 Join-crossing correlations

	5 Cost models
	5.1 The PostgreSQL cost model
	5.2 Cost and runtime
	5.3 Tuning the cost model for main memory
	5.4 Are complex cost models necessary?

	6 Plan space
	6.1 How important is the join order?
	6.2 Are bushy trees necessary?
	6.3 Are heuristics good enough?

	7 Join ordering by example
	8 Disk-based experiments
	8.1 Query execution engine
	8.2 Adding foreign key indexes
	8.3 Tuning the cost model for disk IO

	9 Related work
	10 Conclusions
	Acknowledgements
	A Appendix: Detailed query descriptions
	References

