
Parallelizing Extensible Query Optimizers

Florian M. Waas
Greenplum Inc.

flw@greenplum.com

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT
Query optimization is the most computationally complex
task in a database management systems. In many query
optimizers, faster CPUs and increased RAM can translate
directly to better query plans and thus better overall sys-
tem performance. Although memory size continues to scale
with Moore’s Law, processor speeds are leveling off. Chip
manufacturers are now focusing on multicore designs that in-
tegrate increasing numbers of cores in a single CPU. Query
optimizers need to be parallelized in order to continue en-
joying the growth trend of Moore’s Law.

In this paper, we address this problem in the context of
the extensible optimizer architectures found in many com-
mercial database systems. We identify the key data depen-
dencies inherent in the dynamic programming at the heart
of these optimizers. We use this insight both to design a
flexible parallel query optimization implementation, and to
assess the opportunities for parallelism in this context.

The proposed solutions can serve as a blueprint for retro-
fitting existing industry-grade optimizers to leverage mul-
ticore architectures, without requiring significant rework of
the underlying infrastructure.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Performance

Keywords
Query optimization, parallel processing, depedencies, mul-
ticore, Erlang

1. INTRODUCTION
Moore’s Law describes the exponentially increasing num-

ber of transistors that can be packed on an integrated cir-
cuit; it has been borne out by a doubling of transistors every

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

18-24 months over the last 50 years. Until recently, the most
visible direct effect of Moore’s Law was an exponential in-
crease in processor speeds, roughly measured in instructions
per second. In recent years, however, chip manufacturers
have had difficulty continuing to scale processor performance
while managing heat and energy effectively. Instead, they
are using the increasing number of transistors to lay out
multiple, cooler-running processor cores on a single chip.
These multicore processors are becoming ubiquitous, and it
is expected that over the coming years, Moore’s Law will be
reflected not by increasing processor speed, but by increas-
ing numbers of cores per chip [10, 3]. This implies that if
software systems want to continue enjoying growth in CPU
performance, they need to be programmed for parallelism.

Database systems have long taken advantage of paral-
lelism, in both shared-memory and cluster-based architec-
tures. The focus of database parallelism has traditionally
been on query execution, and implications on maintaining
correctness during transaction processing [15]. Query opti-
mization is one of the most computationally complex, CPU-
intensive tasks in a database system, but until recently there
was almost no work on parallel query optimizers. In a recent
paper, Han, et al. [14] studied the problem of parallelizing
the traditional optimization algorithm from System R [23]
for Select-Project-Join blocks. They demonstrated that the
algorithm can be effectively parallelized, with notable ben-
efits in the sizes of queries that can be planned without
resorting to unproven heuristics.

A query optimizer is a long-term investment, carefully
evolved over a long period of time. Designed well, it pro-
vides extensibility in two dimensions. First, a good opti-
mizer framework can accommodate new query optimizations
and query language features as they are designed, helping
keep pace with changes in the marketplace. This has been
the subject of much research and engineering. Modern query
optimization includes a broad class of techniques beyond the
join ordering and access method selection considered in the
classic System R work, including early aggregation and du-
plicate elimination [27], subquery decorrelation [8], materi-
alized view matching [11], and many more. The Starburst
project showed that a “bottom-up”, System R-style opti-
mizer can be made extensible [19, 22], and IBM DB2 has
proven this concept in a commercial setting. A number of
other commercial optimizers – including those of Microsoft
SQL Server and HP Neoview – achieve extensibility via the
ideas of Volcano [12] and Cascades [13], which modify the
approach of System R to fill in a dynamic programming ta-
ble in various orders other than strict bottom-up.

871

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1559845.1559938&domain=pdf&date_stamp=2009-06-29

The second dimension of extensibility involves exploiting
innovations in computer hardware. This dimension has tra-
ditionally been implicit in optimizer design: faster CPUs
and increased RAM support the application of more (and
also more complex) optimizations without requiring software
modifications. The shift to multicore requires this form of
extensibility to be explicit in software: query optimizers
need to exploit Moore’s Law via parallelization. Given how
heavily invested vendors are in their optimizer technology,
they are looking for solutions to run in parallel on multicore
architectures without having to give up hard-earned com-
petitive advantages in their current optimizer architectures.

In this paper, we consider the challenge of parallelizing
an extensible optimizer. Our approach is built on an ex-
plicit representation of the dependencies in dynamic pro-
gramming, captured in a data structure we call the search
state dependency graph (SSDG). The unfolding search of the
dynamic programming algorithm is represented by a state-
annotated frontier of nodes in an expanding SSDG, which
exposes subtasks in a manner that enables a simple, flexible
approach to parallel scheduling of optimizer subtasks.

Using this insight as a basic building block, our contribu-
tions in this paper are three-fold:

1. Extensible, Parallel Optimization: We consider exten-
sible optimizers that can handle a variety of optimiza-
tion rules, and even extensible search strategies [17, 6].
This is in contrast to prior work that is wedded to the
structure of join enumeration [14].

2. Flexibility: Our approach allows for flexibility in the
order of searching the optimizer state space. In addi-
tion to supporting multiple traditional search strate-
gies, it enables dynamic scheduling of parallel search
subtasks. This flexibility can ameliorate unpredictable
task distributions arising from statistics-driven estima-
tion and pruning of the search space.

3. Analysis of Parallelizability: By explicitly capturing
the dependencies among subtasks, we are able to mea-
sure the available degree of parallelism during the cour-
se of optimization. We present empirical results from a
prototype optimizer implementation in Erlang, show-
ing extensive opportunities for exploiting a growing
number of processor cores. This ability to dynamically
monitor the degree of parallelism also points the way
to future adaptive approaches to scheduling subtasks
in parallel optimizers.

From a practitioner’s point of view, these are important
criteria for retrofitting existing optimizer technology with
parallelism, and provide input into the effort and benefits
involved in modifying a particular pre-existing optimizer.

2. QUERY OPTIMIZATION IN PRACTICE
Architecturally, a query optimizer is a software framework

that has to accommodate an ever changing set of operations
and optimization techniques, while maintaining a continu-
ity of optimization performance over an extended period of
time. Requirements for extension typically arise from addi-
tions to the query language used both to implement stan-
dards (e.g. OLAP extensions of SQL:2003) as well as pro-
prietary language extensions (e.g. XQuery integration in
the supported SQL dialect [4]). Over the last two decades,

significant attention has been paid to designing flexible and
extensible optimizer architectures, including a number of
efforts documented in the research literature [7, 19, 22, 18,
20, 12, 17]. Frameworks based on enumeration via Dynamic
Programming (DP) have emerged as the de facto standard
in this domain.

CPU speeds have increased 1, 000, 000× since Selinger’s
seminal paper was published [23], but the complexity of
SQL queries has increased only modestly. This has rendered
the use of optimization heuristics increasingly marginal over
time—most queries can be optimized via enumerative ap-
proaches, which are guaranteed to find the global optimum
of a well-defined search space according to a specific statisti-
cal model. As an example, consider query Q5 of the TPC-H
benchmark suite, which contains a 5-way join. According
to [26], a Cascades-based optimizer considers a total of over
230,000,000 alternative plans as a matter of a few 10s of
seconds.

This number illustrates that enumeration-based optimiza-
tion using DP is highly efficient. But more interestingly it
illustrates that the growth of the search space at hand is
not dominated by join order optimization: there are only a
few dozen different join orders to consider. Instead, the plan
space blows up due to a multitude of optimization techniques
involving the treatment of aggregates. This latter point runs
counter to textbook lessons about the complexity of query
optimization. Although join ordering continues to be one of
the significant components of query optimization complex-
ity, it is no longer the sole component. And the growth of
other sources of complexity drive the need to scale query
optimization further.

It should be noted that there are design challenges in mak-
ing DP scale. Many modern optimizers maintain an elabo-
rate balance between resources used during optimization and
the quality of the result of the optimization. In sophisticated
optimizer implementations, the optimizer may make budget-
ing decisions during the course of optimization, considering
how to trade off the quality of the best solution found so far
against investing further resources for what might be only
marginal improvements. In general, exhaustive enumeration
needs to be guided carefully and certain simplifications may
be applied to keep the search space to a manageable size.
Queries with dozens of joins are rare, but a system has to
be able to cope with them.

3. OPTIMIZER ARCHITECTURE
In this section we briefly survey the main components of

a Cascades-style query optimizer. We assume the reader
familiar with the basic principles of transformation-based
query optimization and focus only on the elements that are
relevant for our further exposition. For an in-depth discus-
sion of the Cascades optimizer see e.g. [13].

3.1 Algebraic Optimization
Algebraic query optimizers like Cascades are distinguished

by a number of key features, the most notable of which are
listed below [9]:

• Using a search strategy the optimizer generates alter-
natives for the original algebra expression using trans-
formations. A transformation applies to a (partial)
input tree of operators and generates a one or more
equivalent alternatives. Typically, transformations im-

872

plement small changes in an expression—e.g. commu-
tative exchange of inputs to an operator—but can en-
compass arbitrarily sophisticated optimizations.

• Due to its organizing of optimizations as individual
transformations that interoperate freely the optimizer
is inherently extensible: any number of optimizations
can be added without affecting previously existing ones
in a negative way.

• Optimization is truly cost-based and does not rely on
heuristics or engineering choices made by the imple-
menters. Instead, all relevant alternatives are gener-
ated and costed and the plan that is optimal according
to the cost model is chosen.

3.2 Representation of Alternatives
The input to the optimizer is an initial query tree. The

representation can be generalized to DAGs instead of trees.
However for the purpose of our research, considering trees
only is fully sufficient. Each node in the tree corresponds to
an operator of the extended relational algebra.

The core of the optimizer is a lookup table—sometimes
referred to as MEMO structure or blackboard—that man-
ages alternatives. Instead of maintaining alternative plans
in their entirety, the optimizer uses an encoding that breaks
plans down into groups of equivalent sub-expressions. The
principle applies recursively in that groups are inputs to
operators in other groups. This compact representation is
similar to the one used for join-enumeration in [21].

To illustrate this principle, consider the input plan: when
initializing the table each operator of the input plan is placed
in a separate group (we ignore the case of common subex-
pression for the sake of clarity). The dependencies between
operators in the initial plan correspond to references be-
tween groups. We call a group A dependent on a group B
if any of the operators in A references group B. During
optimization, alternative plans or plan fragments are gener-
ated by applying transformations. Each transformation may
produce a set of alternatives that are also inserted into the
table. As the optimization progresses, partial alternatives
for which no equivalent group of expressions exist may be
generated. In this case a new group is created and added to
the lookup table.

The schedule according to which transformations are ap-
plied is determined by a search strategy that may prioritize
certain optimizations based on their anticipated applicabil-
ity, consider costs of the best partial solutions found so far,
or take into account external factors such as overall memory
consumption and elapsed time.

Once all alternatives have been explored—i.e. no more
transformations are to be applied according to the search
strategy—every group contains one or more alternatives.
Following the Principle of Optimality, the best solution of
each group is composed of optimal solutions to its dependent
groups.

The representation is distinguished by being highly com-
pact and very general as it is not restricted to certain classes
of operators, e.g. join operators, but applies to any operator
of the extended algebra. Transformations can implement
arbitrarily complex optimizations ranging from simple join
re-ordering to sophisticated matching strategies for materi-
alized views [11, 9]. The modular architecture and strict

separation of concerns result in enormous flexibility and ex-
tensibility.

3.3 Optimization Workflow
The actual workflow of optimizing a query comprises var-

ious conceptually different tasks. In [13], Graefe proposes a
categorization of tasks that is based on a specific implemen-
tation. And although different implementations are likely
to deploy a different structure of tasks using Graefe’s taxon-
omy is very helpful to illustrate the concept of dependencies
between tasks.

In our prototype, we implemented the following types of
tasks:

• The execution of a transformation that applies to an
individual operator of a group and generates one or
more alternatives; this includes transformations that
apply to partial plans that are rooted in these opera-
tors;

• The systematic exploration of a group by iterating
over its operators and scheduling individual transfor-
mations of the previous type;

• The optimization of dependent groups using cost es-
timates for effective pruning of the search space; this
type of task schedules the systematic exploration of a
group as necessary;

• The extraction of the optimal solution of a group and
assembly of the final plan;

As the above list emphasizes, tasks correspond to self-con-
tained units of work and maintain a commonly shared state
in the lookup table. Moreover, different tasks need to be
executed in specific orders. For example, the exploration of
a group must be complete before a cost bound can be es-
tablished, which in turn is used to optimize other dependent
groups. Furthermore, the structure of the overall query im-
poses dependencies between transformations, e.g. join order-
ing may get deferred until sub-query de-correlation is com-
plete etc. We call a task that requires another task to be
completed in order to proceed parent task, the other depen-
dent task. Dependent tasks of the same parent are siblings.
There is no requirement for siblings to be executed in any
specific order.

We refer to the actual instance of a task as a job. The
dependencies between tasks can be implemented by a gen-
eral scheduling component. However, a more practical and
robust approach is to have jobs create dependent jobs au-
tomatically. For example, the job of extracting the optimal
solution in a given group may check if the group has been
completely explored and create a job to do so if necessary.
In general, there is no limitation on how many dependents
a job may create.

3.4 Serial Scheduling
To illustrate job dependencies and their importance for

parallel optimization we briefly discuss scheduling of opti-
mization jobs in a serial (i.e. non-parallel) environment.

The scheduling of jobs—i.e. the assigning of jobs to pro-
cesses or threads—is implemented by a scheduler compo-
nent. The scheduler as proposed in [13] is strictly serial and
uses a stack to manage dependencies between jobs. The set
of pending jobs is maintained on the stack in reverse order

873

j1

j2

j1 j1

j2

j1

j2

j3

j4

(b)(a) (c) (d)

j1

j2

(e)

j1

(f)

inactive jx

jxrunnable
during

execution of j2

...

Figure 1: Stack of serial scheduler during course of
execution

of their creation. The following simple invariant holds: be-
tween job executions, the top-most job on the stack is the
next to be executed. However, during the execution of a
job, the stack is typically being modified by the scheduler
to accommodate new jobs, and the invariant is not valid.

Example. Consider 4 optimization jobs, j1, ..., j4. As-
sume j1 is parent of j2, and j2 parent of both j3 and j4. After
j1 creates j2 the stack is in the state as shown in Fig.1(a). j1
is inactive and j2, as the top-most job, runnable. The sched-
uler removes j2 from the stack and assigns it to a thread for
execution (b). Throughout steps (b)–(d) job j2 is running.
Since j2 requires dependent jobs j3 and j4 to complete in
order to proceed it reschedules itself (c) and adds jobs j3
and j4 (d). Once job j2 returns control to the scheduler j4
is started. After j4 and j3 are complete, j2 is the top-most
job again and can now proceed without spawning additional
dependents (e). Once j2 is complete control is returned to
the scheduler who starts job j1 (f). Once all jobs are exe-
cuted and the stack is empty the optimization is complete.
2

4. PARALLELIZING OPTIMIZATION
To exploit parallelism of the workflow and execute jobs

that do not depend on each other we encode dependencies
explicitly. We develop the notion of a Search State Depen-
dency Graph (SSDG) in the following to facilitate detec-
tion of opportunities for parallel execution of jobs and their
scheduling.

To motivate the need for a richer data structure, consider
a simple attempt at using a stack-based scheduler to execute
jobs in parallel. As we pointed out above, the stack is well-
formed only between the execution of jobs. Simply schedul-
ing the top-most job at any point in time while a job is
running may break any of the implicitly encoded dependen-
cies between tasks. In above example, starting the execution
of j1 while j2 is running will lead to either the creating of
redundant jobs (if j1 concludes that it needs to create depen-
dents) or to an incorrect order of execution (if it concludes
that its dependents must have completed already). Also, a
stack-based approach does not preserve any knowledge as to
which jobs are dependents. In short, a stack-based sched-
uler cannot be used for scheduling more than one thread,
because the stack reflects dependencies correctly only be-
tween the executions of jobs.

In order to exploit dependencies we define and record the
states of jobs explicitly as follows:

runnable

inactive

running

finalized

created

discarded

rescheduledall dependents
complete

assigned
to thread

finished

Figure 2: State transition diagram

• runnable: the job can be assigned to a thread

• running : the job is currently being worked on and
cannot be assigned to another thread

• inactive: the job is waiting for dependent jobs to be
completed

• finalized : the job is complete and can be discarded

The scheduling of a job can then be described as a state
machine with transitions as depicted in Figure 2. By rep-
resenting every job that is not yet finalized by a node and
dependencies as directed arcs between them we encode all
dependencies in a graph.

Example. Consider above example with jobs j1, ..j4.
The scheduling steps are depicted in Figure 3. Leaf nodes,
i.e. nodes with no outgoing edges, are runnable and can be
assigned to a thread (a). The assignment is atomic. Unlike
with a stack-based scheduler, running jobs are not removed
from the data structure (b) but simply marked inaccessible
to other tasks. Dependent jobs are added to their respective
parent and are immediately runnable (c). All runnable jobs
are executed in parallel pending availability of processing re-
sources. Once the parent is rescheduled it becomes inactive
(d) until all its dependents are complete (e). After the job
completes it is removed from the graph (e, f). 2

5. IMPLEMENTATION
In order to quantify the potential for parallelism as iden-

tified in the SSDG we implemented a complete prototype
for an extensible optimizer based on the principles of Vol-
cano and Cascades, replacing the conventional stack-based
scheduler with an SSDG-based parallel approach.

5.1 Erlang
We wrote our prototype using the programming language

Erlang [2]. The decision to use a language little known in the
database community was driven by the need for a program-
ming environment that (a) combines powerful abstractions
of parallel primitives, (b) is highly efficient, and (c) offers
enough control to study the aspects of multicore architec-
tures in detail.

874

j1 j2

j1

j1

j2

j2

j4

(b)

(a)

(c) j3

j1

j4

(d) j3

(f)

j1

j1

(e)

j2

j4

j3

j2
inactive

j2

j4

j3

jx

jx

jx

jx

runnable

running

finalized

Figure 3: Search State Dependency Graph for Ex-
ample; finalized jobs shown only for completeness

Erlang is a parallel functional programming language with
a concise and elegant process model. It has its roots in CSP
[16] and Occam as well as in Prolog. Erlang was originally
developed to meet requirements for high-availability and
massive data throughput in switching gear for telecommu-
nication systems but has recently attracted attention from
various fields of computing due to its parallel nature. Er-
lang is process-based, i.e. its programming model is built
on the notion of processes in constrast to, say, objects in
object-oriented languages. All state is encapsulated as pro-
cesses that communicate via a single, powerful, high-level
communication primitive. As a result even programs that
are not intended to be run on parallel hardware are always
structured as a number of communicating processes. This
programming model is highly conducive to software design
that lends itself immediately to parallelization.

It is important to point out that the concept of a process
in Erlang is very different from that in operating systems:
Erlang processes are lightweight, have a very small resource
footprint, and are interpreted by the Erlang Virtual Ma-
chine (EVM). The EVM has been designed to handle very
large number of processes simultaneously—e.g. several tens
of thousands [1]—and is highly optimized for communica-
tion.

Since there is no shared or global state that requires syn-
chronization, Erlang programs are inherently easy to par-
allelize by simply instructing the EVM that interprets the
program to leverage more processors or cores. The EVM
does the mapping of Erlang processes to threads completely
transparently.

In summary, we found Erlang to be an excellent choice
for prototyping the SSDG and a general parallel optimizer
framework: quick to write, simple to modify, easy to debug
and verify.

5.2 Optimizer Framework
We implemented a basic yet complete Cascades-style opti-

mizer framework along the lines of [12, 13]. In the following
we briefly describe the most significant differences of our im-
plementation with those used in other commercial products.

After the initial, canonical plan is copied into the MEMO,
a number of optimization and exploration tasks are sched-

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4

Re
sp

on
se

 ti
m

e
(n

or
m

al
ize

d)

Number of cores

actual
ideal

Figure 4: Actual scale-up of independent Erlang
processes compared to ideal scale-up

uled. Tasks perform various modifications of the plan frage-
ments stored in the MEMO and schedule dependent tasks as
necessary. The order of execution of the tasks is determined
by a scheduler component that—in constrast to the origi-
nal Volcano and Cascades scheduler—maintains the SSDG,
identifies runnable tasks, and assigns them to processes. At
any point in time, the next runnable task is chose randomly
from any of the unassigned leaves of the SSDG.

Great care was taken to ensure a clean separation of the
MEMO structure and search tasks from the actual trans-
formations that manipulate plan fragements. The resulting
system is easily extensible by adding additional transforma-
tions and operator encodings. In particular, the scheduler
is oblivious of the type of optimizations implemented by
individual tasks and, hence, is able to parallelize all opti-
mizations purely based on their dependencies.

6. EXPERIMENTS
The SSDG is designed to allow implementers to retrofit

existing optimizer technology with a parallel scheduler. But
just how much parallelism is there? With the following ex-
periments we try to find answers to these questions:

• What are the characteristics of the SSDG?

• How many runnable tasks are there at any given point
in time, i.e. how many tasks could be worked on in
parallel?

• Does our optimizer achieve sufficient speed-up despite
being oblivious of the actual semantics of the optimiza-
tions it carries out?

Although our framework is general enough to handle various
types of relational operators and associated optimizations,
we chose to use only joins and join re-ordering optimizations
to obtain results that make for easy comparison with exist-
ing literature such as [14]. Extending the optimizer to other
operators and studying the effects on the opportunities for
parallelization is on our agenda for future work.

875

t0

Figure 5: Radial plot of SSDG (10-way join, star-
shaped join graph)

6.1 Preliminaries
All experiments were carried out using a whitebox PC

equipped with an Intel Core 2 Quad Core Q6600 processor
running Erlang/OTP R12B, the public domain variant of
the EVM.

In an initial experiment we demonstrate the scalability of
the EVM itself. Given that all Erlang programs are inter-
preted and indirectly mapped to a thread model inside the
EVM we found it useful to quantify the speed-up of a con-
stant workload of several independent Erlang processes. In
Figure 4 the run time for a program consisting of 4 processes
that compute several thousand list operations each is shown
as a function of the number of cores used by the EVM. The
dotted line depicts the ideal speed-up. The graph shows
that the scheduling overhead of the EVM is generally in-
significant. The actual speed-up falls short of the ideal only
when operating at maximum CPU capacity, i.e. on all four
cores. This is to be expected: when the EVM uses all cores,
it contends for at least one of them with background OS
processes. This issue recurs in later experiments.

6.2 Characteristics of SSDG
As discussed in Section 4 the SSDG is a tree. Intuitively,

a wide and shallow tree offers more parallelism to exploit
than one that is a narrow and deep. Figure 5 shows the
cumulative version of the SSDG—i.e. the graph including
all terminated tasks at the end of an optimization—for a
10-way join defined by a star-shaped join graph. Given the
enormous width and low depth of the graph, we chose a ra-
dial layout. Although not too many details can be discerned
given the scale of the graph, it is apparent that almost all
nodes are at a relatively narrow range of depth.

6.3 Opportunity for Parallelism
Next, we investigate the temporal aspect of the opportu-

nity for parallelism. When do parallelizable tasks occur and
how much parallelism is there?

 1

 10

 100

 1000

 10000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

Si
ze

 o
f S

SD
G

 (N
um

be
r o

f t
as

ks
)

Step

total
runnable

Figure 6: Number of tasks in SSDG as function of
time (10-way join, star-shaped join graph)

To assess the potential more exactly, we compare total
number of tasks vs. runnable tasks as a function of time
for the same optimization problem, see Figure 6. The lower,
bold line is the number of runnable tasks, that is the number
of tasks that can be processed in parallel. The additional
line (at y = 4) indicates the number of tasks needed to
saturate all four cores of our experimentation platform.

Initially there is a phase that requires largely sequential
processing, i.e. most processes are directly dependent on
each other, before more and more runnable tasks become
available. This behavior is to be expected as the DP com-
ponent generates alternatives of increasingly larger seman-
tic differences. During the middle period, there is ample
opportunity for parallelism—anywhere between 10 and 50
runnable tasks in the SSDG at a time. The spike at the
end of optimization is caused by the inherent sequentiality
of finishing the optimization, via search tasks that find and
combine optimal solutions for subproblems.

Figure 7 shows the same analysis for a linear join graph
of the same size. Since the size of the search space and
therefore the total number of tasks is significantly lower the
previously discussed effects are magnified. Again, through-
out most of the optimization a sufficiently large number of
runnable tasks are available at any given point.

6.4 Speed-up of Optimization
In the final set of experiments we study the net effect

of using the SSDG for query optimization. For both star-
shaped and linear join graphs we optimize n-way joins where
n is varied from 2 through 10 and 2 through 16 respectively.
For each optimization problem, we took the average of 4
runs and varied the number of cores to be used by the EVM
between 1 and 4.

All numbers are normalized to the execution time for 1
core. Figure 8 shows the results for star-shaped join graphs.
For the trivially small problem of a single join, we see an
initial improvement when going from 1 to 2 cores. It may
seem surprising that there is any improvement at all given
that there are only two alternatives to be considered. How-
ever, a few tasks can be executed in parallel contributing
to a speed-up of almost 20%. Adding more cores results in

876

 1

 10

 100

 1000

 10000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

Si
ze

 o
f S

SD
G

 (N
um

be
r o

f t
as

ks
)

Step

total
runnable

Figure 7: Number of tasks in SSDG as function of
time (10-way join, linear join graph)

a slow down for this small problem as the communication
overhead of the different processes increases. For larger sizes
of the problem we see a clear trend: the larger the problem
the better the speed-up. Several factors contribute to this
trend. First, the initial and terminal phases of the optimiza-
tion that offer less parallelism dominate in small problems
but diminish relative to the total number of steps for large
problems. Second, the individual optimizations may cause
contention when operating on closely related areas of the
MEMO. With increasing size of the problem this effect be-
comes less pronounced. While improving with size, even at
problem size 10 the optimization time is still slightly above
the ideal speed-up with times at 60+% instead of 50% for 2
cores and between 40% and 60% instead of 33% for 3 cores.
This is mainly due to (1) strong sequential dependencies at
the beginning and the end of optimization and (2) communi-
cation and synchronization between tasks that interact with
central processes such as the MEMO process.

The results for 4 cores are slightly weaker due to the effects
discussed in Section 6.1, i.e. increasing interference of EVM
and OS processes.

Figure 9 shows the analogous experiment for queries with
linear join graphs. The graph shows a very similar trend.
For the most trivial problem size, parallelization is of only
limited effectiveness (linear 2). But even for problems of size
4 we see already substantial speed-up. For larger problem
sizes the response times improves further. As with the star-
shaped join graphs, the results for 4 cores are affected by
increasing CPU contention between the EVM and the OS.

What is probably most remarkable about the results is
the significance as well as the consistency of the speed-up
across different sizes and, hence, widely varied number of
tasks underlining the generality of our approach.

7. RELATED WORK
The potential benefits of parallelizing query optimization

have long been recognized. In the past the possibility of
parallelizing certain search algorithms has been hinted at
repeatedly but until recently no concrete attempt has been
made to leverage fine-grain parallelism. Especially earlier

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4

O
pt

im
iza

tio
n

tim
e

(n
or

m
al

ize
d)

Number of cores

star 2
star 4
star 6
star 8

star 10

Figure 8: Optimization time as function of number
of cores used (n-way join, star-shaped join graph)

work on probabilistic and genetic optimization algorithms
parallel processing cited parallelism as a way to mitigate
the substantial CPU requirements of these algorithms, see
e.g. [5].

The first practical approach to we are aware of is by Han
et al. [14] focusing on SPJ queries. Based on the Sys-
tem R model of optimization authors identify opportuni-
ties for breaking down the join ordering problem into in-
dependent subproblems and study possible load-balancing
strategies. Their approach is explicitly wedded to both (1)
a particular type of query and (2) bottom-up enumeration
of alternatives. In contrast to this work, our approach is not
limited to a specific type of queries or search strategy.

In addition to parallelizing query optimization a number
of attempts have been made to improve exhaustive enumer-
ation see e.g. [25, 24].

8. CONCLUSION AND FUTURE WORK
In this paper, we assessed the parallel nature of query

optimization. Specifically, we investigated possibilities to
retrofit existing optimizer technology to leverage multicore
architectures. We introduced the concept of a Search State
Dependency Graph (SSDG) to capture dependencies be-
tween optimization tasks and identify independent tasks that
can be worked on in parallel. Using a scheduler that main-
tains the SSDG we devised a variant of the widely used
Volcano and Cascades optimizer frameworks that achieves
substantial and consistent speed-up by utilizing commod-
ity multicore architectures. The main advantages of our
approach are its generality and transparency: we simply
replaced the existing scheduler of the optimizer framework
with a more sophisticated one but did have to come up with
new optimization techniques that are parallelism-aware or
specifically tailored to facilitate the load-balancing of opti-
mization tasks.

Future Work. The prototype presented in this paper is
based on the principles of Volcano as described in [12, 13].
However, the principles of identifying dependencies between
optimization tasks appears to be a more general and may

877

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4

O
pt

im
iza

tio
n

tim
e

(n
or

m
al

ize
d)

Number of cores

linear 2
linear 4
linear 6
linear 8

linear 10
linear 12
linear 14
linear 16

Figure 9: Optimization time as function of number
of cores used (n-way join, linear join graph)

be applicable to other optimizer frameworks currently used
in commercial database systems as well.

An implementation using C++ instead of Erlang is cur-
rently underway as part of the Greenplum Database devel-
opment.

9. REFERENCES
[1] J. Armstrong. Apache vs. Yaws. Technical report,

SICS, 2003.

[2] J. Armstrong, R. Virding, C. Wikstrom, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall, 2nd edition, 1996.

[3] K. Asanovic, et al. The Landscape of Parallel
Computing Research: A View from Berkeley.
Technical Report EECS Department, University of
California, Berkeley, Dec 2006.

[4] A. Baras, C. A. Galindo-Legaria, T. Grabs,
B. Krishnaswamy, and S. Pal. Optimizing Similar
Scalar Subqueries for XML Processing in Microsoft
SQL Server. In Proc. ICDE, pages 1164–1173, 2007.

[5] K. Bennet, M. Ferris, and Y. E. Ioannidis. A Genetic
Algorithm for Database Query Optimization. In Proc.
Genetic Algorithms, pages 400–407, 1991.

[6] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis.
Evita Raced: Meta-compilation for Declarative
Networks. In Proc. VLDB, volume 1, pages
1153–1165, 2008.

[7] J.-C. Freytag. A Rule-Based View of Query
Optimization. In Proc. ACM-SIGMOD, pages
173–180, 1987.

[8] C. A. Galindo-Legaria and M. Joshi. Orthogonal
Optimization of Subqueries and Aggregation. In Proc.
ACM-SIGMOD, pages 571–581, 2001.

[9] C. A. Galindo-Legaria, M. Joshi, F. Waas, and M.-C.
Wu. Statistics on Views. In Proc. VLDB, pages
952–962, 2003.

[10] D. Geer. Chip Makers Turn to Multicore Processors.
IEEE Computer, 28(5), May 2005.

[11] J. Goldstein and P.-A. Larson. Optimizing Queries
Using Materialized Views: A practical, scalable
solution. In Proc. ACM-SIGMOD, pages 331–342,
2001.

[12] G. Graefe. Volcano - An Extensible and Parallel
Query Evaluation System. IEEE Trans. Knowl. Data
Eng., 6(1):120–135, 1994.

[13] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3):19–29,
1995.

[14] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and
V. Markl. Parallelizing Query Optimization. In Proc.
VLDB, 2008.

[15] J. M. Hellerstein, M. Stonebraker, and J. Hamilton.
Architecture of a Database System. Foundations and
Trends in Databases, 1(2), 2007.

[16] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[17] N. Kabra and D. J. Dewitt. OPT++: An
Object-Oriented Implementation for Extensible
Database Query Optimization. VLDB Journal,
8:55–78, 1999.

[18] A. Kemper, G. Moerkotte, and K. Peithner. A
Blackboard Architecture for Query Optimization in
Object Bases. In Proc. VLDB, pages 543–554, 1993.

[19] G. M. Lohman. Grammar-like Functional Rules for
Representing Query Optimization Alternatives. In
Proc. ACM-SIGMOD, 1988.

[20] G. Mitchell, U. Dayal, and S. B. Zdonik. Control of an
Extensible Query Optimizer: A Planning-Based
Approach. In Proc. VLDB, pages 517–528, 1993.

[21] A. Pellenkoft, C. A. Galindo-Legaria, and M. L.
Kersten. The Complexity of Transformation-Based
Join Enumeration. In Proc. VLDB, pages 306–315,
1997.

[22] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule-based Query Rewrite Optimization in
Starburst. In Proc. ACM-SIGMOD, 1992.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In Proc.
ACM-SIGMOD, 1979.

[24] L. D. Shapiro, D. Maier, P. Benninghoff, K. Billings,
Y. Fan, K. Hatwal, Q. Wang, Y. Zhang, H.-M. Wu,
and B. Vance. Exploiting Upper and Lower Bounds In
Top-Down Query Optimization. In Proc. IDEAS,
pages 20–33, 2001.

[25] B. Vance and D. Maier. Rapid Bushy Join-order
Optimization with Cartesian Products. In Proc.
ACM-SIGMOD, pages 35–46, 1996.

[26] F. Waas and C. A. Galindo-Legaria. Counting,
Enumerating, and Sampling of Execution Plans in a
Cost-Based Query Optimizer. In Proc.
ACM-SIGMOD, 2000.

[27] W. P. Yan and P.-A. Larson. Data Reduction Through
Early Grouping. In CASCON, page 74, 1994.

878

