
DPconv: Super-Polynomially Faster Join Ordering

MIHAIL STOIAN, UTN, Germany

ANDREAS KIPF, UTN, Germany

We revisit the join ordering problem in query optimization. The standard exact algorithm, DPccp, has a
worst-case running time of $ (3=). This is prohibitively expensive for large queries, which are not that
uncommon anymore. We develop a new algorithmic framework based on subset convolution. DPconv achieves
a super-polynomial speedup over DPccp, breaking the $ (3=) time-barrier for the �rst time. We show that the
framework instantiation for the �max cost function is up to 30x faster than DPccp for large clique queries.

CCS Concepts: • Information systems→ Query optimization.

Additional Key Words and Phrases: join ordering, dynamic programming, fast subset convolution, exponential-
time approximation algorithm

ACM Reference Format:

Mihail Stoian and Andreas Kipf. 2024. DPconv: Super-Polynomially Faster Join Ordering. Proc. ACM Manag.

Data 2, 6 (SIGMOD), Article 234 (December 2024), 26 pages. https://doi.org/10.1145/3698809

1 INTRODUCTION

The query optimizer is the heart of any relational database system. One of the fundamental tasks
of the query optimizer is join ordering. The problem is to reorder the joins, so that the query
execution time is minimized. To this end, one introduces a cost model that acts as proxy for the
actual execution time. Since the costs are directly re�ected in the query execution time, optimal
or near-optimal join orders are indispensable for the overall performance. However, the problem
is inherently NP-hard [20]. This means that, unless P = NP, one has to resort to the exponential
(exact) algorithm for small queries and to greedy strategies otherwise.

Motivation & Research Question. In a seminal work, Selinger introduces the �rst dynamic
program to (exactly) optimize the ordering problem [44]. The key observation is that the optimal
solution (∗ for a set of relations % , called the problem, satis�es Bellman’s optimality principle [1],
namely that (∗ is computed from two disjoint subproblems %1 and %2, with optimal solutions (∗1
and (∗2 , respectively. The naive algorithm, DPsize, runs in $ (4=)-time, which can be reduced to
$ (3=) by a careful traversal of the subsets of a given set, algorithm known as DPsub [48, 49].

Later, Moerkotte and Neumann [30] showed that one can obtain an improved algorithm if one
disallows cross-products, namely by considering the connectivity structure of the underlying query
graph (the algorithm was later extended to hypergraphs [31]). Their algorithm, DPccp, achieves the
lower-bound on the number of connected complement pairs which any dynamic program needs to
traverse, as shown by Ono and Lohman [36]. Recently, Ha�ner and Dittrich [18] proved that join
ordering reduces to computing shortest paths in an exponential-size graph in which the vertices
are relation subsets. Their reduction enables the use of well-known speedups via heuristic search,

Authors’ addresses: Mihail Stoian, UTN, Ulmenstraße 52i, Nuremberg, Germany, 90443, mihail.stoian@utn.de; Andreas
Kipf, UTN, Ulmenstraße 52i, Nuremberg, Germany, 90443, andreas.kipf@utn.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/12-ART234
https://doi.org/10.1145/3698809

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0002-8843-3374
HTTPS://ORCID.ORG/0000-0003-3463-0564
https://doi.org/10.1145/3698809
https://orcid.org/0000-0002-8843-3374
https://orcid.org/0000-0003-3463-0564
https://orcid.org/0000-0003-3463-0564
https://doi.org/10.1145/3698809

234:2 Mihail Stoian and Andreas Kipf

DPr R1R2R3R4 s “ min

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

DP[R1] + DP[R2R3R4]

DP[R2] + DP[R1R3R4]

DP[R3] + DP[R1R2R4]

DP[R4] + DP[R1R2R3]

DP[R1R2] + DP[R3R4]

DP[R1R3] + DP[R2R4]

DP[R1R4] + DP[R2R3]

V :“ R1R2R3R4

=
min

∅ĂSĂV

pDPrSs ` DPrV zSsq

Subset Convolution

Fig. 1. How join ordering dynamic programming algorithms, e.g., DPsub, are implicitly using subset convo-
lution. However, they are computing it naively. DPconv instead uses a highly-tuned implementation of fast
subset convolution [2].

as known from the �∗ algorithm [19]. However, while their average-case running time beats that
of DPccp, the worst-case running time still remains $ (3=). The $ (3=)-time bottleneck leads us to
our main question:

Is there a way to break the seemingly unyielding $ (3=)-time barrier?

Surprisingly, there is. To this end, consider Fig. 1, in which we show how the standard join ordering
dynamic programming algorithms DPsub [48, 49] and DPccp [30] optimize the full set of relations
+ = {'1, '2, '3, '4}. Simply put, the algorithm iterates over all possible ways to split the original set
+ into two subsets. This is exactly a subset convolution.However, all current join ordering algorithms,
DPsize, DPsub, and DPccp, perform it naively, i.e., the expression is evaluated as is. Fortunately for
our community, research in algorithm design has led to a fast subset convolution [2]. Intuitively,
fast subset convolution no longer naively enumerates subsets, but instead uses an FFT-inspired
strategy that avoids redundant computational steps of the naive evaluation. To this end, we develop
a new exact algorithmic framework based on fast subset convolution that has super-polynomial
speedup over DPccp / DPsub. This breaks the long-standing $ (3=) time-barrier for the �rst time.

We instantiate the framework for two well-studied cost functions,�out and�max, which guarantee
time- and space-optimality of query execution, respectively. Namely, the latter minimizes the sum of
the intermediate join sizes, while the former minimizes the largest intermediate one. This results in
an$ (2==2,= log,=)-time algorithm for�out, which is $̃ (2=) when the largest join cardinality,
is polynomial in =,1 and an$ (2==3)-time algorithm for�max; the latter running time is independent
of, . At a practical level, we show that the instantiation for�max is up to 30x faster than the classic
algorithm for clique queries of 17 or more relations.

We further reduce the optimization time for�out to $̃ (23=/2/
√
Y)-time using an (1+Y)-approximation

algorithm. Unlike our exact algorithm, the running time of this algorithm is independent of, .
In addition, we devise a new cost function which combines the bene�ts of �out and �max and

provide an implementation which �rst computes the optimal �max value and then runs a pruned
�out optimization. We show that this optimization is faster than that of the “vanilla” �out when
using our new framework.

1The notation $̃ hides poly-logarithmic factors; in this particular case, =$ (1) .

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:3

Contribution. We summarize our contributions below:

(1) We introduce a new exact algorithmic framework based on subset convolution which breaks
the long-standing time-barrier of $ (3=) for the �rst time.

(2) We provide a practical instantiation of the framework for �max, achieving an $ (2==3)-time
algorithm.

(3) We introduce an (1 + Y)-approximation algorithm for the join ordering problem under �out

in $̃ (23=/2/
√
Y)-time.

(4) We initiate the joint study of �out and �max: Minimize the sum of the intermediate join sizes
so that the largest one is equal to the optimal �max value.

Running Times. Let us �rst relate the running times for�out and�max, which seem quite disparate
at �rst glance. They both rely on our highly-tuned implementation of fast subset convolution for
dynamic programming (Sec. 5), which runs in $ (2==2)-time. Thus, we can observe a common
$ (2==2)-time factor in both running times. The di�erence lies in the implementation of the in-
dividual cost functions: Optimizing for �out introduces an additional $ (,= log,=)-time factor
resulting from the application of FFT to sequences of length,= (Sec. 3.3), while �max incurs only
an $ (=)-time overhead (Sec. 6).

Search Space. DPconv imposes no restrictions on the shape of the query graph or join tree. Our
framework optimizes arbitrary query graphs—both acyclic and cyclic queries—including cliques,
which are considered the worst case of join ordering [33], and bushy join trees, as do other join
ordering algorithms such as DPsub and DPccp. This includes optimizing for cross-products in the
same running time as for arbitrary query graphs. We discuss this aspect as part of Sec. 2. Note that
our framework also optimizes query hypergraphs, representing non-inner joins [31] (we discuss
this aspect in Sec. 3.1).

Other Cost Functions. The literature on join ordering also addresses various cost functions
beyond �out and �max, depending on how a join is executed, e.g., by sort-merge join, hash-join, or
nested-loop join [29]. We demonstrate that our framework can accommodate the cost function
associated with the sort-merge join because it satis�es an additive separability property (see Sec. 3.5).
However, the cost functions associated with hash-joins and nested-loop joins do not enjoy this
property and thus cannot be mapped to our framework.

Organization. The rest of the paper is organized as follows: First, in Sec. 2, we formalize the
problem of join ordering and that of fast subset convolution. Then, in Sec. 3, we introduce DPconv
along with the novel connection between join ordering and subset convolution. We describe the
machinery behind fast subset convolution in Sec. 4, and in Sec. 5 we show how to shave a linear
factor from the running time of any dynamic programming recursion based on subset convolution
(including that of DPconv). Based on this, we provide in Sec. 6 a practical algorithm for �max. Then,
we outline the approximation algorithm in Sec. 7. We propose �cap in Sec. 8, which we start for
the �rst time the joint study of �out and �max with. We outline related work in Sec. 10, provide a
discussion in Sec. 11, and �nally conclude in Sec. 12.

2 BACKGROUND

In this section, we formalize both problems, namely join ordering and subset convolution.

2.1 �ery Graph

Let D = {'1, . . . , '=} be a database that contains = relations. A select-project-join query Q is
de�ned as

Q = Π� (f% ('1 × . . . × '=)), (1)

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:4 Mihail Stoian and Andreas Kipf

where % is the conjunction of predicates that can be both join predicates, i.e., '8 .0 = ' 9 .1, and
selection predicates, i.e., '8 .0 = 2>=BC , and � is the list of attributes required to appear in the output.
The operators Π, f , and × are the projection, selection and cross-product operators, respectively, as
de�ned in relational algebra [7].
We can model a query as a query graph & = (+ , �), where the vertex set + corresponds to the

set of relations {'8 }8∈[=] of the query and the edge set � = {{'D, 'E} | 'D, 'E ∈ + } corresponds
to the join predicates (called join edges in the sequel). Intuitively, a query can be evaluated by
repeatedly joining two relations and replacing one of them with their join. Another prominent way
of executing joins by worst-case optimal joins, which are not necessarily binary joins anymore [35].
In this work, we only concentrate on query optimization of binary joins. In this case, the order in
which the joins are performed can be represented by a (binary) join tree, where the leaf nodes are
the relations and the inner nodes are the corresponding joins.

2.2 Cost Function

To optimize the join order, one introduces a cost function C which best models the query execution
time. The goal is to minimize the cost function among all possible join trees. Due to the binary
structure of a join tree, the cost function can be represented as a recursive function along a join
tree T , as follows:

C(T) =
{
0, if T is a single relation

2 ()) ⊗ C(T1) ⊗ C(T2), if T = T1 Z T2,
(2)

where 2 is the join cardinality function de�ned on sets of relations,) is the set of relations spanned
by the join tree T ,2 and T1 and T2 are the left and right join subtrees of T , respectively.

Let us instantiate Eq. (2) for two cost functions, �out and �max, which guarantee time-optimality
and space-optimality of the query execution, respectively:

�out ()) = 2 ()) +�out (T1) +�out (T2), (3)

�max ()) = max{2 ()),�max (T1),�max (T2)}. (4)

We can observe that the “⊗” operator has been substituted by “+” and “max”, respectively. We
discuss the applicability of our framework to other cost functions in the literature in Sec. 3.5.

2.3 Join Ordering and Dynamic Programming

By Bellman’s optimality principle [1], the problem of �nding the optimal join tree T ∗ amounts to
�nding the optimal split of a set of relations (into two disjoint sets (1 and (2, i.e., (1 ∩ (2 = ∅ and
(= (1 ∪ (2. Consequently, given a cost function C, the problem can be optimized by the following
dynamic programming (DP) recursion, which closely follows the de�nition of C:

DP(() =
{
0, if |(| = 1

2 (() ⊗ min
∅⊂) ⊂(

(DP()) ⊗ DP((\))), otherwise.
(5)

Indeed, this is the idea explored by Selinger and the subsequent work [30, 44, 48, 49]. In particular,
DPccp [30] optimizes the recursion by considering only sets of relations that induce a connected
subgraph; for clique queries, DPsub and DPccp are both exactly the recursion above. As motivated
in Fig. 1, Eq. (5) is a subset convolution. All previous algorithms evaluate it in the naive way, which
takes $ (3=)-time. DPconv speeds up its computation by employing fast subset convolution [2].

2Having a separate notation for the join tree and the set of relations it spans will prove useful in the following sections.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:5

2.4 Subset Convolution

Subset convolution is one of the important tools in the �eld of exact algorithms [9, 17]. Its fast
counterpart, called Fast Subset Convolution (FSC) [2], represented a breakthrough in the �eld by
reducing the running time from the straightforward $ (3=) to a non-trivial $ (2==2).
Dynamic Programming Speedups. Themain application of FSC is the speedup of several dynamic
programming recursions of well-known NP-hard problems, such as the Steiner tree problem [11]
and min-cost :-coloring [9]. While these problems may seem foreign to our research area, there is
a striking similarity between the dynamic programming recursion of these problems and that of
the join ordering problem. Indeed, they all use an implicit subset convolution. Through our work,
join ordering is now becoming part of this family of problems [3, 9, 11, 37, 43].
While our main result mostly uses FSC in a black-box manner, we present the full machinery

behind it in Sec. 4. Note that for an e�cient implementation of the dynamic programs, we will
revisit the computation of FSC in Sec. 5, and shave a linear factor for generic FSC-based dynamic
programs, as well as several constant factors hidden behind the running time’s big-O notation.

Key Idea. Let us �rst gain an intuition about how subset convolution works at a high level.
First, note that the DP-table is by de�nition a set function: It maps subsets of relations to their
corresponding costs. The usual way to refer to a subset structure is by a subset lattice, in our case
of order =, since we have = relations. This leads to the following setting: Let 5 and 6 be two set
functions on the subset lattice of order =, their subset convolution in the (+, ·) ring is de�ned for
all (⊆ [=] := {1, . . . , =} by

ℎ(() = (5 ∗ 6) (() =
∑

) ⊆(
5 ())6((\)).

Let us �rst make a few observations: First, the above kind of subset convolution, in the (+, ·) ring,
is not yet what we exactly need in DPconv. In the next paragraphs, we gradually introduce the
toolset to support the subset convolution appearing in Eq. (5). Second, naively evaluating the above
equation for all subsets (takes $ (3=)-time. This follows from the fact that for each (we have to
iterate over all its

(=
|(|
)
-many subsets) .3

Where The Speedup Comes From. The faster computation in Björklund et al. [2] has its roots
in a simple observation: One can do a calculation similar to the FFT algorithm [8]. The reason:
FFT was speci�cally designed to speed up sequence convolutions, bringing down the $ (=2)-time
of the naive algorithm to a (still unbeatable) $ (= log=)-time. Its key insight was to (a) map the
original sequence into a Fourier space, (b) perform the convolution in that space as a point-wise
multiplication – which takes linear time instead – and (c) bring the result from the Fourier space
back into the original one. The authors take a similar path, resulting in a running time of $ (2==2).
The perhaps only di�erence to the original FFT algorithm is how the subset functions are mapped to
a similar Fourier space where the convolution can be transformed into a point-wise multiplication.

The Real Deal: Semi-Rings. Dynamic programs de�ned on sets often require the computation to
be worked out in semi-rings. This is also the case in join ordering for�out and�max: The well-known
�out works in the (min, +) semi-ring, while �max works instead in the (min,max) semi-ring. The
(min, +) subset convolution of two set functions 5 and 6, ℎ = 5 ◦ 6, is de�ned for all (⊆ [=] as

ℎ(() = (5 ◦ 6) (() = min
) ⊆(
(5 ()) + 6((\))) . (6)

3Formally,
∑

=

:=0

(
=

:

)
2: = (1 + 2)= = 3= .

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:6 Mihail Stoian and Andreas Kipf

Algorithm 1: DPconv: Using fast subset convolution (FSC) to gradually optimize the dy-
namic programming table.

1: Input: Query graph & = (+ , �), cardinality function 2
2: Output: Optimal cost value w.r.t. C
3: DP[∅] ← +∞
4: DP[{'8 }] ← 0,∀'8 ∈ +
5: for each : in 2, . . . , |+ | do
6: DP′ ← FSC(min,⊗) (DP,DP)
7: DP[(] ← DP′ [(] ⊗ 2 ((),∀(s.t. |(| = :
8: end for

9: return DP[+]

Unlike the previous kind of subset convolution, computing in the (min, +) semi-ring results in a
di�erent time-complexity landscape. Surprisingly enough, in the general setting, the naive $ (3=)-
time algorithm which we saw before has the best running time so far. However, in the case where
the values of the set functions are bounded integers, one can leverage the previous fast subset
convolution for the (+, ·) ring. We will come to this in the next section.

2.5 Rings & Semi-Rings

We have mentioned rings and semi-rings several times so far. We now want to introduce them
in the context of dynamic programming and, more speci�cally, join ordering. We will focus in
particular on the (+, ·) ring and the (min, +) and (min,max) semi-rings. Note that we are only
aiming for an intuitive understanding of why supporting the latter is much more complex than the
simple ring setting, where fast subset convolution can work directly in $ (2==2)-time, as shown
earlier in Sec. 2.4.

Intuition. Within the pair of operators of a (semi-)ring, the �rst one is decisive. In our case, while
the (+, ·) ring has “+” as its �rst operator, both (min, +) and (max,max) have “min”. To understand
the contrast between these, consider the following illustrative example: If we calculate 2+ 3+ 5 = 10

and want to remove one of the �rst terms, e.g., 2, we can recover the sum of the other terms by
using the inverse of 2, i.e., 10 + (−2) = 8. Things are not so clear in the case of “min”: If we have
min{2, 3, 5} = 2 and want to remove 2, we cannot simply recover the minimum of the remaining
elements, min{3, 5}. The underlying problem is that has 2 no inverse. This example may seem
arti�cial at �rst, but this very problem occurs when applying the inverse map to come back from
the Fourier space – essentially step (c) above. How can this be alleviated? What Björklund et al. [2]
propose is a standard trick in algorithms: embed the (min, +) semi-ring in the (+, ·) ring. We explain
and exemplify this technique in Sec. 3.2.

In the following, we relate the join ordering problem to fast subset convolution for the �rst time,
and provide a uni�ed framework that can be instantiated for several cost functions.

3 OUR FRAMEWORK

Let us consider the optimization of an arbitrary cost function C in its associated (min, ⊗) semi-ring
under a generic framework. We will then instantiate the framework for �out and �max, respectively.

3.1 Join Ordering Meets Subset Convolution

The key observation behind our results is the (now trivial) observation that the de�nition of DP-
recursion, Eq. (5), is similar to that of subset convolution, Eq. (6). In particular, we show that join

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:7

Algorithm 2: BuildJoinTree: Recursively extracting the optimal bushy join tree from the
DP-table

1: Input: Subset of relations (, DP-table
2: Output: The optimal bushy join tree
3: if |(| = 1 return (end if

4: for each ∅ ⊂) ⊂ (do

5: if 2 (() ⊗ DP()) ⊗ DP((\)) = DP(() then
6: return (BuildJoinTree()), BuildJoinTree((\)))
7: end if

8: end for

ordering falls into the category of dynamic programs which fast subset convolution has already
been applied to. In our speci�c context, there are a few (minor) issues that need to be addressed
for FSC to be applicable, issues that have also been considered by Björklund et al. [2] for other
problems, namely:

(i) The dynamic program DP, Eq. (5), is de�ned recursively.
(ii) The subset) of (in the same Eq. (5) must not take ∅ nor (as value.

Overview. Both issues are resolved by a simple technique: We apply FSC layer-wise, i.e., we
optimize sets of size 2 �rst, then those of size 3, and so on – this is what we call a layer. Speci�cally,
at each layer : , since the DP-table has been computed for layers : ′ < : , we can directly optimize
DP[(] for all (with |(| = : by a call to FSC. To alleviate issue (ii), we set DP[∅], i.e., the DP-cell
representing the empty set of relations, to +∞.4 Since FSC is called = times, the total optimization
time adds up to $ (2==3gC), where the function gC is tailored to the speci�c cost function C and
accounts for the time overhead of semi-ring operations. We will cover the exact expressions of gC
for individual cost functions in the following sections (see Sec. 3.3 for �out and Sec. 3.4 for �max).
Note that we will shave a factor of $ (=) from the running time of generic FSC-based dynamic

programs, including ours, in Sec. 5, thus reducing the total running time to $ (2==2g�)-time for a
cost function C.
Pseudocode. In Alg. 1, we outline the pseudocode behind our framework DPconv. It takes the
query graph & and the join cardinality function 2 as input and outputs the optimal cost value w.r.t.
the speci�c cost function C to which the semi-ring (min, ⊗) corresponds. It �rst optimizes the base
cases, namely for the empty set of relations and for all sets containing only one relation. The former
are initialized with +∞, as argued above, and the latter with 0, cf. Eq. (5). Then, at each layer : , we
optimize the subsets of size : by calling FSC on the current state of the DP-table (line 6) and then
update the values with the join cardinalities of the subsets (line 7). To this end, note that Alg. 1
can optimize for cross-products out of the box: We simply need to also use the cardinalities of all
cross-products in 2 . The running time remains naturally the same. Finally, we return the optimal
cost represented by DP[+].
Join Tree Extraction. Note that unlike previous algorithms, Alg. 1 does not maintain an OPT-table
that stores the optimal split for each subset (. This is because FSC itself does not keep track of this
information during its execution. In contrast, after the DP-table is fully-optimized, we can extract
the optimal join tree from the DP-table itself, as outlined in Alg. 2. Speci�cally, for each set (, we
�nd the subset) that was intrinsically used in FSC to optimize (, i.e., DP[(] = DP[)] + DP[(\)].
Since there are at most = levels of recursion, the worst-case running time for Alg. 2 reads $ (2==).
4This is not mathematically rigorous. One has to de�ne what +∞ in the speci�c semi-ring is.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:8 Mihail Stoian and Andreas Kipf

Cross-Products.While allowing cross-products can lead to better overall costs [36, 38], the search
space increases exponentially [36]. A prominent way to deal with cross-products is to heuristically
insert them when they are guaranteed to be bene�cial [36]; this tends to be the case when the
estimated cardinality of the input is small enough [26, 38].

A natural question is whether DPconv could also support the optimization of cross-products, and
whether this particular optimization would take more time than previously speci�ed. Similar to
DPsub [48, 49], we can use the cardinalities of the cross-products directly in 2 (line 7, Alg. 1). This
means that DPconv can optimize for cross-products for both cost functions without any overhead.

Query Hypergraphs. A standard way to model arbitrary non-inner joins in the query graph is to
introduce corresponding binary join hyperedges. A binary join hyperedge ℎ = (�, �) connects two
sets of relations � and � [31]. This is a generalization of the regular join edge which connects only
two relations. In the query hypergraph setting, whenever we want to join two sets of relations
connected by a hyperedge, we have to check that both sides are themselves connected and there is a
hyperedge connecting them. Fortunately, since Eq. (5) enforces that the join cardinalities are taken
into account only after the DP-layer has been optimized (lines 6-7, Alg. 1), we can directly specify
which subgraphs are connected (using Ref. [31]); this is independent of whether the subgraph
contains hyperedges or not. Extending our framework to optimize group-by operators optimally,
as in Eich et al. [12], is an interesting future work.

We now come to the embedding technique we motivated and mentioned in Sec. 2.4 that helps us
leverage the running time of the fast subset convolution to our employed semi-rings.

3.2 Embedding Technique

Recall the motivating example in the section on rings and semi-rings (Sec. 2.5). To enable the
existence of the inverse element, Björklund et al. [2] propose to embed the semi-ring into a ring,

Polynomials to the Rescue. The embedding technique maps the values of the set functions to
monomials and then runs the fast subset convolution algorithm in the (+, ·) ring. The convolution
values can then be read from the resulting polynomials. To see why this works, consider the
functions [2, 1, 3, 4] and [5, 0, 1, 2]. When we embed these set functions to monomials, we
obtain [G2, G1, G3, G4] and [G5, G0, G1, G2], respectively. Thus, by running their subset convolution
[G2, G1, G3, G4] ∗ [G5, G0, G1, G2], we can retrieve the �nal values as follows: Consider the value at
001, which is G2+0 + G1+5. Note that multiplication between monomials is simply an addition at the
exponent level, while the minimum—in our case, min{2 + 0, 1 + 5}—is represented by the smallest
exponent in the resulting polynomial.

Representation. To allow for a seamless instantiation of our framework for other cost functions, we
represent the polynomials in coe�cient form, i.e., pairs of exponents and their associated coe�cients.
For instance, we represent 2G + 3G4 as {(1, 2), (4, 3)}.
Limitation. The core limitation of the embedding technique is that the size of the coe�cient forms
exactly corresponds to the largest input value. The reason is that value will be the largest exponent
in the entire embedding of the corresponding set function.

In the following, we instantiate the framework for�out and�max, respectively. In Sec. 6, we show
a simpler algorithm to optimize for �max that bypasses the need for the embedding technique.

3.3 Instantiating �out

In the case of �out, we are working in the (min, +) semi-ring. To implement the embedding, we
simply need to specify how the “+” operator should work – in the most general form, the “⊗”
operator; compare Eq. (2). This corresponds to polynomial multiplication in the coe�cient form.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:9

Let %1 and %2 be two polynomials in coe�cient form. Then %1 ⊗ %2 for an exponent 4 is de�ned as

(%1 ⊗ %2) (4) =
∑

(41,21) ∈%1
(42,22) ∈%2
41+42 = 4

2122. (7)

Since the maximum value of the �out cost function could be,= (recall that, is the largest join
cardinality) and assuming a FFT-based implementation of the convolution in Eq. (7), the factor gout
for supporting �out is $ (,= log,=).

3.4 Instantiating �max

We now specify the embedding for the (min,max) semi-ring. Unlike �out, we need to specify how
the “max” operator should work. Namely, the coe�cient of exponent 4 of two polynomials %1 and
%2 in coe�cient form reads:

(%1 ⊗ %2) (4) =
∑

(41,21) ∈ %1
(42,22) ∈ %2

max(41,42) = 4

2122 . (8)

The intuition is that all exponents below 4 contribute to its �nal coe�cient. If used as in Eq. (8), the
size of the coe�cient formwill still be, , as in the case of�out; this is prohibitively expensive. While
there is indeed a way to mitigate this and obtain a running time of $ (2==4), which is independent
of, , we discovered a much simpler algorithm with an even better running time of$ (2==3), which
does not require the embedding technique. This is understandable due to the fact that, in the
(min,max) semi-ring, we are not creating new values, as is the case in �out. To not burden the
reader with the technicalities of the �rst approach, we will present directly the simpler algorithm;
we continue its presentation in Sec. 6.

3.5 Beyond �out and �max

Beside�out and�max, literature on join ordering also considers other cost functions: Moerkotte [29]
mentions cost functions related to (a) nested-loop, (b) hash, and (c) sort-merge joins. These cost
functions have been mainly designed for left-deep join trees. However, it is an easy exercise to
remodel them to work on bushy joins trees. We show that DPconv can be extended to the cost
function associated to the sort-merge join.
The problem is that these cost functions require that 2 ()) be rewritten in terms of T1 and T2.

That is, instead of 2 ()), we would need to write 2 ()1,)2); see the below example. The key idea to
solve this is to �rst check whether 2 ()1,)2) can be separated into two independent terms depending
only on)1 and)2, respectively.

When It Works. We take as running example the sort-merge join cost. Adapting the de�nition by
Moerkotte [29, Sec. 3.1.3], we have:

Csmj (T) =

0, if T is a single relation

2 ()1) log 2 ()1)
+ 2 ()2) log 2 ()2)
+�smj (T1) +�smj (T2), if T = T1 Z T2,

(9)

where)1 and)2 are the set of relations corresponding to T1 and T2, respectively, and 2 ()1) and
2 ()2) are the corresponding join cardinalities. Note the change to our original 2 ()) in Eq. (2): The
split T = T1 Z T2 now plays a role. For our framework, this means that we can no longer simply
optimize the subset convolution part separately (see line 6 of Alg. 1). We also need to account for
the actual sort-merge join cost at the current join, 2 ()1) log 2 ()1) + 2 ()2) log 2 ()2). However, there

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:10 Mihail Stoian and Andreas Kipf

is a simple solution to �x this: We can separate the sort-merge join cost and integrate that into the
corresponding side, i.e., either T1 or T2. Concretely, we need to modify line 6 in Alg. 1 as follows:

FSC(min,+) (DP + 2 log 2),

where the inner function, DP + 2 log 2 , is applied point-wise to each set (⊆ [=]. Put simple, we
also add to each DP-entry the sort-merge join cost corresponding to each side. This does not incur
a large overhead in the optimization time, as the addition can be performed when pre-processing
the zeta transforms of the DP-layers (see Sec. 5.1).

When It Does Not Work. Note that this adaptation to the sort-merge join worked because we
could split the initial 2 ()1,)2) into two separate cost factors that could be “sinked” in the entries
of the DP table. To support other cost functions, they need to have a similar additive separation
property. For instance, the nested-loop join cost, 2 ()1)2 ()2), does not enjoy this property. This
means that our subset convolution based framework, DPconv, cannot be extended to this cost
function. A similar situation holds for the hash-join cost, at least in the (classic) setting we are
considering: 2 ()1,)2) = 1.2max{2 ()1), 2 ()2)}. This extension from Moerkotte’s de�nition mainly
designed for left-deep join trees [29, Sec. 3.1.3] takes into account that the hash-table is built on
the smaller side, known as the build side. The issue is that “max” in 2 ()1,)2) destroys its additive
separability into two cost functions depending only on)1 and)2. Therefore, the hash-join cost
function cannot also be supported in our framework.

4 FAST SUBSET CONVOLUTION

We next describe Fast Subset Convolution (FSC). We take a closer look at FSC from a practical
perspective, so that in Sec. 5 we can shave the promised $ (=)-time factor from the running time
of DPconv. In the following, we adopt the notation from the Parameterized Algorithms book [9],
since it has established itself in the literature compared to that of Björklund et al. [2].

4.1 Zeta Transform

A fundamental operation in FSC is the zeta transform, de�ned as

(Z 5) (() =
∑

) ⊆(
5 ()), (10)

for any (⊆ [=]. That is, the zeta transform sums 5 at all subsets of (. Naively, this can be computed
in $ (3=)-time for all (⊆ [=]. However, we can compute it in $ (2==)-time by observing that we
can reuse the computation done for subsets. We detail this in Sec. 4.4.

4.2 Ranked Convolution

Given Z 5 and Z6, the zeta transform of the actual convolution ℎ = 5 ∗ 6, i.e., Zℎ, can now be
computed point-wise. To this end, Björklund et al. [2] employ a ranked convolution. Formally,

(Zℎ) ((, A) =
A∑

3=0

(Z 5) ((, 3) (Z6) ((, A − 3), (11)

for any (⊆ [=], where |(| = A . Thus, we have to apply a zeta transform for each rank, i.e., for each
cardinality in {0, . . . , =}. The ranked convolution can then be computed naively in $ (2==2), as for
each rank A we need to iterate over all 3 ≤ A .

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:11

f

111 : 1

110 : 1

101 : 0

100 : 2

011 : 3

010 : 0

001 : 2

000 : 1

g

2

0

1

1

0

2

0

0

rank + ζ

1 + 2

Ranked ζf

1 1 1 1 1 1 1 1

0 2 0 2 2 4 2 4

0 0 0 3 0 0 1 4

0 0 0 0 0 0 0 1

000 001 010 011 100 101 110 111

Ranked ζg

0 0 0 0 0 0 0 0

0 0 2 2 1 1 3 3

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 2

000 001 010 011 100 101 110 111

Convolution

3

Ranked ζh

0: 0 0 0 0 0 0 0 0

1: 0 0 2 2 1 1 3 3

2: 0 0 0 4 2 5 6 13

3: 0 0 0 6 0 4 3 18

000 001 010 011 100 101 110 111

µ

4

Ranked h

0 0 0 0 0 0 0 0

0 0 2 0 1 0 0 0

0 0 0 4 2 3 4 0

0 0 0 6 0 4 3 5

⊕gather

5

000 001 010 011 100 101 110 111

h = f ∗ g

5111 :

4110 :

3101 :

1110 :

4011 :

2010 :

0001 :

0000 :

Fig. 2. Visualizing the fast subset convolution (FSC), outlined in Lst. 3: 1○ We rank the set functions 5 and 6
and 2○ apply the zeta transform to obtain Z 5 and Z6, respectively. 3○We perform the ranked convolution
between Z 5 and Z6. 4○We apply the Möbius transform to obtain the ranked ℎ. 5○ Finally, we reconstitute
ℎ = 5 ∗ 6, the actual subset convolution. We highlight in color the steps needed to compute the second rank
“slice” of Zℎ, namely (Zℎ) (:, 2), during ranked convolution (as in Sec. 4.2). Intuitively, we need to sum up the
dot products between the corresponding slices, i.e., (Z 5) (:, 0) with (Z6) (:, 2), (Z 5) (:, 1) with (Z6) (:, 1), and
(Z 5) (:, 2) with (Z6) (:, 0).

4.3 Möbius Transform

To obtain the actual convolution, one applies theMöbius transform rank-wise. TheMöbius transform
is indeed the inverse of the zeta transform, i.e., Z ` = `Z = id, and is de�ned for any (⊆ [=] as

(`5) (() =
∑

) ⊆(
(−1) |) | 5 ()) . (12)

A full-�edged example of FSC is shown in Sec. 4.5 and its associated Fig. 2.

4.4 Implementation

4.4.1 Zeta Transform. A naive evaluation of Eq. (10) leads to an $ (3=)-time algorithm, as for each
subset we are to sum up along all its subsets. However, there is a faster way computing it, commonly
referred to as Yates’ algorithm [52]. De�ne 5̂0 (() = 5 (() for all (⊆ [=], and then iterate for all
9 = 1, 2, . . . , = and (⊆ [=] as follows [2]:

5̂9 (() =
{
5̂9−1 (() if 9 ∉ (,

5̂9−1 ((\ { 9}) + 5̂9−1 (() if 9 ∈ (.
(13)

By induction, one can show that 5̂= (() = (Z 5) (() for all (⊆ [=]. The computation of Eq. (13)
takes $ (2==) operations, as for each subset (we need to iterate over its elements. Lst. 1 shows an
implementation of Eq. (13).

1 zeta(f):

2 for (d = 0; d != n; ++d):

3 for (S = 0; S != 2**n; ++S):

4 if S & 2**d:

5 f[S] += f[S ^ 2**d]

Listing 1. Zeta transform

4.4.2 Möbius Transform. The Möbius transform can be computed in a similar way. De�ne 5̌0 (() =
5 (() for all (⊆ [=], and then evaluate the following recursion [2]:

5̌9 (() =
{
5̌9−1 (() if 9 ∉ (,

− 5̌9−1 ((\ { 9}) + 5̌9−1 (() if 9 ∈ (.
(14)

Then one can show that 5̌= (() = (`5) (() for all (⊆ [=] and the computation happens in $ (2==)
operations as well.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:12 Mihail Stoian and Andreas Kipf

1 FSC(f, g):

2 for (r in [0, n]):

3 // Rank f and g

4 for (S with |S| = r):

5 f[S, r] = f[S]

6 g[S, r] = g[S]

7

8 // Zeta transform

9 zf[S, r] = zeta(f[:, r])

10 zg[S, r] = zeta(g[:, r])

11

12 // Ranked convolution

13 for (d in [0, r])

14 zh[:, r] += zf[:, d] * zg[:, r - d]

15

16 // Moebius transform

17 h[:, r] = mu(zh[:, r])

18

19 // Reconstitute h

20 for (S in [0, 2**n]):

21 h[S] = h[S, |S|]

1○

2○

3○

4○

5○

Fig. 3. Fast subset convolution, visualized in Fig. 2.

A sketch of the entire FSC algorithm is shown in Lst. 3. We use the already-established Python’s
slicing notation “:” to denote an entire axis of the array, in our case, indexed by bitsets corresponding
to the actual sets of relations. We next show a working example.

4.5 Example

To facilitate the understanding of how fast subset convolution works, we provide a working example
in Fig. 2. In particular, we visualize the steps of Lst. 3. Our example considers two set functions, 5
and 6, of size 8, i.e., a subset lattice of size 3. Note that we have combined steps 1○ and 2○ in Fig. 2
into a single step.

1○ Rank. In the �rst step, we create as many rank “slices” as there are set cardinalities; in our
case, there are 4 rank slices in total. Initially, they all contain only the values corresponding to
the positions of the same cardinality. For instance, the slice corresponding to rank 2 is initially
comprised of the values at positions 011, 101, and 110. Accordingly, these positions and values are
displayed in the same color.

2○ Applying Zeta. Once we created the rank slices, we can now apply the zeta transform to them.
Recall its de�nition in Eq. (10): For each set (, we sum all the values of 5 (and analogously for 6) of
at the indices of (’s subsets. To show this, consider the same rank slice 2 of Z 5 : The value at 111 –
which is 4 – is the sum of 3 + 1. Similar in the rank slice 1 of Z6: The value at (Z6) (111, 1) is made
up of the non-zero values 6(010) and 6(100).
3○ Ranked Convolution. Once both ranked Z 5 and Z6 have been computed, we can run the
(ranked) convolution between them, as described in Eq. 11. We visualize the steps for computing
the rank slice 2 of Zℎ in Fig. 2, namely: The colored arrows connecting (Z 5) (:, 0) with (Z6) (:, 2),

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:13

(Z 5) (:, 1) with (Z6) (:, 1), and (Z 5) (:, 2) with (Z6) (:, 0) show that we need to multiply these rank
slices to obtain (Zℎ) (:, 2). As pointed out in Eq. (11), we simply perform a dot product between
these and sum up the results. For instance, to obtain (Zℎ) (111, 2), we need to perform the following
calculation: 1 · 1 + 4 · 3 + 4 · 0 = 13.

4○ Applying Möbius. To obtain the actual “ranked” ℎ, we have to apply the Möbius transform
onto ranked Zℎ. As explained in Sec. 4.3, the Möbius transform is the inverse of the zeta transform.
Once this is done, the next paragraph explains how to obtain the �nal subset convolution result,
ℎ. The Möbius transform is applied as in Eq. (12), namely we consider all the subsets of a set (
and subtract the values where the subset cardinality is odd, and add those for even cardinality. For
instance, ℎ(111, 2) is computed as follows: The values Zℎ(100, 2), Zℎ(111, 2) are at odd cardinalities,
so we subtract their values, while Zℎ(100, 2), Zℎ(101, 2), and Zℎ(110, 2) are at even cardinalities, so
we add them. In total, these results in −4 − 13 + 2 + 5 + 6 = 0, which is exactly ℎ(111, 2).
5○ Gather. Finally, once the ranked ℎ has been fully computed by applying the Möbius transform
to Zℎ, we can obtain the �nal ℎ by taking a reverse process to step 1○: Instead of scattering the
set functions to rank slices, we now gather the rank slices into one set function. This is done by
simply taking the positions from the corresponding rank slice and putting these into ℎ; this is also
highlighted by the corresponding colors. For instance, to collect the positions 011, 101, and 110,
we take them from the rank slice 2, since all these subsets have cardinality 2.

4.6 Running Time

Let us calculate the total running time of FSC: The = zeta and Möbius transforms take in total
$ (2==2)-time, while the rank convolution itself takes $ (2==2)-time.

When used as is in dynamic programming recursions, the running time of FSC is multiplied by
a factor $ (=). To this end, we show in the next section how to improve the running time from
$ (2==3) to$ (2==2). To motivate this, note that a slowdown of 20x for = = 20 in the context of join
ordering can make the di�erence between a practical and an impractical algorithm.

5 LAYERED DYNAMIC PROGRAMMING

Subset convolution is usually employed in de�nitions of dynamic programs (as our own) where
it is called to optimize the :th layer of the DP-table (in our case, line 6 in Alg. 1). As previously
argued, this call contains a lot of redundancy.

A �rst observation, (★), is that, even though we call FSC on the entire DP-table (Alg. 1, lines 6-7),
we will only update the table for subsets (of size exactly : . Taking a look at the internals of FSC
explained in Sec. 4, we observe that the ranked convolution, Eq. (11), actually computes ℎ̂(:, A) for
each A in each call. This is detrimental, as we will use only the :th layer ℎ̂(:, :) in the :th call. A
second observation, (★★), is that the DP-table itself does not change for subsets of size less than : .

In the following, we explain how one can improve the computation of the transforms and that of
the ranked convolution given these two observations to reduce the time-complexity of FSC-based
DPs from $ (2==3) to $ (2==2), hence shaving a $ (=) factor.

5.1 Layer-Wise Zeta Transform

With this setting in mind, we can adapt the zeta transforms5 intrinsically used in Alg. 1 to run
faster. Namely, at layer : > 1, we do not need to recompute the zeta transforms (Z 5) (:, 9), with
9 < : , since due to observation (★★), these do not change once computed and can, hence, be cached
and reused during the entire computation. Consequently, at the :th call to FSC, we only need to
compute (Z 5) (:, : − 1).
5The plural is intended.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:14 Mihail Stoian and Andreas Kipf

5.2 Layer-Wise Ranked Convolution

In the same manner, by observation (★), we may skip the outer for-loop (line 2, Lst. 3) and directly
compute (Zℎ) (:, :) once (Z 5) (: , : − 1) has been computed as previously argued. Notably, due to
symmetry – recall that we actually call FSC with the DP-table – we may only iterate 3 until ⌊ 8

2
⌋ and

multiply 5 (:, 3)6(:, 8 −3) by 2 (apart from the case when 3 is indeed equal to 8 −3). Finally, we apply
the Möbius transform on (Zℎ) (:, :) to obtain the :th layer of the DP-table (this is symbolically
denoted by DP′ in Alg. 1).
Alone these two optimizations shave an $ (=)-overhead from the running time. We, however,

present an additional optimization which, albeit does not reduce the asymptotic time complexity, it
does indeed save another constant factor.

5.3 Avoiding Useless Multiplications

Recall that our algorithms will work with coe�cient forms of polynomials, as described in Sec. 3.2.
Hence, the multiplication operator in the ranked convolution (Eq. (11) and Lst. 3, line 13), is rather
expensive since this corresponds to the “⊗” operator. We show how to reduce the number of
multiplications. This optimization also holds for the simpler algorithm for �max in Sec. 6.

The multiplications take place between ranked zeta transforms. Thus, we have (Z 5) ((, A) = 0 for
|(| < A , for any rank A . This is because when we apply the zeta transform, we �rst �ll the A th layer
of the subset lattice with the values of 5 (() with |(| = A , and then, by construction, only supersets

will be iterated. Hence, for a rank A , sets (with |(| < A will never be touched in the computation of
(Z 5) (:, A).
With this observation, we can prune the range of sets (that we need to consider in line 13 (Lst. 3)

even further. In the following, let 5 = 6, as in the context of DPconv. We have:

∀(. |(| < 3 ⇒ (Z 5) ((, 3) = 0,

∀(. |(| < A − 3 ⇒ (Z 5) ((, A − 3) = 0.

Consequently, we can simply skip those sets (with |(| < max(3, A−3). Another further optimization
is to restrict ourselves to sets (with |(| ≤ : . This is because since we only require the :th layer,
the Möbius transform only needs to consider sets of maximum cardinality : .

6 A SIMPLE ALGORITHM FOR �max

While our framework can support �max (see Sec. 3.4), we found another a much simpler algorithm
that does not require the (rather intricate) implementation of the (min,max) semi-ring.

Key Idea. The key insight is the following: Since we are applying only “min” and “max” operations,
the optimal solution will take its value in the set of join cardinalities. Hence, we can binary search

the optimal value OPT. To check whether a given value W quali�es to be an optimal solution, we
apply a technique used by Kosaraju for exact (min,max) sequence convolution [22], which we will
use on the DP-table itself. The strategy is to �rst put the DP-entries l.e.q. W on 1 and those greater
than W on 0, and then run FSC, in the (+, ·) ring, on this modi�ed DP-table. In particular, this refers
to one of the layers of the DP-table. We also use our improved layered dynamic programming
described in Sec. 5.

Pseudocode.We outline the pseudocode of the algorithm in Alg. 3. It �rst sorts the join cardinalities
in descending order and then performs a binary search on them, searching for the one which
separates feasible W ’s from infeasible ones (note that the maximum join cardinality is always
feasible, but may not be the optimum). To this end, we employ Iverson’s bracket notation: Given a

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:15

Algorithm 3: Simpler DPconv[max]: Optimal cost w.r.t. �max in $ (2==3)-time

1: Input: Query graph & = (+ , �)
2: Output: Optimal cost value w.r.t. �max

3: 2B ← sort([2 (() | (⊆ [|+ |]], decreasing=True)
4: ?, BC4? ← 0, 2 |+ |−1

5: while BC4? > 0 do

6: W ← 2B [? + BC4?]
7: DP← LayeredDP([2 ≤ W]) (Sec. 5)
8: if DP(+) > 0 then

9: ? ← ? + BC4?
10: end if

11: BC4? ← BC4? / 2
12: end while

13: return 2B [?]

property % , [%] returns 1 is the property is true, 0 otherwise. In our case, [2 ≤ W] is the following:

(↦→
{
1, if 2 (() ≤ W,
0, otherwise.

Once the DP-table has been computed, the algorithm checks whether this value was feasible, i.e.,
whether + has a positive value in the DP-table. If that is the case, we search for smaller W ’s. The
algorithm concludes by returning the smallest W for which DP(+) is still positive. In the same
manner as for the standard DPconv, we can build the join tree once we found the optimal value
(see Alg. 2). We visualize Alg. 3 in Fig. 4.

ą γ ď γ

LayeredDP

γγ

DPrV s “ 0DPrV s ą 0

B
I

N

A

R

Y S
E

A

R

C
H

Fig. 4. Visualizing Alg. 3.

Running Time. Given our improved implementation of layered dynamic programming (Sec. 5),
our new Alg. 3 runs in time $ (2= log 2= + 2==2 log 2=) = $ (2==3). The additional factor log 2= in
the second term comes from the running time of the binary search on the 2=-sized sorted list of
join cardinalities.

Constant-Factor Optimizations. While this is su�cient to outperform the standard exact algo-
rithm, there is still an optimization that can be done that only reduces the constant factor hidden

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:16 Mihail Stoian and Andreas Kipf

in the running time. Namely, for the �rst layers of the DP-table, we directly hardcode the dynamic
programming solution for subsets of cardinality l.e.q. 6. This removes the overhead of subset
convolution for these small layers. Note that we still need to compute the zeta transforms of these
layers, since they will be used in later layers (as in Lst. 3, line 13).

7 APPROXIMATION ALGORITHM

Motivation. A prominent result on approximation algorithms for the join ordering problem is due
to Chatterji et al. [5], who show that in the case of linear join trees, the problem of approximating

the optimal cost within a factor of 2Θ(log
1−X) isNP-hard, for any X > 0. We approach the problem

from the other end:

How fast can we approximate the optimal �out value within a factor of (1 + Y)?

Indeed, a fast approximation algorithm can enable a faster evaluation of the optimal plan, while
incurring a small overhead, speci�ed by the precision parameter Y.

Our Approximation Algorithm. To show the bene�t of reducing the problem of join ordering to
subset convolution, we now show how to obtain an $̃ (23=/2/

√
Y)-time approximation algorithm

that optimizes �out within a multiplicative factor of (1 + Y). In particular, note that our algorithm is
still exponential. However, it shows that the$ (3=)-time barrier can be overcome when asking about
(1 + Y)-approximation algorithms. This is the �rst result of this kind, which we state in Thm. 7.2.

7.1 Approximate Min-Sum Subset Convolution

Following a recent result by Bringmann et al. [4] and the so far unexplored connection between
min-plus sequence convolution and min-sum subset convolution, where the latter is the one we
reduced join ordering to, Stoian [46] has shown that min-sum subset convolution can be (1 + Y)-
approximated in $̃ (23=/2/

√
Y)-time; here, $̃ hides poly-logarithmic factors in the input size and Y

(note that the input size also consists of the join cardinality function, which is represented as a
vector of size 2=). For completeness, this is their main theorem:

Theorem 7.1 ([46, Thm. 3]). (1 + Y)-Approximate min-sum subset convolution can be solved in

$̃ (2 3=
2 /
√
Y)-time.

This result implied approximation algorithms for several problems that reduce to subset con-
volution, e.g., the prize-collecting Steiner tree problem [39]. Thus, by our reduction of the join
ordering problem to min-sum subset convolution in Sec. 3, we can obtain an (1 + Y)-approximation
algorithm for the join ordering problem as well.

7.2 Approximate Join Ordering

The approximation algorithm follows their simple scheme:

Theorem 7.2. If (1+ Y)-approximate min-sum subset convolution runs in) (=, Y)-time, then (1+ Y)-
approximate join ordering can be solved in $ () (=, Y

=−1))-time.

Proof. Consider the evaluation of the min-sum subset convolution between the DP-table and
itself at each of the = − 1 optimization layers; see Alg. 1, line 6. Fixing Y′ > 0 for each convolution
call, we obtain a cumulative relative error bounded by (1+Y′)=−1. By setting Y′ = Θ(Y

=−1), we obtain
a relative error of at most Y. □

Corollary 7.3. (1 + Y)-Approximate join ordering can be solved in $̃ (2 3=
2 /
√
Y)-time.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:17

10−4 10−3 10−2 10−1 100

ε

0.0

0.5

1.0

#
O
p
e
ra
ti
o
n
s

×10
20

O(3n)

Õ(23n/2/
√

ǫ)

Fig. 5. Theoretical number of operations of the exact$ (3=)-time algorithm and the $̃ (23=/2/
√
Y)-time (1+ Y)-

approximation algorithm for = = 40 and varying Y’s.

In particular, we aim to optimize �out (since our �max algorithm in Sec. 6 already achieves a
better running time). This is particularly interesting since the running time of the approximation
algorithm does not depend on, , the largest join cardinality. To get an intuition for the running
time of the approximation algorithm, we plot in Fig. 5 the theoretical number of operations of the
exact $ (3=)-time algorithm and the $̃ (23=/2/

√
Y)-time (1 + Y)-approximation algorithm for = = 40

and varying Y’s. For Y = 10−2, i.e., the optimal value is approximated by a multiplicative factor of
(1 + 10−2), the runtime of the approximation algorithm outperforms that of the exact algorithm.
Note that the intricate details in the approximation framework by Bringmann et al. [4] make it

hard to have an immediate practical algorithm out of the above theoretical result. We discuss this
in Sec. 11.

8 FUSING �out AND �max

We can indeed regard the faster optimization of �max from another perspective: What if we could
optimize the optimal �out-value under the constraint that the intermediate size is not too large? To
show the motivation behind this problem, consider the optimization of �out in the case of Q19d in
JOB [25]. When using the true cardinalities, the max. intermediate join size of the optimal plan
w.r.t. �out is 3,036,719 tuples. In contrast, directly optimizing the largest join size via �max only
results in an intermediate size of 1,760,645 tuples; this reduces the largest intermediate size by
1.72x. The same can be observed in the recently introduced CEB benchmark: There is a query,6

whose optimal �out plan has the same behavior. Namely, the largest intermediate join is consists of
11,637,593 tuples, yet if we directly optimized under �max, we obtain a largest intermediate join of
9,805,312 tuples.

8.1 Capping �out

Having optimized for�max does not represent any impediment in further re�ning the plan w.r.t.�out.
Indeed, we propose a novel cost function to be optimized for, namely the �cap, motivated by the
previous �ndings. Namely, we propose to jointly optimize �out and �max, i.e., minimize the sum
of the intermediate join sizes while enforcing that the largest one is equal to the optimal �max

value. This ensures that we both have a bounded intermediate size (space-optimality) and the best
time-optimal plan under this constraint.

The drawback is naturally that this joint optimization now needs two optimizer passes: (i) Find
the optimal �max value, and (ii) optimize �out so that all intermediate join sizes are bounded above
by that value. To reduce the optimization time of the second pass, we can reduce the search space

6Speci�cally, 11a/5ec72a84a33f3b3b1f4e53b734731ab0bbecebba.sql

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:18 Mihail Stoian and Andreas Kipf

12 14 17

Number of relations (n)

0

10

20

30

O
p
ti
m
iz
at
io
n
ti
m
e
[m

s] JOB

DPccp: Cout

DPccp: Ccap

12 14 16

Number of relations (n)

0.00

0.01

0.02

0.03

CEB

Fig. 6. Overhead in optimization time for �cap on JOB [25] and CEB [32], i.e., optimizing �out under the
constraint that the largest intermediate size is the same as when optimizing with �max (two optimization
phases).

of the optimization problem, by observing that in DPccp (and DPsub) we can directly prune the
intermediate solutions the size of which exceed the optimal �max value.

We visualize this preliminary overhead in Fig. 6. Note that reducing this overhead is the motiva-
tion behind our novel framework, which achieves strongly-polynomial speed-up over standard
join ordering algorithm, DPccp [30]. In Fig. 6, we show the price we have to pay for this joint
optimization. We optimize the queries of the JOB [25] and CEB [32] benchmarks, respectively, via
DPccp as follows: For �out, this is the classic scenario. For �cap, we �rst optimize �max via DPccp
and then run DPccp again, optimizing �out under the constraint that any intermediate join size
is l.e.q. the previously computed �max value. In the case of JOB, for the largest join queries of 17
relations, the overhead is of 10ms. This is still negligible, but as we will show in Sec. 9.2, for larger
join clique queries the overhead tends to be over 22%.

8.2 Reducing Optimization Time

The optimization of �cap has in itself, �rst, the optimization of �max, and then a pruned �out

optimization. If using the standard exact join ordering algorithm, DPccp, the running time of the
�max optimization is still$ (3=). As discussed in Sec. 6, we can reduce this running time to$ (2==3).
Therefore, we can simply use DPconv[max] and reduce the optimization time. The second pass,
that of optimizing �out under the constraint that the largest intermediate size does not exceed this
value, remains as before. The advantage is that, since both the �rst pass is sped up via DPconv[max]
and the second pass has a pruned search space, we show that we are even faster than a “vanilla”
�out optimization. We show the corresponding experiments in Sec. 9.2.

9 EVALUATION

We show by means of experiments that DPconv achieves a signi�cant speedup over the standard
$ (3=)-time join ordering algorithm.

Experimental Setup. We perform our experiments on a c5.xlarge EC2 instance which has
an Intel Xeon Platinum 8275CL processor with 4 vCPUs and 8 GB of memory. All join ordering
algorithms are implemented in C++.

Benchmark Sets.We use the setup from the CEB benchmark [32], which already provides the
true cardinalities for IMDb for their 13,644 queries and the 113 queries of JOB [25] (note that this
setup has already been used for Fig. 6). For clique queries, we generate random join cardinalities ≤
100M, with the constraint that 2 (() ≤ 2 ((1)2 ((2),∀(1, (2, ⊊ (, (1∩(2 = ∅, (1∪(2 = (, i.e., we do not
exceed the cardinality of the cross-product of any possible combination of subset pairs. Note that
since we directly optimize on clique queries, the running times can also be considered as that of

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:19

5 10 15 20 25

Number of relations (n)

0

200

400

600

800

O
p
ti
m
iz
at
io
n
ti
m
e
[s
]

Optimizing clique queries with Cmax

DPsub[max]: O(3n)

DPconv[max]: O(2nn3)

Fig. 7. Clique queries optimization: Both DPsub[max] and DPconv[max] optimize for �max.

optimizing for cross-products, as discussed in Sec. 3.1. Moreover, since subset convolution does not
(yet) exploit sparse set functions—in our case, corresponding to unconnected query subgraphs—the
running time is thus independent of the cyclicity of the query graph; we provide a discussion of
this in Sec. 11.
Whenever we compare to the A*-based algorithm by Ha�ner and Dittrich [18], we use their

benchmark set. We use the same evaluation scripts,7 i.e., we use their generated cliques and
cardinalities. We show the optimization times for cliques of up to 18 relations in Fig. 8.8

Competitors. The standard exact algorithms, DPccp and DPsub, follow the implementation in the
reproducibility experiment of Neumann and Radke [34].9 We also implement the bitsets as 64-bit
integers, which we wrap with helper functions to provide iterators of subsets. DPconv uses all the
optimizations described in Sec. 5 for layered dynamic programs. The optimization time includes
the time for extracting the join tree from the layered dynamic programming.

9.1 Super-Polynomial Speedup

Within our framework, DPconv, we have shown that join ordering can be done faster than $ (3=).
Speci�cally, we provided an$ (2==2,= log,=)-time algorithm for optimizing�out, which is $̃ (2=)
when the largest join cardinality, is polynomial in=, and an$ (2==3)-time algorithm for optimizing
�max; this is the �rst super-polynomial speedup for the join ordering problem. While the algorithm
for �out is not a practical one, we devised in Sec. 6 a simple and practical algorithm for �max.

DPconv vs. DPsub. We benchmark on clique queries, as these are the hardest queries to optimize
for [33]. In particular, DPsub excels at this type of queries since DPccp has the overhead of exploring
the graph itself (note that this is also the case in the experiments of the original paper [30]). We
show the optimization times for cliques of up to 24 relations in Fig. 7. The optimization time is
averaged for each = ∈ {3, . . . , 24} across 5 randomly generated instances.
The �rst observation is that our new algorithm is indeed practical: It starts being faster than

DPsub after 17 relations, and for a large join query of 24 relations, it has a speedup of 29x. Note
that = = 17 is still in the regime of the JOB benchmark. However, JOB has sparse query graphs,
hence DPccp is enough for such queries, as already shown in Fig. 6.

7Their reproducibility experiment is available at: https://gitlab.cs.uni-saarland.de/bigdata/mutable/evaluation
8In the current version, the evaluation script starts to timeout after 19 relations; we increased the default timeout to 800s,
yet this did not solve the issue.
9https://db.in.tum.de/∼radke/papers/hugejoins-reproducibility.pdf

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

https://gitlab.cs.uni-saarland.de/bigdata/mutable/evaluation

234:20 Mihail Stoian and Andreas Kipf

4 6 8 10 12 14 16 18

Number of relations (n)

0

5

10

15

O
p
ti
m
iz
at
io
n
ti
m
e
[s
]

Optimizing clique queries: DPconv vs. A* [18]

A∗
↑ + hzero: Optimizes Cout

DPconv[max] + DPsub[out]: Optimizes Ccap

DPconv[max]: Optimizes Cmax

Fig. 8. Clique queries optimization (setup as in Ref. [18]): The A*-based optimizer by Ha�ner and Di�rich [18]
optimizes for �out, while DPconv[max] optimizes �max in $ (2==3)-time, and the joint combination between
DPconv[max] and the pruned DPsub[out] optimizes for �cap (Sec. 8).

15 16 17 18 19 20 21 22 23 24

Number of relations (n)

0.5

1.0

2.0

3.0

4.0

5.0

6.0

7.0

S
lo
w
d
ow

n
ov
er

va
n
il
la

C
o
u
t

Optimizing clique queries with Ccap

DPsub[max] + DPsub[out]

DPconv[max] + DPsub[out]

Fig. 9. The slowdown of optimizing�cap for large clique queries over a “vanilla”�out optimization. The baseline
is DPsub[out]. While a naive optimization is (naturally) slower, using DPconv[max], the instantiation of our
novel framework for �max, in the first optimization pass, and followed by the pruned �out optimization, we
obtain an optimization time even faster than that of a “vanilla” �out.

DPconv vs. A*. Ha�ner and Dittrich [18], as part of their mutable database system, have recently
shown that, indeed, using an �∗-based optimizer, one can reduce the number of ccp to be explored.
Note that this indeed leads to an optimal solution. In particular, unlike DPconv[max], the practical
instantiation of DPconv for�max, their algorithm optimizes for�out. Thus, the following experiment
solely serves to compare the running times, as the cost functions to be optimized are di�erent.

9.2 Optimizing �cap

We show that the optimization time of�cap can bemade practical using our novel DPconv framework.
Recall that optimizing �cap requires two optimization passes. We will focus on the �rst pass, in
which we optimize for �max. The reason is that we can use DPconv[max], the instantiation of our
novel framework DPconv for the �max cost function. This reduces the running time of this pass
from $ (3=)-time to $ (2==3)-time. This is particularly signi�cant for large join queries.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:21

To this end, in Fig. 9, we show the slowdown of optimizing �cap compared to a “vanilla” �out

optimization. We benchmark on clique queries, as previously argued. To not clutter the plot, we
only keep DPsub as the baseline for clique queries. Thus, the baseline is the optimization of�cap via
DPsub, namely we �rst optimize �max and then run a pruned �out optimization, i.e., we then skip
the subsets whose intermediate size is larger than this latter value. Our proposed algorithm replaces
DPsub[max] with DPconv[max] in the �rst pass. We �rst observe that, naturally, the naïve �cap

optimization is slower than the “vanilla” �out optimization (slow-down is over 22%). In contrast,
having both a super-polynomial speedup for the �rst optimization due to DPconv and a pruned
search space for the second pass, we are even faster than the “vanilla” �out optimization after 21
relations. Compared to the A*-based algorithm, the optimization of �cap outperforms that of �out

after 14 relations as well.

Analyzing �cap on CEB. Out of the 13,644 queries of the CEB [32] benchmark, there are 2,873
queries for which the largest intermediate size in the optimal �out plan is 6.8% larger than the
optimal�max intermediate size. For these queries,�max looses 22.8% in the optimal�out value, while
�cap naturally reduces this to only 9.5%.

10 RELATED WORK

The literature on join ordering is extensive. This is partly because of the e�ect that a bad join order
can have on the query performance and hence the natural desire to avoid such cases. As a result,
there are a few exact algorithms, a small number of polynomial-time algorithms for restrictive cases,
several greedy (non-optimal) algorithms, and a handful of optimizers based on general-purpose
solvers. Our work falls into the category of exact algorithms. In particular, no previous work has
observed the link to subset convolution, neither did it achieve a running time as we propose. We are
the �rst to break the$ (3=) time-barrier for the join ordering problem on generic query graphs (and
bushy solutions). We divide the related work into exact, approximation, and best-e�ort algorithms.
The latter are either polynomial-time algorithms for special instances or greedy algorithms without
any approximation guarantee.

10.1 Exact Algorithms

The history of the join ordering problem starts at Selinger, proposing an $ (4=)-time algorithm,
commonly referred to as DPsize [44]. To some extent, this algorithm does subset convolution in the
naive way, i.e., it iterates all subsets) of a given set (of relations, but does not do that in time 2 |(| ,
but rather in time 2= . Vance and Maier [49] observed this limitation and �xed it within the DPsub
algorithm, which takes time $ (3=). Since $ (3=) seemed rather rigid, not being adaptive to the
graph topology, Ono and Lohman [36] analyzed the minimum number of subplan pairs that have
to be iterated in any dynamic program. To this end, Moerkotte and Neumann [30] designed DPccp,
which emulates to the graph topology and obtains as time-bound exactly the number of connected
complement pairs (#ccp’s). However, the running time $ (3=) still persisted. In their recent work,
Ha�ner and Dittrich [18] showed that using the A* algorithm, one can obtain an algorithm which
still outputs the optimal plan without having to explore all #ccp’s. This is indeed a promising result,
as it shows that the lower-bound of #ccp can in some cases be by-passed. However, in the worst
case, the running time is still the unyielding $ (3=). In our work, we obtain for the �rst time an
$̃ (2=,)-time algorithm, completely breaking the $ (3=) time-barrier when, is polynomial in
=. In the case of �max, i.e., minimizing the maximum intermediate join cardinality, we obtain an
$ (2==3)-time algorithm, which is also practical.

Bottom-Up vs. Top-Down. It is well known that dynamic programs have two implementations,
bottom-up and top-down, each with its advantages and disadvantages. One of the most compelling

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:22 Mihail Stoian and Andreas Kipf

advantages of top-down enumeration is the possibility of easily integrating cost-bounds so that
the search space may be easily pruned [16]. Hence, Chaudhuri et al. [6] explore the possiblity of
implementing join ordering as a top-down procedure, only considering linear solutions. Building
on this work, DeHaan and Tompa [10] extend the top-down method to bushy join trees, disallowing
cross products. Fender and Moerkotte [14, 15] improve the running time of these algorithms and
get rid of the connectedness check, i.e., only outputting the ccp’s.

10.2 Approximation Algorithms

Exact algorithms are rather expensive. To this end, Chatterji et al. [5] analyzed whether there are
instances that can be solved by approximation algorithms in polynomial time. Unless P = NP, the
answer remains negative. Speci�cally, they showed that, for any X > 0, the problem of approximating

the optimal cost within a factor of 2Θ(log
1−X) is NP-hard. (Note that our (1 + Y)-approximation

algorithm from Sec. 7 runs in exponential time.)

10.3 Best-E�ort Algorithms

The NP-hardness of a fundamental problem is a bitter truth. Hence, research has focused on �nding
polynomial-time algorithms for special instances or greedy algorithms for arbitrary query graphs.

Polynomial-Time Algorithms. Exponential-time algorithms fail to optimize larger queries in
a reasonable time. To this end, it is interesting to ask which instances admit polynomial-time

algorithms. The most notable one is the cubic-time algorithm for chain queries. Another class is
that of tree queries, for which the IKKBZ algorithms returns the optimal left-deep join tree [20, 24].
Neumann and Radke [34] observed that one can use IKKBZ as a sub-routine: They linearize the
query graph via IKKBZ (since a left-deep solution is inherently a linear ordering of the underlying
graph) and then run the cubic-time dynamic program on top to build a near-optimal solution. This
strategy yields excellent costs for tree queries.

Greedy Algorithms. Research has also focused on greedy algorithms which can at least avoid
the bad plans. The most representative is the Greedy Operator Ordering (GOO) [13] that chooses
the cheapest sub-plan at each step. This runs in $ (= log=)-time, yet it does not come with any
optimality guarantee on the output join order. This gap between exponential-time exact algorithms
and purely greedy ones has remained unexplored until Kossman and Stocker [23] introduced
Iterative Dynamic Programming (IDP) which re�nes the greedy join orders of large queries. The
key insight is to iteratively run exact DP on join subtrees of size : .

General-Purpose Solvers. Join ordering has also been approached by several general-purpose
solvers, such as genetic algorithms [45], mixed-integer linear programming [47], and simulated
annealing [45]. Note that these works only approximate the optimal solution (without any ap-
proximation guarantee). The problem can also be optimized on quantum hardware via quantum
annealing [42, 51]. However, this does not lower the classical time-complexity of exact join ordering.
Motivated by the promise of workload-aware query optimization, research also has focused on
learned alternatives: Marcus and Papaemmanouil [28] suggest using Reinforcement Learning and
introduce an agent that outputs the join order and is penalized based on the corresponding join
cost. Motivated by the repetitiveness of the queries in cloud workloads [41], a further promising
direction is query super-optimization [27].

11 DISCUSSION

Resource-Aware Query Optimization. The trend nowadays is to execute queries in multi-
tenant cloud machines. Recently, Viswanathan et al. [50] made the case for resource-aware query

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

DPconv: Super-Polynomially Faster Join Ordering 234:23

optimization. The �max cost function can serve as a proxy for the maximum memory consumption
of a given query. Minimizing�max of concurrently running queries can help reduce memory spikes.

Co-Optimizing �out and �max. The optimization of �out and �max can go beyond our proposed
cost function�cap. With�cap, we �rst compute the optimal value of�max and then do a pruned�out

optimization. Instead of taking the optimal �max value, capping �out at the 90th percentile of the
largest intermediate size allows for more �exibility. So one can e�ectively trade o� between query
runtime and memory consumption. This is particularly interesting in cloud scenarios.

The cloud data warehouse Amazon Redshift uses predicted query memory to make scheduling
decisions [40]. Instead, one could follow a proactive approach in which a query’s runtime and
memory consumption is co-optimized with query scheduling. For example, when there is a high
(concurrent) memory load on the system, one would want to minimize the peak memory consump-
tion of newly arriving queries, while when there is low memory load, one can a�ord a higher
memory consumption. Likewise, if there are long-running queries with a low memory footprint in
the system, one might want to produce a high memory but fast-running query.

Practical Implementations. While we break the $ (3=) time-barrier in the theoretical sense and
indeed also provide a practical implementation for�max running in$ (2==3)-time, it is interesting to
further explore practical implementations for�out, both for the exact (Sec. 3.3) and the approximation
algorithm (Sec. 7). In particular, the details of the framework by Bringmann et al. [4], upon which
the approximate min-sum subset convolution algorithm is based on, span several pages.

Sparse Subset Convolution. Subset convolution does not (yet) have a sparse counterpart, as is the
case for sequence convolution (we refer the reader to Jin and Xu [21] for the latest results on sparse
sequence convolution). This would be particularly useful for sparse query graphs of the JOB [25]
and CEB [32] benchmarks. These queries do not bene�t from the speedup obtained by DPconv due
to the fact they only touch at most 17 relations. An algorithmic advance in subset convolution for
the sparse setting can be directly transferred to the join ordering problem.

12 CONCLUSION

Join ordering, or �nding the optimal order of the joins in a query, is an indispensable task in a
database management system. The problem has its roots in the seminal work of Selinger [44],
culminating with the graph-theoretic exact algorithm by Moerkotte and Neumann [30]. Despite
recent research [18], the worst-case running time still remains $ (3=).

In this work, we provided the �rst super-polynomial speedup over the standard dynamic program-
ming solution. Our framework optimizes (i) �out in $̃ (2=)-time, when the largest join cardinality
, is polynomial in =, and (ii) �max in $ (2==3)-time. DPconv is based on subset convolution, a
fundamental tool in parameterized algorithms [9], and uses the fact that join ordering is implicitly
a dynamic programming recursion using subset convolution similar to other classic problems
in the literature (see Björklund et al. [2]). The reduction to subset convolution also implies an
(1 + Y)-approximation algorithm for optimizing �out in $̃ (23=/2/

√
Y)-time.

Beyond the theoretical results, we have made DPconv practical for database systems. In particular,
our algorithm for optimizing �max outperforms the standard exact algorithm for cliques with 17
relations and more. In addition, we showed that joint optimization of�out and�max results in faster
optimization times than a “vanilla” �out after 21 relations, while only increasing �out by 9.5%.
We expect future work on sparse subset convolution to further speed up our framework for

query graphs with few connected subgraphs.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

234:24 Mihail Stoian and Andreas Kipf

REFERENCES

[1] R. Bellman, R.E. Bellman, and Rand Corporation. 1957. Dynamic Programming. Princeton University Press. https:
//books.google.ro/books?id=rZW4ugAACAAJ

[2] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2007. Fourier meets möbius: fast subset
convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA,

June 11-13, 2007, David S. Johnson and Uriel Feige (Eds.). ACM, 67–74. https://doi.org/10.1145/1250790.1250801
[3] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set Partitioning via Inclusion-Exclusion. SIAM J.

Comput. 39, 2 (2009), 546–563. https://doi.org/10.1137/070683933
[4] Karl Bringmann, Marvin Künnemann, and Karol Wegrzycki. 2019. Approximating APSP without scaling: equivalence

of approximate min-plus and exact min-max. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, Moses Charikar and Edith Cohen (Eds.). ACM, 943–954.
https://doi.org/10.1145/3313276.3316373

[5] Sourav Chatterji, Sai Surya Kiran Evani, Sumit Ganguly, and Mahesh Datt Yemmanuru. 2002. On the Complexity
of Approximate Query Optimization. In Proceedings of the Twenty-�rst ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, Lucian Popa, Serge Abiteboul, and Phokion G.
Kolaitis (Eds.). ACM, 282–292. https://doi.org/10.1145/543613.543650

[6] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. 1995. Optimizing Queries with
Materialized Views. In Proceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995,

Taipei, Taiwan, Philip S. Yu and Arbee L. P. Chen (Eds.). IEEE Computer Society, 190–200. https://doi.org/10.1109/
ICDE.1995.380392

[7] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (1970), 377–387.
https://doi.org/10.1145/362384.362685

[8] James W Cooley and John W Tukey. 1965. An algorithm for the machine calculation of complex Fourier series.
Mathematics of computation 19, 90 (1965), 297–301.

[9] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,
and Saket Saurabh. 2015. Algebraic techniques: sieves, convolutions, and polynomials. Springer International Publishing,
Cham, 321–355. https://doi.org/10.1007/978-3-319-21275-3_10

[10] David DeHaan and Frank Wm. Tompa. 2007. Optimal top-down join enumeration. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Beijing, China, June 12-14, 2007, Chee Yong Chan, Beng Chin Ooi, and
Aoying Zhou (Eds.). ACM, 785–796. https://doi.org/10.1145/1247480.1247567

[11] Stuart E. Dreyfus and Robert A. Wagner. 1971. The steiner problem in graphs. Networks 1, 3 (1971), 195–207.
https://doi.org/10.1002/NET.3230010302

[12] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. E�cient generation of query plans containing group-by, join, and
groupjoin. VLDB J. 27, 5 (2018), 617–641. https://doi.org/10.1007/S00778-017-0476-3

[13] Leonidas Fegaras. 1998. A New Heuristic for Optimizing Large Queries. In Database and Expert Systems Applications,

9th International Conference, DEXA ’98, Vienna, Austria, August 24-28, 1998, Proceedings (Lecture Notes in Computer

Science, Vol. 1460), Gerald Quirchmayr, Erich Schweighofer, and Trevor J. M. Bench-Capon (Eds.). Springer, 726–735.
https://doi.org/10.1007/BFB0054528

[14] Pit Fender and Guido Moerkotte. 2011. A new, highly e�cient, and easy to implement top-down join enumeration
algorithm. In Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE Computer Society, 864–875.
https://doi.org/10.1109/ICDE.2011.5767901

[15] Pit Fender and Guido Moerkotte. 2012. Reassessing Top-Down Join Enumeration. IEEE Trans. Knowl. Data Eng. 24, 10
(2012), 1803–1818. https://doi.org/10.1109/TKDE.2011.235

[16] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. 2012. E�ective and Robust Pruning for Top-Down
Join Enumeration Algorithms. In IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington,

DC, USA (Arlington, Virginia), 1-5 April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE
Computer Society, 414–425. https://doi.org/10.1109/ICDE.2012.27

[17] Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms (1st ed.). Springer-Verlag, Berlin, Heidelberg.
[18] Immanuel Ha�ner and Jens Dittrich. 2023. E�ciently Computing Join Orders with Heuristic Search. Proc. ACM Manag.

Data 1, 1 (2023), 73:1–73:26. https://doi.org/10.1145/3588927
[19] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Trans. Syst. Sci. Cybern. 4, 2 (1968), 100–107. https://doi.org/10.1109/TSSC.1968.300136
[20] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for Computing N-Relational Joins. ACM

Trans. Database Syst. 9, 3 (1984), 482–502. https://doi.org/10.1145/1270.1498
[21] Ce Jin and Yinzhan Xu. 2024. Shaving Logs via Large Sieve Inequality: Faster Algorithms for Sparse Convolution and

More. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

https://books.google.ro/books?id=rZW4ugAACAAJ
https://books.google.ro/books?id=rZW4ugAACAAJ
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1137/070683933
https://doi.org/10.1145/3313276.3316373
https://doi.org/10.1145/543613.543650
https://doi.org/10.1109/ICDE.1995.380392
https://doi.org/10.1109/ICDE.1995.380392
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/978-3-319-21275-3_10
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1002/NET.3230010302
https://doi.org/10.1007/S00778-017-0476-3
https://doi.org/10.1007/BFB0054528
https://doi.org/10.1109/ICDE.2011.5767901
https://doi.org/10.1109/TKDE.2011.235
https://doi.org/10.1109/ICDE.2012.27
https://doi.org/10.1145/3588927
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/1270.1498

DPconv: Super-Polynomially Faster Join Ordering 234:25

June 24-28, 2024, Bojan Mohar, Igor Shinkar, and Ryan O’Donnell (Eds.). ACM, 1573–1584. https://doi.org/10.1145/
3618260.3649605

[22] S.R. Kosaraju. 1989. E�cient tree pattern matching. In 30th Annual Symposium on Foundations of Computer Science.
178–183. https://doi.org/10.1109/SFCS.1989.63475

[23] Donald Kossmann and Konrad Stocker. 2000. Iterative dynamic programming: a new class of query optimization
algorithms. ACM Trans. Database Syst. 25, 1 (2000), 43–82. https://doi.org/10.1145/352958.352982

[24] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Optimization of Nonrecursive Queries. In VLDB’86 Twelfth

International Conference on Very Large Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings, Wesley W. Chu,
Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi (Eds.). Morgan Kaufmann, 128–137. http://www.vldb.org/
conf/1986/P128.PDF

[25] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[26] GuyM. Lohman. 1988. Grammar-like Functional Rules for RepresentingQueryOptimization Alternatives. In Proceedings
of the 1988 ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 1-3, 1988, Haran
Boral and Per-Åke Larson (Eds.). ACM Press, 18–27. https://doi.org/10.1145/50202.50204

[27] Ryan Marcus. 2023. Learned Query Superoptimization. In Joint Proceedings of Workshops at the 49th International

Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023 (CEUR Work-

shop Proceedings, Vol. 3462), Rajesh Bordawekar, Cinzia Cappiello, Vasilis Efthymiou, Lisa Ehrlinger, Vijay Gadepally,
Sainyam Galhotra, Sandra Geisler, Sven Groppe, Le Gruenwald, Alon Y. Halevy, Hazar Harmouch, Oktie Hassanzadeh,
Ihab F. Ilyas, Ernesto Jiménez-Ruiz, Sanjay Krishnan, Tirthankar Lahiri, Guoliang Li, Jiaheng Lu, Wolfgang Mauerer,
Umar Farooq Minhas, Felix Naumann, M. Tamer Özsu, El Kindi Rezig, Kavitha Srinivas, Michael Stonebraker, Satya-
narayana R. Valluri, Maria-Esther Vidal, Haixun Wang, Jiannan Wang, Yingjun Wu, Xun Xue, Mohamed Zaït, and Kai
Zeng (Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-3462/AIDB5.pdf

[28] RyanMarcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for Join Order Enumeration. In Proceedings
of the First International Workshop on Exploiting Arti�cial Intelligence Techniques for Data Management, aiDM@SIGMOD

2018, Houston, TX, USA, June 10, 2018, Rajesh Bordawekar and Oded Shmueli (Eds.). ACM, 3:1–3:4. https://doi.org/10.
1145/3211954.3211957

[29] Guido Moerkotte. 2023. Building Query Compilers (Draft / Under Construction). https://pi3.informatik.uni-mannheim.
de/%7Emoer/querycompiler.pdf

[30] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming Algo-
rithm for the Generation of Optimal Bushy Join Trees without Cross Products. In Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B.
Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 930–941.
http://dl.acm.org/citation.cfm?id=1164207

[31] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes back. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li
Wang (Ed.). ACM, 539–552. https://doi.org/10.1145/1376616.1376672

[32] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh.
2021. Flow-Loss: Learning Cardinality Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[33] Thomas Neumann. 2009. Query simpli�cation: graceful degradation for join-order optimization. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June

29 - July 2, 2009, Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul (Eds.). ACM, 403–414.
https://doi.org/10.1145/1559845.1559889

[34] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very Large Join Queries. In Proceedings of the

2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 677–692. https://doi.org/10.1145/3183713.
3183733

[35] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal join algorithms: [extended abstract].
In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012,

Scottsdale, AZ, USA, May 20-24, 2012, Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini (Eds.). ACM, 37–48.
https://doi.org/10.1145/2213556.2213565

[36] Kiyoshi Ono and Guy M. Lohman. 1990. Measuring the Complexity of Join Enumeration in Query Optimization. In
16th International Conference on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings,
Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek (Eds.). Morgan Kaufmann, 314–325. http://www.vldb.org/
conf/1990/P314.PDF

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

https://doi.org/10.1145/3618260.3649605
https://doi.org/10.1145/3618260.3649605
https://doi.org/10.1109/SFCS.1989.63475
https://doi.org/10.1145/352958.352982
http://www.vldb.org/conf/1986/P128.PDF
http://www.vldb.org/conf/1986/P128.PDF
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/50202.50204
https://ceur-ws.org/Vol-3462/AIDB5.pdf
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
https://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/2213556.2213565
http://www.vldb.org/conf/1990/P314.PDF
http://www.vldb.org/conf/1990/P314.PDF

234:26 Mihail Stoian and Andreas Kipf

[37] Oriana Ponta, Falk Hü�ner, and Rolf Niedermeier. 2008. Speeding up Dynamic Programming for Some NP-Hard Graph
Recoloring Problems. In Theory and Applications of Models of Computation, 5th International Conference, TAMC 2008,

Xi’an, China, April 25-29, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4978), Manindra Agrawal, Ding-Zhu
Du, Zhenhua Duan, and Angsheng Li (Eds.). Springer, 490–501. https://doi.org/10.1007/978-3-540-79228-4_43

[38] Bernhard Radke and Thomas Neumann. 2019. LinDP++: Generalizing Linearized DP to Crossproducts and Non-
Inner Joins. In Datenbanksysteme für Business, Technologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs

„Datenbanken und Informationssysteme" (DBIS), 4.-8. März 2019, Rostock, Germany, Proceedings (LNI, Vol. P-289), Torsten
Grust, Felix Naumann, Alexander Böhm, Wolfgang Lehner, Theo Härder, Erhard Rahm, Andreas Heuer, Meike Klettke,
and Holger Meyer (Eds.). Gesellschaft für Informatik, Bonn, 57–76. https://doi.org/10.18420/BTW2019-05

[39] Daniel Rehfeldt and Thorsten Koch. 2022. On the Exact Solution of Prize-Collecting Steiner Tree Problems. INFORMS

J. Comput. 34, 2 (2022), 872–889. https://doi.org/10.1287/IJOC.2021.1087
[40] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George Caragea, Fahim Chowdhury, Ryan

Marcus, Tim Kraska, Ippokratis Pandis, and Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine
Learning Enhanced Workload Management in Amazon Redshift. In Companion of the 2023 International Conference on

Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk
Candan, and Sihem Amer-Yahia (Eds.). ACM, 225–237. https://doi.org/10.1145/3555041.3589677

[41] Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and Tim Kraska. 2024. Predicate Caching: Query-Driven
Secondary Indexing for Cloud Data Warehouses. In Companion of the 2024 International Conference on Management of

Data, SIGMOD/PODS 2024, Santiago AA, Chile, June 9-15, 2024, Pablo Barceló, Nayat Sánchez-Pi, Alexandra Meliou,
and S. Sudarshan (Eds.). ACM, 347–359. https://doi.org/10.1145/3626246.3653395

[42] Manuel Schönberger, Stefanie Scherzinger, and Wolfgang Mauerer. 2023. Ready to Leap (by Co-Design)? Join Order
Optimisation on Quantum Hardware. Proc. ACM Manag. Data 1, 1 (2023), 92:1–92:27. https://doi.org/10.1145/3588946

[43] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. 2005. E�cient Algorithms for Detecting Signaling
Pathways in Protein Interaction Networks. In Research in Computational Molecular Biology, 9th Annual International

Conference, RECOMB 2005, Cambridge, MA, USA, May 14-18, 2005, Proceedings (Lecture Notes in Computer Science,

Vol. 3500), Satoru Miyano, Jill P. Mesirov, Simon Kasif, Sorin Istrail, Pavel A. Pevzner, and Michael S. Waterman (Eds.).
Springer, 1–13. https://doi.org/10.1007/11415770_1

[44] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1979. Access
Path Selection in a Relational Database Management System. In Proceedings of the 1979 ACM SIGMOD International

Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1, Philip A. Bernstein (Ed.). ACM, 23–34.
https://doi.org/10.1145/582095.582099

[45] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and Randomized Optimization for the Join
Ordering Problem. VLDB J. 6, 3 (1997), 191–208. https://doi.org/10.1007/S007780050040

[46] Mihail Stoian. 2024. Sinking an Algorithmic Isthmus: (1 + epsilon)-Approximate Min-Sum Subset Convolution.
arXiv:2404.11364 [cs.DS]

[47] Immanuel Trummer and Christoph Koch. 2017. Solving the Join Ordering Problem via Mixed Integer Linear Pro-
gramming. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017,

Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.).
ACM, 1025–1040. https://doi.org/10.1145/3035918.3064039

[48] Bennet Vance. 1998. Join-order Optimization with Cartesian Products. Ph. D. Dissertation. Oregon Graduate Institute of
Science and Technology.

[49] Bennet Vance and David Maier. 1996. Rapid Bushy Join-order Optimization with Cartesian Products. In Proceedings of

the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996,
H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 35–46. https://doi.org/10.1145/233269.233317

[50] Lalitha Viswanathan, Alekh Jindal, and Konstantinos Karanasos. 2018. Query and Resource Optimization: Bridging
the Gap. In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE
Computer Society, 1384–1387. https://doi.org/10.1109/ICDE.2018.00156

[51] Tobias Winker, Umut Çalikyilmaz, Le Gruenwald, and Sven Groppe. 2023. Quantum Machine Learning for Join Order
Optimization using Variational Quantum Circuits. In Proceedings of the International Workshop on Big Data in Emergent

Distributed Environments, BiDEDE 2023, Seattle, WA, USA, 18 June 2023, Sven Groppe, Le Gruenwald, and Ching-Hsien
Hsu (Eds.). ACM, 5:1–5:7. https://doi.org/10.1145/3579142.3594299

[52] Frank Yates. 1937. The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Science (1937).

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 234. Publication date: December 2024.

https://doi.org/10.1007/978-3-540-79228-4_43
https://doi.org/10.18420/BTW2019-05
https://doi.org/10.1287/IJOC.2021.1087
https://doi.org/10.1145/3555041.3589677
https://doi.org/10.1145/3626246.3653395
https://doi.org/10.1145/3588946
https://doi.org/10.1007/11415770_1
https://doi.org/10.1145/582095.582099
https://doi.org/10.1007/S007780050040
https://arxiv.org/abs/2404.11364
https://doi.org/10.1145/3035918.3064039
https://doi.org/10.1145/233269.233317
https://doi.org/10.1109/ICDE.2018.00156
https://doi.org/10.1145/3579142.3594299

	Abstract
	1 Introduction
	2 Background
	2.1 Query Graph
	2.2 Cost Function
	2.3 Join Ordering and Dynamic Programming
	2.4 Subset Convolution
	2.5 Rings & Semi-Rings

	3 Our Framework
	3.1 Join Ordering Meets Subset Convolution
	3.2 Embedding Technique
	3.3 Instantiating Cout
	3.4 Instantiating C
	3.5 Beyond Cout and C

	4 Fast Subset Convolution
	4.1 Zeta Transform
	4.2 Ranked Convolution
	4.3 Möbius Transform
	4.4 Implementation
	4.5 Example
	4.6 Running Time

	5 Layered Dynamic Programming
	5.1 Layer-Wise Zeta Transform
	5.2 Layer-Wise Ranked Convolution
	5.3 Avoiding Useless Multiplications

	6 A Simple Algorithm for C
	7 Approximation Algorithm
	7.1 Approximate Min-Sum Subset Convolution
	7.2 Approximate Join Ordering

	8 Fusing Cout and C
	8.1 Capping Cout
	8.2 Reducing Optimization Time

	9 Evaluation
	9.1 Super-Polynomial Speedup
	9.2 Optimizing Ccap

	10 Related Work
	10.1 Exact Algorithms
	10.2 Approximation Algorithms
	10.3 Best-Effort Algorithms

	11 Discussion
	12 Conclusion
	References

