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Abstract: SQL allows for very flexible nesting of queries, including subqueries that access attributes
by the outer part of the query. These correlated subqueries simplify query formulation, but their
execution is very inefficient, leading to 𝑂 (𝑛2) runtime complexity. Which can become prohibitively
expensive for large databases.

Query optimizers therefore try to unnest, i.e., decorrelate, dependent queries. Existing decorrelation
techniques, however, are either limited in scope or lead to suboptimal execution plans when correlated
queries are stacked repeatedly inside each other. In this work, we present a generalized unnesting
approach that can handle deep nestings of correlated subqueries and that generalizes to complex query
constructs, including recursive SQL. This generalized unnesting improves the asymptotic complexity,
and thus can lead to dramatic performance improvements in the affected queries.
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1 Introduction

One of the key properties of SQL is that it is a declarative query language, where the user
specifies only the query intent and the database system then finds the best execution strategy
for this query. At least, that is the promise of it being declarative. In reality, this declarative
nature sometimes breaks down when formulating complex queries, in particular when the
queries contain complex subqueries.

SELECT *
FROM customer
WHERE c_mktsegment='AUTOMOBILE' AND

(SELECT COUNT(*)
FROM orders
WHERE o_custkey=c_custkey AND
(SELECT SUM(l_extendedprice)
FROM lineitem
WHERE l_orderkey=o_orderkey)>300000)>5

𝑐𝑛𝑡>5

𝜎c.mkt=AUTOMOBILE

customer c

Γ∅;𝑐𝑛𝑡:count(*)

𝑡>300000

𝜎𝑜.𝑐𝑘=𝑐.𝑐𝑘

orders o

Γ∅;𝑡:sum(𝑙.𝑒𝑝)

𝜎𝑙.𝑜𝑘=𝑜.𝑜𝑘

lineitem l
Fig. 1: Example Query with Nested Correlated Subqueries, the Correlations are Color Coded

Consider the example query in Figure 1. While conceptually simple – it finds customers
from the automobile market that have more than 5 orders with a revenue of more than 300K
– it is very unpleasant for most database systems. The canonical translation of this query
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into relational algebra shown on the right uses a dependent join ( ), where the right-hand
side of the join is evaluated for every tuple of the left-hand side. This nested loop evaluation
is necessary because the right-hand side accesses values provided from the left-hand side,
which would not be possible if we were to use, e.g., a regular hash join. But algorithmically
a dependent join is a very bad idea, the runtime complexity of a join 𝐿 𝑅 is in Θ( |𝐿 | |𝑅 |),
which grows quadratically with the input sizes. And for database engines execution times in
𝑂 (𝑛2) are often prohibitive, as our 𝑛 tends to be in the order of millions. On TPC-H scale
factor 1, this query needs over 25 minutes on PostgreSQL 16, even though it processes just 1
GB of data. Note that it is possible to reformulate the query in a way such that PostgreSQL
can answer it instantly, by decoupling the subqueries, but that makes the query longer and
more difficult to write. And given that SQL aims to be declarative, that transformation
should be done by the DBMS automatically.

Historically, database systems tried to cope with correlated subqueries by recognizing
common patterns in SQL queries and rewriting them to eliminate correlations [Ki82, JK84,
Ki85]. While this allows for an efficient execution of some correlated subquery patterns,
this is not a very satisfying approach, as even small changes to the SQL text can break these
patterns, again resulting in disastrous execution times. A fundamentally different approach
was proposed in our previous work ten years ago [NK15]: It operates on the algebra level,
making it robust against SQL variations, and it is based upon two observations: 1) we can
always rewrite a dependent join into a dependent join where the right-hand side is joined
with the unique correlation values from the left-hand side, and 2) a dependent join where
the left-hand side is duplicate free can be pushed down an algebra tree until the right-hand
side no longer depends on the left-hand side. We will discuss the approach in more detail in
Section 2.

Conceptually, this algorithm allows for eliminating correlations in arbitrary queries, dra-
matically improving the performance of these queries and making it possible to execute
them even for large inputs. It was such a significant improvement that several database
systems now use it for unnesting queries. Both Hyper and DuckDB use it in commercial
offerings, our research system Umbra uses it, and we are aware of several other systems that
have prototype implementations. This more widespread usage exposed some limitations of
the original publication [NK15]: First, there are some advanced SQL constructs that are
not covered by the algorithm, particularly recursive SQL and complex order by and group
by constructs. And second, the algorithm sometimes exhibits pathological behavior when
dependent queries are nested inside each other, similar to what happens in our query in
Figure 1: The unnesting algorithm has to be executed twice – once for each dependent join.
The original algorithm does that bottom-up. But because they are stacked inside one another,
the second unnesting pass increases the costs of the first join, leading to a performance
degradation that becomes worse the deeper the nesting is. See Section 2.3 for a detailed
example.

In this paper, we address both shortcomings. First, we change the algorithm to use a top-
down strategy that takes subsequent dependent joins into account, leading to dramatically



better performance in the case of deep nestings. And second, we cover the remaining SQL
constructs, in particular recursive SQL and ORDER BY LIMIT constructs.

The rest of this paper is structured as follows: We give an overview of the problem statement
and discuss the original algorithm from [NK15] in Section 2. We then develop a new
algorithm that improves the previous approach in Section 3. Complex SQL constructs are
handled in Section 4. An evaluation is included in Section 5. Related work is discussed in
Section 6 and the results are summarized in Section 7.

2 Background

In the following section we will first discuss the problem statement and an algebraic
representation of correlated subqueries. Then we will briefly repeat the unnesting algorithm
from [NK15], and we will show the limitations of that approach.

2.1 Problem Statement

Internally, most database systems represent queries in relational algebra. Which means that
we need an algebraic representation for correlated subqueries. For that purpose, we use the
dependent join, a variant of a regular join. Both are defined below:

𝐿 𝑝𝑅 := {𝑙 ◦ 𝑟 |𝑙 ∈ 𝐿 ∧ 𝑟 ∈ 𝑅 ∧ 𝑝(𝑙 ◦ 𝑟)}
𝐿 𝑝𝑅 := {𝑙 ◦ 𝑟 |𝑙 ∈ 𝐿 ∧ 𝑟 ∈ 𝑅(𝑙) ∧ 𝑝(𝑙 ◦ 𝑟)}

That is, the dependent join makes the left-hand side of the join visible on the right-hand
side. Note that the usage of a dependent join is not optional in the presence of correlation.
If we wrote, e.g., 𝐿 (𝜎𝐿.𝑥<𝑅.𝑦 (𝑅)) we would get a type error, as 𝐿.𝑥 is undefined in
the expression 𝜎𝐿.𝑥<𝑅.𝑦 (𝑅). If we use a dependent join like this 𝐿 (𝜎𝐿.𝑥<𝑅.𝑦 (𝑅)), 𝐿.𝑥
becomes bound and is therefore available. Note that dependent joins exist for all variants of
joins, i.e. left semi join ( ), left outer join ( ) etc. have the corresponding dependent left
semi join ( ), dependent left outer join ( ) etc. In all of these variants the right-hand side is
evaluated for every tuple from the left-hand side.

To simplify this reasoning about available and required attributes we introduce a bit of
notation. If 𝑇 is an expression in relational algebra, A(𝑇) is the set of attributes produced
by that expression. In our example, A(𝑅) would include 𝑅.𝑦. If an attribute is used that
is not provided by its input (or a higher-up dependent join) it becomes a free variable, we
denote that as F (𝑇). In our example, F (𝑅) = ∅ and F (𝜎𝐿.𝑥<𝑅.𝑦 (𝑅)) = {𝐿.𝑥}. Note that
it is not possible to evaluate an algebra expression if F (𝑇) is not empty, all values have to



be bound first. This can be done either by placing a dependent join on top that provides
these attributes or by changing the expression to remove the free variables.

In the canonical translation of SQL into relational algebra, each subquery is added to the
outer query via a dependent join (in the case of scalar subqueries via a dependent single
join [NLK17]). This makes the attributes of the outer query available to the inner query.
However, this comes at a high cost, the quadratic runtime of dependent joins. Thus, the
problem of query unnesting can be formulated as follows:

Problem Statement: Given a query in relational algebra, including dependent joins. Rewrite
the query into an equivalent algebra expression that does not use dependent joins.

Note that we can trivially replace a dependent join with a regular join if the right-hand side
does not depend on the left-hand side:

𝐿 𝑅 ≡ 𝐿 𝑅 if A(𝐿) ∩ F (𝑅) = ∅

We usually assume that all dependent joins are non-trivial. Next, we will discuss a bottom-up
strategy that eliminates all remaining dependent joins.

2.2 Bottom-Up Unnesting

The paper [NK15] introduces an algorithm that does a bottom-up traversal of the algebra
tree and eliminates all dependent joins that it encounters. It uses two strategies for that:
First, some dependent joins just exist because of syntax constraints of SQL. For example,
this query here

SELECT *
FROM R
WHERE EXISTS(SELECT *

FROM S
WHERE R.x=S.y)

𝑡𝑟𝑢𝑒

R 𝜎𝑅.𝑥=𝑆.𝑦

S

gets translated into a dependent semi join, but it is easy to see that we can pull up the filter
condition into the semi join like this: 𝑅 𝑅.𝑥=𝑆.𝑦𝑆, eliminating the dependency. The paper
calls that simple unnesting and always tries it first.

If that is not sufficient to eliminate the dependent join, the approach uses the second strategy,
which is more complex but can handle arbitrary queries. It is based on two observations:
First, for correlated subqueries it is not really necessary to evaluate the inner query for every
tuple of the outer query; it is sufficient to evaluate it once for every possible binding of the
free variables. We can compute the domain of the free variables 𝐷 and use that to drive the
dependent join:



𝐿 𝑅 ≡ 𝐿 natural 𝐷 (𝐷 𝑅) where
𝐷 := ΠA(𝐿)∩F(𝑅) (𝐿)

The notation natural 𝐷 here means that we perform a natural join on the attributes of 𝐷,
which occur on both sides of the join. That join is performed with IS semantics, i.e., NULL
is considered a dedicated value, and two NULLs compare as equal.

Rewriting the original dependent join into a regular join and a dependent join with the
binding domain 𝐷 has two advantages: First, we know that |𝐷 | ≤ |𝐿 |, which means that our
query has potentially become cheaper because we execute the inner query less often. Even
more importantly, 𝐷 is duplicate free, which allows for push down rewrites that do not hold
for arbitrary tables. The paper then lists a number of rules to push down the dependent join.
Here are the most important ones:

𝐷 (𝜎𝑝 (𝑇)) → 𝜎𝑝 (𝐷 𝑇)
𝐷 (𝑇1 𝑝𝑇2) → (𝐷 𝑇1) 𝑝𝑇2 if F (𝑇2) ∩ A(𝐷) = ∅
𝐷 (𝑇1 𝑝𝑇2) → 𝑇1 𝑝 (𝐷 𝑇2) otherwise if F (𝑇1) ∩ A(𝐷) = ∅
𝐷 (𝑇1 𝑝𝑇2) → (𝐷 𝑇1) 𝑝∧natural𝐷 (𝐷 𝑇2) otherwise
𝐷 (𝑇1 𝑝𝑇2) → (𝐷 𝑇1) 𝑝∧natural𝐷 (𝐷 𝑇2)

𝐷 (Γ𝐴;𝑎𝑔𝑔 (𝑇)) → Γ𝐴∪A(𝐷);𝑎𝑔𝑔 (𝐷 𝑇)

This process is repeated until the dependent join becomes trivial and can be replaced with a
regular join. This must always happen because the dependent join is pushed down further
with each transformation and the leaves of the algebra tree have no free variables.

As a final step, the query optimizer can decide if it wants to remove the dependent join with
𝐷: If all attributes of 𝐷 are bound in equality conditions, e.g., if 𝐷 consists of the column
𝑥 and the query contains the filter condition 𝑥 = 𝑦, the join with 𝐷 can be removed and
replaced with 𝜒𝑥:𝑦 instead, such that the column 𝑥 is computed by the value 𝑦. This works
because 𝐷 was duplicate free, thus we know that the dependent join will find at most one
join partner, and because our original dependent join was transformed into natural D, and
thus the join condition will be enforced at that point of the plan. Conceptually this results in
the most elegant plans, as now 𝐷 is completely gone and the resulting algebra expression
looks like any regular query, but performance-wise it might be a bad idea to do so. If the join
with 𝐷 was selective it might be better to keep the join with 𝐷, as it removes tuples earlier.

But regardless of whether or not the query optimizer decides to perform the final trans-
formation step, the result will be a completely unnested plan without any dependent joins.
While that sounds perfect, we will discuss limitations of that approach next.



2.3 Limitations of the Bottom-Up Approach

While the bottom-up approach handles most queries just fine, it unfortunately degenerates
in some corner cases. We were originally notified about this by Sam Arch, who translated
complex UDFs into pure SQL [Fr24]. There, similar to our original example in Figure 1, it
could happen that dependent subqueries are nested inside each other. We show a variation2

below.

𝑐𝑛𝑡>5

𝜎 𝑓 = 123

𝑇1

Γ∅;𝑐𝑛𝑡:...

𝑡>...

𝜎𝑇2.𝑎=𝑇1.𝑎

𝑇2

Γ∅;𝑡:...

𝜎𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇3

The unnesting algorithm will first unnest the lower dependent join, resulting in the following
plan:

𝑐𝑛𝑡>5

𝜎 𝑓 = 123

𝑇1

Γ∅;𝑐𝑛𝑡:...

𝑡>...∧ natural {𝑇2.𝑏}

𝜎𝑇2.𝑎=𝑇1.𝑎

𝑇2

Γ{𝑇2.𝑏};𝑡:...

𝜎𝑇3.𝑎=𝑇1.𝑎

𝑇3.𝑏=𝑇2.𝑏

Π𝑇2.𝑏 𝑇3

The optimizer would probably decide to keep the computation of Π𝑇2.𝑏 (𝜎𝑇2.𝑎=𝑇1.𝑎 (𝑇2)) –
instead of using substitution – because the filter condition 𝑇2.𝑎 = 𝑇1.𝑎 would be selective.
2 Note that we added a new correlation condition, 𝑇3.𝑎 = 𝑇1.𝑎, to trigger the problem in a small example.



But if we now run the algorithm again, to eliminate the topmost dependent join, we
conceptually evaluate the right-hand side of the lower join for the full cross product of the
domains of 𝑇1.𝑎 and 𝑇2.𝑏, and not for the domain of the join of these two tables:

𝑐𝑛𝑡>5∧ natural {𝑇1.𝑎}

𝜎 𝑓 = 123

𝑇1

Γ{𝑇1.𝑎};𝑐𝑛𝑡:...

𝑡>...∧ natural {𝑇1.𝑎,𝑇2.𝑏}

𝑇2.𝑎=𝑇1.𝑎

Π𝑇1.𝑎 𝑇2

Γ{𝑇1.𝑎,𝑇2.𝑏};𝑡:...

𝑇3.𝑎=𝑇1.𝑎

Π𝑇1.𝑎 𝑇3.𝑏=𝑇2.𝑏

Π𝑇2.𝑏 𝑇3

Note that the result is still correct, because the join condition of 𝑡>...∧ natural {𝑇1.𝑎,𝑇2.𝑏}
eliminates all 𝑇1.𝑎 values from the cross product that do not satisfy the join condition of

𝑇2.𝑎=𝑇1.𝑎, but the group by operator processes far too many values.

This problem becomes worse and worse the deeper the nesting is. Sam Arch had sent us a
query – tellingly called crash.sql – that contained six nested joins and where the unnesting
strategy created large intermediate cross products which would all then vanish after filtering
of subsequent operators, but which consumed memory and CPU time regardless. This
motivated us to develop a holistic unnesting strategy that considered all dependent joins
simultaneously, thus avoiding the unnecessary cross products. We will discuss that new
algorithm next.

3 Holistic Query Unnesting

In this section, we introduce a holistic unnesting algorithm that processes nested dependent
joins together in one pass. It can be seen as a top-down variant of [NK15], as it uses the
same idea of pushing down the domain 𝐷 of the free variable bindings. But we formulate
it differently: instead of explicitly pushing down 𝐷 through the tree, the algorithm



remembers which 𝐷 would have to be added, and rewrites all operators in a top-down pass
until 𝐷 becomes unnecessary or can be added safely.

We split the algorithm into three parts: First, a preparatory phase that identifies all non-trivial
dependent joins and annotates them with information that the main algorithm needs. Second,
the logic to eliminate dependent joins, which will be called for all non-trivial dependent
joins in top-to-bottom order and which is the main algorithm, and third, the unnesting rules
for individual operators. Note that we do not include a formalization of this approach due to
space constraints, formal definitions and a proof of correctness can be found in a technical
report [Ne24].

3.1 Identifying Non-Trivial Dependent Joins

First, we have to identify all non-trivial dependent joins, i.e., dependent joins where the
right-hand side accesses attributes provided by the left hand side. The easiest way to achieve
this is to use an indexed algebra [FMN23], where we can query the structure of the algebra
expressions. If this functionality is available, we consider every column access and compute
the lowest common ancestor (LCA) of the operator ◦1 that accesses the column and the
operator ◦2 that provides the column. If the LCA is not ◦1, it must be a dependent join 3 and
we annotate 3 with the fact that ◦1 is accessing the left-hand side of 3. The annotations
for the example query from the previous section are shown in Figure 2. Dependent joins
that have no accessing operators are trivial and can simply be converted into regular joins.

1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡 :...

5
𝑡>...

𝜎6
𝑇2 .𝑎=𝑇1 .𝑎

𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3 .𝑏=𝑇2 .𝑏∧
𝑇3 .𝑎=𝑇1 .𝑎

𝑇10
3

accessing( 1) := {𝜎6, 𝜎9}
accessing( 5) := {𝜎9}

Fig. 2: Annotations For Our Example Query

Using an indexed algebra is ideal for this phase because it can do every LCA computation
in 𝑂 (log 𝑛) without any additional data structures. If the DBMS does not support that
functionality, the same information can be computed with worse asymptotic complexity by
keeping track of the column sets that are available in the different parts of the tree.



3.2 Eliminating Dependent Joins

After identifying all non-trivial dependent joins, we process them in a top-to-bottom order,
eliminating each of them. If a dependent join is nested within another dependent join, it
will usually be eliminated while the ancestor join is eliminated. That is not always the case
because, as we will see below, eliminating the ancestor join might stop before reaching the
descendant join. But we never push different 𝐷 sets across dependent joins, thus eliminating
the problem discussed in Section 2.3.

1 fun simpleDJoinElimination(join):
2 for op in accessing(join):
3 if path from op to join is linear:
4 if op is a selection and can merge op into join:
5 merge op into join
6 remove op from accessing(join)
7 else if op is a map and can move op above join:
8 move op above join
9 remove op from accessing(join)

10 if accessing(join) is empty:
11 convert join into regular join
12 return whether or not we converted the join

Fig. 3: Simple Dependent Joins Elimination Join

In our running example, we would start with 1 then first try a simple dependent join
elimination. This is a generalization of the simple unnesting from [NK15] and shown in
Figure 3: We inspect all operators op that are accessing the left-hand side of the the join,
and we check if the path from that operator to the join consists of only linear operators
(i.e., operators that allow for partitioning their input, see [G.20]). That can be checked in
𝑂 (log 𝑛) with an indexed algebra, or with a linear traversal from op to join otherwise. If yes,
we can move op up towards the join. If op is a selection, we do that if permitted, merging the
selection with the join and thus eliminating the accessing operator. For maps (sometimes
also called projections), we cannot simply drop the map, but we can check if we could move
the map above the join. If that is possible, we do that, again eliminating the operator from
the list of accessing operators. If afterwards no accessing operator is left, we can simply
convert the dependent join into a regular join. That step would be sufficient for the EXISTS

query from Section 2.2, but in our running example none of the dependent joins can be
eliminated like that.

1 struct UnnestingInfo:
2 join : join operator of the form 𝐿 𝑅
3 outerRefs : A(𝐿) ∩ F(𝑅)
4 D : domain computation, ΠouterRefs (𝐿)
5 parent : parent Unnesting struct (if any)
6 struct Unnesting:
7 info : the UnnestingInfo shared between Unnesting states
8 cclasses : union find data structure of equivalent columns
9 repr : mapping from outerRefs columns to new colunns (if any)

Fig. 4: State Maintained During Unnesting



If simple unnesting is not sufficient, the full unnesting algorithm is started. It has to rewrite
the right-hand side of the dependent join such that no references from the outer side occur
anymore. To do that it maintains some state, as shown in Figure 4. The state is split into the
part that remains the same the whole time (UnnestingInfo) and the part that changes in the
different parts of the query (Unnesting). In the global part, it stores the join itself and the
set of outer references. That is, the columns from the left that are accessed from the right,
and the corresponding domain computation D. The parent entry allows for recognizing
nested dependent joins within the algorithm. In the query fragment local part, it maintains a
union-find data structure cclasses to keep track of equivalent columns. We use that for
transitive reasoning. If the query has predicates of the form 𝑎 = 𝑏 and 𝑏 = 𝑐, and we have an
outer reference to 𝑐, we could substitute that with 𝑎 if 𝑎 is available. If we have substituted
an outer reference with something else we store that in repr, which allows us to look up the
new name of an outer reference.

The algorithm will substitute outer references with other columns, thus it is convenient
to have a helper function that rewrites all column references that occur in an operator, as
shown below, that will be called after the suitable replacements have been found:

1 fun rewriteColumns(op, unnesting):
2 for each column reference c in op:
3 if unnesting.repr contains c:
4 replace c with unnesting.repr[c]

Fig. 5: Helper Function To Rewrite References to Outer Columns

With that infrastructure we can now describe the real elimination algorithm. It will be
called for each dependent join, ordered from root to bottom, and can optionally be passed a
parent Unnesting structure if we encounter another dependent join during our unnesting (see
Section 3.3). It will first check if simple unnesting is sufficient. If yes it will stop, otherwise,
it will unnest the left-hand side in the case of nested dependent joins. Then, it creates a
new Unnesting structure, merges it with the parent unnesting if needed, and unnests the
right-hand side. The pseudo code for that step is shown in Figure 6.

We will illustrate that algorithm with one full unnesting run next. For our running example,
the algorithm starts with 1, and then initializes the state as follows:



1 fun dJoinElimination(join, parentUnnesting, parentAccessing):
2 // Check if simple unnesting is sufficient
3 if simpleDJoinElimination(join):
4 // Handle the outer unnesting if needed
5 if parentUnnesting is set:
6 for each map m moved by simpleDJoinElimination:
7 rewriteColumns(m, parentUnnesting)
8 unnest(join, parentUnnesting, parentAccessing)
9 return

11 // In the nested case we have to unnest the left-hand side first
12 if parentUnnesting is set:
13 accLeft = ∅
14 for a in parentAccessing:
15 if a is contained in join.left:
16 insert a into accLeft
17 unnest(join.left, parentUnnesting, accLeft)
18 // Update our condition as needed
19 rewriteColumns(join.condition.parentUnnestring)
20 for each map m moved by simpleDJoinElimination:
21 rewriteColumns(m, parentUnnesting)

23 // Create a new unnesting struct
24 info = new UnnestingInfo for join, set parent=parentUnnesting
25 unnest = new Unnesting for info

27 // Merge with parent unnesting if needed
28 acc = accessing(join)
29 if parentUnnesting is set:
30 for each a in parentAccessing:
31 if a is contained in join.right:
32 insert a into acc

34 // Unnest right-hand side
35 add equivalences from join.condition to unnest.cclasses
36 unnest(join.right, info, acc)

38 for each c in info.outerRefs:
39 add "{c}␣is␣not␣distinct␣from␣{info.repr[c]}" to join.condition

Fig. 6: The General Case of Dependent Join Elimination



1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡:...

5
𝑡>...

𝜎6
𝑇2.𝑎=𝑇1.𝑎

𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇10
3

outerRef:={𝑇1.𝑎}
cclasses:=∅
repr:=∅

next: unnest(Γ4, {𝜎6, 𝜎9})

We will cover the exact rules for the unnest subroutines in Section 3.3, but intuitively we
unnest the group by Γ4 by recursively unnesting its input and then later adding the outer
column references to the group by. Performing those steps leads to the following state:

1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡:...

5
𝑡>...

𝜎6
𝑇2.𝑎=𝑇1.𝑎

𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇10
3

outerRef:={𝑇1.𝑎}
cclasses:=∅
repr:=∅

stack: [Γ4]
next: unnest( 5, {𝜎6, 𝜎9})

We encounter another dependent join, one where simple elimination is not sufficient. We
will merge the unnesting state with the outer dependent join later; for now, we unnest the
left input:



1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡:...

5
𝑡>...

𝜎6
𝑇2.𝑎=𝑇1.𝑎

𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇10
3

outerRef:={𝑇1.𝑎}
cclasses:={{𝑇1.𝑎, 𝑇2.𝑎}}
repr:=∅

stack: [Γ4, 5]
next: unnest(𝜎6, {𝜎6})

When unnesting the select, we add the equivalence condition implied by the select to the
cclasses data structure, remove the select from the accessing list (the second function
argument of unnest), and recurse to the input:

1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡:...

5
𝑡>...

𝜎6
𝑇2.𝑎=𝑇1.𝑎

𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇10
3

outerRef:={𝑇1.𝑎}
cclasses:={{𝑇1.𝑎, 𝑇2.𝑎}}
repr:=∅

stack: [Γ4, 5, 𝜎6]
next: unnest(𝑇7

2 , {})

At this point the accessing list is empty and we have two choices: either we introduce a
join with 𝐷 := Π𝑎:=𝑇1.𝑎 (𝜎 𝑓=123 (𝑇1)) and use that to substitute 𝑇1.𝑎; or we exploit the fact
that all outer column references are bound in cclasses and we simply replace 𝑇1.𝑎 with
the equivalent 𝑇2.𝑎. The optimal choice depends on the selectivity of 𝜎2. For now we will
simply assume that 𝜎2 is selective, and thus we introduce a join. Then we pop up the stack
until we reach 5 again, rewriting columns along the way. Note that in this case, the rewrite
does nothing because we decided to not substitute 𝑇1.𝑎 with 𝑇2.𝑎. Our next unnest call is
for Γ8:



1
𝑐𝑛𝑡>5

𝜎2
𝑓 = 123

𝑇3
1

Γ4
∅;𝑐𝑛𝑡:...

5
𝑡>...

𝜎6
𝑇2.𝑎=𝑇1.𝑎

Π𝑎′:=𝑇1.𝑎 𝑇7
2

Γ8
∅;𝑡:...

𝜎9
𝑇3.𝑏=𝑇2.𝑏∧
𝑇3.𝑎=𝑇1.𝑎

𝑇10
3

outerRef:={𝑇1.𝑎, 𝑇2.𝑏}
cclasses:=∅
repr:=∅

stack: [Γ4, 5]
next: unnest(Γ8, {𝜎9})

The other side is processed analogously, we recurse below the group by; then below the
select; remove that 𝜎9 from the accessing list; and add its constraints to the equivalence
classes. Then again we have to decide if we want to add a join or use substitution. To show
both cases, we now assume that the optimizer decides to use substitution (even though that
is unlikely for this query). Then, we add 𝑇1.𝑎 → 𝑇3.𝑎, 𝑇2.𝑏 → 𝑇3.𝑏 to repr and rewrite all
columns on the way up. This gives us the following unnested plan:

1
𝑐𝑛𝑡>5∧𝑇1.𝑎=𝑇3.𝑎

𝜎2
𝑓 = 123

𝑇3
1

Γ4
{𝑇3.𝑎};𝑐𝑛𝑡:...

5
𝑡>...∧𝑇1.𝑎=𝑇3.𝑎∧𝑇2.𝑏=𝑇3.𝑏

𝜎6
𝑇2.𝑎=𝑇1.𝑎

Π𝑎′:=𝑇1.𝑎 𝑇7
2

Γ8
{𝑇3.𝑎,𝑇3.𝑏};𝑡:...

𝜎9
𝑇3.𝑏=𝑇3.𝑏∧
𝑇3.𝑎=𝑇3.𝑎

𝑇10
3



3.3 Unnesting Rules

We now briefly discuss the unnesting rules for individual operators. These are analogous to
the push down rules from [NK15], thus we only give an overview over the most important
rules due to space constraints. All operators share the common logic that 1) if we call
unnest(◦, info, accessing) and accessing is empty, unnesting stops, and we either
replace ◦ with info.D ◦ or we substitute all outer references with equivalent columns from
info.cclasses, and 2) when recursing to an input of an operator ◦, ◦ is removed from the
accessing list if needed. We do not list that code explicitly.

For selections, the unnesting logic registers the filter conditions and rewrites all columns on
the way back:

1 fun unnest(select, info, accessing):
2 add equivalences from select.predicate to info.cclasses
3 unnest(select.input, info, accessing)
4 rewriteColumns(select.condition, info)

Similar for maps, where we only have to rename columns after unnesting the input:
1 fun unnest(map, info, accessing):
2 unnest(map.input, info, accessing)
3 rewriteColumns(map.computations, info)

The group by operator unnests its input and adds the outer references to the group by
attributes. Note that there is a special case where the group by is static (i.e., a select
clause with aggregation functions but without group by). In that case, we must produce a
non-empty output for an empty input, and we provide that with an outer join (or a group
join [MN11] if supported by the system):

1 fun unnest(groupby, info, accessing):
2 static = groupby.groups is empty or groups.groupingsets contains ∅
3 unnest(groupby.input, info, accessing)
4 rewriteColumns(groupby, info)
5 for c in info.outerRefs:
6 add info.repr[c] to groupby.groups
7 if static:
8 replace groupby with info.D groupy, joining on mapped info.outerRefs

Window operators are conceptually handled similar to group by. We have to add the outer
references to the partition by clause in order to compute the window functions separately
for each binding:

1 fun unnest(window, info, accessing):
2 unnest(window.input, info, accessing)
3 rewriteColumns(window, info)
4 for c in info.outerRefs:
5 add info.repr[c] to window.partitionby

For joins, we check if we have encountered another dependent join, merging both removals
if needed. Otherwise, we check if all dependent accesses occur only on one side. If yes,



and if the join type does not have to keep track of the number of join partners, we can
simply recurse, like a selection. If not, we unnest both sides and update the join condition as
needed:

1 fun unnest(join, info, accessing):
2 split accessing into accessingLeft and accessingRight for input of join

4 // Check if we have encounter another dependent join
5 if accessing(join) is not empty:
6 dJoinElimination(join, info, accessing)
7 return

9 // Check if only one side accesses outer columns
10 if accessingRight is empty and info.join cannot output unmatched from the right:
11 unnest(join.left, info, accessingLeft)
12 rewriteColumns(join.condition, info)
13 return
14 if accessingLeft is empty and info.join cannot output unmatched from the left:
15 unnest(join.right, info, accessingRight)
16 rewriteColumns(join.condition, info)
17 return

19 // Unnest both sides
20 unnestingLeft = new Unnesting(info.info)
21 unnestingRight = new Unnesting(info.info)
22 unnest(join.left, unnestLeft, accessingLeft)
23 unnest(join.right, unnestRight, accessingRight)
24 rewriteColumnsForJoin(join.condition, unnestingLeft, unnestingRight)
25 for c in info.outerRefs:
26 add "{unnestLeft.repr[c]}␣is␣not␣distinct␣from␣{unnestRight.repr[c]}" to join.condition
27 merge cclasses and repr from unnestLeft and unnestRight into info

Note that a different logic for rewriting columns is needed for joins, as we have to take
the join type into account to decide which side of the join to use for the replacement.
A left outer join, which outputs unmatched rows from the left, would use the left side
for the replacement, while a right outer join would use the right side. A full outer join
must determine the used side per row, by replacing the columns with expressions such as
COALESCE(unnestLeft.repr[c], unnestRight.repr[c]).

4 Handling Complex SQL Constructs

While the push down rules from [NK15] and Section 3.3 are sufficient for most queries, there
are some complex SQL constructs that are not obvious to unnest, in particular, correlated
subqueries in full join conditions, WITH RECURSIVE, common-table expressions (CTEs), and
ORDER BY ... LIMIT. Most systems cannot unnest these constructs, and there has only been
little research on how to unnest recursion [FGL24]. We will look at these constructs next.

4.1 Unnesting Correlated Subqueries in Full Join Conditions

The SQL standard allows join conditions to access columns from both sides of the join.
The SQL standard also allows subqueries in arbitrary expressions. Thus, it is possible



to write a query where the join condition contains a subquery that references attributes
from the left and the right side of the join. If the join is a inner or left outer join, that
subquery can be cross applied to the right input of the join, and the query can be unnested
normally. Right outer joins can be handled by flipping the sides. However, full outer joins
are more complicated. The semantics of correlated full outer joins are not well-defined, as
the definition for “unmatched tuples” is not clear in the presence of dynamic inputs. Thus,
we can not just generate a cross apply for the subquery and unnest the query normally. We
instead use the following equivalence

𝑅 𝑝 (𝑇 )𝑆 ≡ 𝑅 𝑚∧(𝑅.𝑥 is 𝐷𝑅 .𝑥 )
(
𝑆 𝑚∧(𝑆.𝑦 is 𝐷𝑆 .𝑦)

(
𝜒𝑚:𝑝′ ((𝐷𝑅 𝐷𝑆) 𝑇)

) )
where 𝑇 is a singleton subquery from within the join condition, 𝑝 is the join condition that
references the results of the subquery, 𝐷𝑅 and 𝐷𝑆 are the domains of 𝑅 and 𝑆 projected
to the free variables of 𝑝 and 𝑇 (denoted as 𝑥 and 𝑦, respectively), and 𝑝′ is 𝑝 remapped
to use columns from 𝐷𝑅 and 𝐷𝑆 instead of 𝑅 and 𝑆. We will attempt to break down
the equivalent tree bottom-up. Firstly, the subquery

(
𝜒𝑚:𝑝 ((𝐷𝑅 𝐷𝑆) 𝑇)

)
computes the

predicate for every possible binding of the outer references. Secondly, the left outer join
with 𝑆 on the result of the predicate (via 𝑚) ensures that the unmatched tuples from 𝑆 are
only produced once in total, while the matching tuples are produced for every binding of
the outer references from 𝑅. Finally, the full outer join with 𝑅 on the result of the predicate
(via 𝑚) provides the final result. Note that the inner subquery (𝐷𝑅 𝐷𝑆) 𝑇 needs to be
further unnested.

Instead of generating the subquery (𝐷𝑅 𝐷𝑆) 𝑇 and unnesting it from scratch, we directly
call unnest on the subquery 𝑇 to accomplish the same effect. In this case, we use a slightly
modified UnnestingInfo structure which ensures the domain D represents a cross product
of 𝐷𝑅 and 𝐷𝑆 and that the conditions of both joins are amended by the corresponding is

not distinct from predicates.

4.2 Unnesting WITH RECURSIVE

We assume that a WITH RECURSIVE construct is translated into an iterate operator [Pa17] and a
corresponding iteratescan (DuckDB calls these recursive_cte amd recursive_cte_scan),
where the left hand side of the iterate computes the base table and the right hand side is
evaluated until empty, reading the last iteration in iteratescan:

WITH RECURSIVE REC(x) AS (
SELECT x FROM R
UNION ALL
SELECT x+1 from REC WHERE x<5)

SELECT x FROM REC

iterate𝑥′′:=(𝑅.𝑥,𝑛)

R 𝜒𝑛:=𝑥′+1

𝜎𝑥′<5

iteratescan𝑥′:=𝑅.𝑥



When unnesting this construct, we want to conceptually evaluate the iteration for every
possible binding of the outer references. We achieve this by adding the outer references
to the columns of the recursive CTE. But now we must make sure that the repeated part
is conceptually partitioned by the outer references, too. Thus, we add all iterationscan
operators of the current iteration to the accessing list. This makes sure that the unnesting
phase reaches these operators, adds the outer references to the scans, too, and rewrites all
intermediate operators along the way to take the outer references into account:

1 fun unnest(iteration, info, accessing):
2 // Mark iteration scans as accessing
3 split accessing into accessingLeft and accessingRight for input of iteration
4 for s in iterationscans of iteration:
5 add s to accessingRight

7 // Unnest the seed side first to make the new columns available
8 unnestingLeft = new Unnesting(info.info)
9 unnest(iteration.left, unnestLeft, accessingLeft)

10 rewriteColumns(iteration.leftColumns, unnestingLeft)
11 for c in info.outerRefs:
12 add unnestLeft.repr[c] to iteration.leftColumns
13 info.repr[c]=unnestLeft.repr[c]

15 // Unnest the iteration side and add the corresponding columns
16 unnestingRight = new Unnesting(info.info)
17 unnest(iteration.right, unnestRight, accessingRight)
18 for c in info.outerRefs:
19 add unnestRight.repr[c] to iteration.rightColumns

21 fun unnest(iterationscan, info, accessing):
22 // Add the new columns to the scan
23 i = iteration operator for iterationscan
24 for c in info.outerRefs:
25 cb = corresponding column for c in i.leftInput
26 add cn:=cb as produced column to iterationscan
27 info.repr[c]=cn

4.3 Unnesting CTEs

Another complication arises if the algebraic expression is not actually a tree, but a DAG,
which can occur in CTEs. Consider the query example below:

SELECT *
FROM S
WHERE (WITH CTE AS

(SELECT * FROM T
WHERE T.y<S.x)

SELECT COUNT(*)
FROM CTE c1 JOIN CTE c2

ON c1.y=c2.y) = 1

1

T2 Γ3
∅;𝑐:COUNT(*)

4
𝑐1.𝑦=𝑐2.𝑦

𝜌5
𝑐1:=𝑆

𝜎6
𝑆.𝑦<𝑇.𝑥

S7

𝜌8
𝑐2:=𝑆



In this example we can ignore the fact that 1 has to check for duplicates because Γ3 is
duplicate free. When executing the algorithm from Section 3.1, 𝜎6 is placed in the accessing
list of 1. But this causes problems when unnesting 4, since we can no longer split that
accessing list into left and right, because 𝜎6 is reachable over both paths. Furthermore, we
would try to unnest the shared part twice, which is also bad because it would add domain
scans multiple times.

A better strategy is to cut the DAG into a set of trees such that shared operators form
their own subtrees. Here, 𝜎6 would be the root of a new tree, and 𝜌5 and 𝜌8 would be
leaf operations. When collecting accessing operators, we check if they occur in the same
tree. If yes, we add them as described before; if not, we instead consider all shared reads
as accessing and repeat the procedure. Additionally, one of the shared reads, e.g., the one
with the smallest id, is designated to trigger unnesting the shared operator when unnesting
reaches it. In this example, this means that accessing( 1) = {𝜌5, 𝜌8}, with 𝜌5 forwarding
the unnesting pass to 𝜎6. The end result is the algebra expression shown below:

SELECT *
FROM S
WHERE (WITH CTE AS

(SELECT * FROM T
WHERE T.y<S.x)

SELECT COUNT(*)
FROM CTE c1 JOIN CTE c2

ON c1.y=c2.y) = 1

1
𝑇.𝑥=𝑥1

T2

Γ3
{𝑥1};𝑐:COUNT(*)

4
𝑐1.𝑦=𝑐2.𝑦∧𝑥1=𝑥2

𝜌5
𝑐1:=𝑆,
𝑥1:=𝑇.𝑥

𝜎6
𝑆.𝑦<𝑇.𝑥

Π9
𝑥 S7

𝜌8
𝑐2:=𝑆,
𝑥2:=𝑇.𝑥

4.4 Unnesting ORDER BY LIMIT

Subqueries with ORDER BY and LIMIT or OFFSET have to be changed during unnesting because
now the limit has to be enforced per value of the outer bindings instead of globally. In the
Umbra system, the sort operator offers that functionality natively, which makes unnesting
simple, but other systems will want to rewrite a (sub-)query like this

SELECT *
FROM S
ORDER BY x LIMIT l OFFSET o

into the equivalent window query:



SELECT *
FROM (SELECT *, ROW_NUMBER() OVER (ORDER BY x) AS RN FROM S) S
WHERE RN BETWEEN o+1 AND l+o

Now unnesting becomes straightforward; we simply have to add the outer references as
PARTITION BY entries to the OVER clause.

5 Evaluation

Query unnesting improves the asymptotic complexity of query execution by eliminating
the quadratic runtime overhead of dependent joins. Therefore, we can easily demonstrate
arbitrary performance gains by simply increasing the dataset size. This makes performance
experiments a bit pointless, as the impact is so huge. To illustrate this point, consider the
example query from Figure 1. This query needs over 26 minutes on TPC-H SF1 when
executed in Postgres 16 on a Ryzen 9 7950X3D with 128GB RAM. After applying our
algorithm, Postgres can execute the query in 1.3s, a speed-up of more than 1000x.

We observe a similar effect when comparing the unnesting algorithm from [NK15] with
our new top-down formulation. As a demonstration query, we use the query from Figure 1
and add c_comment=l_comment to the last WHERE clause, which brings it into a similar shape
as the problematic case from Section 2.3. When executing the query in the Umbra system
when using the old unnesting logic, the query is terminated after exhausting 120 GB of main
memory. Using the new top-down formulation it finishes in 33ms on the same machine.
Again this is a speed-up of several orders of magnitude at least, when comparing the time
until the original unnested plan was cancelled.

Similarly, for the original query from Sam Arch that motivated this work, which is procbench
UDF Query 18 [GR21] after passing through Apfel [FHG22]: The unnesting strategy from
[NK15] leads to memory exhaustion, while with our new top-down unnesting Umbra
answers the query in 251ms on TPC-DS SF1.

6 Related Work

The first unnesting rules were given as transformations of the SQL representation [Ki82,
JK84], which were easy to understand and were integrated into several commercial database
systems. Famously, the original rules proposed by Kim contained the count bug, which
led to wrong results for empty inputs. This was corrected by Kiessling [Ki85]. However,
fundamentally these rules all suffer from the fact that they can address specific patterns
of queries but fail to cover all cases. There has been a lot of follow-up work on adding
new rules to cover even more cases, but none of them were complete. The magic set based
technique from IBM [Se96] can be used to tackle the runtime aspect of dependent joins by
introducing semi joins with the domain of the outer bindings, conceptually similar to the



join with 𝐷 in our approach. While this helps to speed up query processing, that paper does
not provide a mechanism to fully eliminate dependent joins. A later generalization allowed
for the elimination of dependent joins if the subquery contains an aggregation function
[Zu03]. The first approach to provide a complete solution was [NK15], which we already
discussed in Section 2 and upon which this work builds. However, while that approach is
conceptually complete, it does not describe all SQL constructs, and it runs into problems if
dependent joins are nested. We address both limitations in this work.

The need for automatic unnesting has increased in recent years because an increasing
number of queries are machine-generated and some of these generators produce correlated
subqueries. A recent example is the Apfel transpiler [FHG22] that can translate stored
procedures from PSQL into pure SQL. This transformation is very attractive because it
eliminates the need to provide a dedicated PSQL implementation, and the resulting queries
are actually faster than the original PSQL code. This requires that the database system can
unnest correlated subqueries efficiently.

7 Conclusion

Unnesting correlated subqueries is essential for handling subqueries efficiently. Eliminating
the correlation improves the asymptotic complexity, and can easily lead to speedups by
several orders of magnitude. In this work, we have extended our previous work on bottom-up
decorrelation by correctly handling nested dependent joins and by supporting a wider range
of SQL constructs. The new approach has already been integrated into our Umbra system
and we hope that other systems like DuckDB and Postgres will follow.

Acknowledgments: We thank Altan Birler for providing the unnesting strategy for full outer
joins with correlated predicates.
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