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ABSTRACT

Two highly efficient algorithms are known for optimally or-
dering joins while avoiding cross products: DPccp, which is
based on dynamic programming, and Top-Down Partition
Search, based on memoization. Both have two severe limi-
tations: They handle only (1) simple (binary) join predicates
and (2) inner joins. However, real queries may contain com-
plex join predicates, involving more than two relations, and
outer joins as well as other non-inner joins.

Taking the most efficient known join-ordering algorithm,
DPccp, as a starting point, we first develop a new algorithm,
DPhyp, which is capable to handle complex join predicates
efficiently. We do so by modeling the query graph as a (vari-
ant of a) hypergraph and then reason about its connected
subgraphs. Then, we present a technique to exploit this ca-
pability to efficiently handle the widest class of non-inner
joins dealt with so far. Our experimental results show that
this reformulation of non-inner joins as complex predicates
can improve optimization time by orders of magnitude, com-
pared to known algorithms dealing with complex join pred-
icates and non-inner joins. Once again, this gives dynamic
programming a distinct advantage over current memoization
techniques.

Categories and Subject Descriptors
H.2 [Systems]: Query processing

General Terms
Algorithms, Theory

1. INTRODUCTION

For the overall performance of a database management
system, the cost-based query optimizer is an essential piece
of software. One important and complex problem any cost-
based query optimizer has to solve is to find the optimal
join order. In their seminal paper, Selinger et al. not only
introduced cost-based query optimization but also proposed
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a dynamic programming algorithm to find the optimal join
order for a given conjunctive query [21]. More precisely, they
proposed to generate plans in the order of increasing size.
Although they restricted the search space to left-deep trees,
the general idea of their algorithm can be extended to the
algorithm DPsize, which explores the space of bushy trees
(see Fig. 1). The algorithm still forms the core of state-
of-the-art commercial query optimizers like the one of DB2
[12].

Recently, we gave a thorough complexity analysis of DP-
size [17]. We proved that DPsize has a runtime complexity
which is much worse than the lower bound. This is mainly
due to the tests (marked by '* in Fig. 1), which fail far
more often than they succeed. Furthermore, we proposed
the algorithm DPccp, which exactly meets the lower bound.
Experiments showed that DPccp is highly superior to DPsize.
The core of their algorithm generates connected subgraphs
in a bottom-up fashion.

The main competitor for dynamic programming is mem-
oization, which generates plans in a top-down fashion. All
known approaches needed tests similar to those shown for
DPsize. Thus, with the advent of DPccp, dynamic program-
ming became superior to memoization when it comes to gen-
erating optimal bushy join trees, which do not contain cross
products. Challenged by this finding, DeHaan and Tompa
successfully devised a top-down algorithm that is capable of
generating connected subgraphs by exploiting minimal cuts
[7]. With this algorithm, called Top-Down Partition Search,
memoization can be almost as efficient as dynamic program-
ming.

However, both algorithms, DPccp and Top-Down Parti-
tion Search, are not ready yet to be used in practice: there
exist two severe deficiencies in both of them. First, as has
been argued in several places, hypergraphs must be handled
by any plan generator [1, 19, 23]. Second, plan generators
have to deal with outer joins and antijoins [11, 19]. These
operators are, in general, not freely reorderable. That is,
there might exist different orderings, which produce differ-
ent results. This is not true for the regular, inner join: any
ordering gives the same result. Restricting the ordering to
valid orderings for outer joins, that is those which produce
the same result as the original query, has been the subject
of the seminal work by Galindo-Legaria and Rosenthal [10,
11, 20]. They also propose a dynamic programming algo-
rithm that takes into account the intricacy of outer joins.
Their algorithm has been extended by Bhargava et al. to
deal with hyperedges [1]. A more practical approach has
been proposed by Rao et al. [19]. They also include the



DPsize (R ={Ro,...,Rn-1})
for VR, € R dpTable[{R;}] = R;
for V1 < s <n ascending // size of plan
for V1 <s; <s // size of left subplan
forVSi C R: |S1|=817 Se C R: ‘52|=S—S1
if S1 N S2 # 0 continue  (*)
if =(S1 connected to S2) continue  (*)
p =dpTable[S;] x dpTable[Sa]
if cost(p)<cost(dpTable[S; U Sa])
deable[Sl @] SQ} =D
return dpTable[{Ro,..., Rn_1}]

Figure 1: Algorithm DPsize
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Figure 2: Sample hypergraph

antijoin. All these approaches use DPsize as their starting
point. Thus, they suffer from a much higher than necessary
runtime complexity.

In this paper, we introduce DPhyp, which can efficiently
deal with hypergraphs (Sec. 2 and 3). Experiments will show
that it is highly superior to existing approaches (Sec. 4). In a
second step, we deal with left and full outer joins, antijoins,
nestjoins, and their dependent counterparts (Section 5). It
will be shown that non-inner joins can be dealt with by
introducing new hyperedges. Thus, no extension to DPhyp
except for calculating the new hyperedges is necessary to
deal with a complete set of non-inner and dependent joins.
This approach is highly superior to existing approaches even
if no initial hyperedges are present, i.e. the query exhibits
only simple predicates but non-inner joins.

2. HYPERGRAPHS

2.1 Definitions
Let us start with the definition of hypergraphs.

DEFINITION 1 (HYPERGRAPH). A hypergraph is a pair
H = (V,E) such that

1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is an un-
ordered pair (u,v) of non-empty subsets of V. (u C 'V
and v C V) with the additional condition that uNv = ().

We call any non-empty subset of V a hypernode. We as-
sume that the nodes in V are totally ordered via an (arbi-
trary) relation <. The ordering on nodes is important for
our algorithm.

A hyperedge (u,v) is simple if |u| = |v| = 1. A hypergraph
is simple if all its hyperedges are simple.

Note that a simple hypergraph is the same as an ordinary
undirected graph. In our context, the nodes of hypergraphs
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are relations and the edges are abstractions of join predi-
cates. Consider, for example, a join predicate of the form
Ri.a + R2.b + Rs.c = Rs.d + Rs.e + Rgs.f. This predi-
cate will result in a hyperedge ({R1, Rz, Rs},{Ra4, Rs, R6}).
Fig. 2 contains an example of a hypergraph. The set V' of
nodes is V.= {Ri,...,R¢}. Concerning the node order-
ing, we assume that R; < R; <= ¢ < j. There are the
simple edges ({R1}, {R2}), ({R2}, {Rs}), ({Ra}, {Rs5}), and
({Rs},{Rs}). The hyperedge from above is the only true
hyperedge in the hypergraph.

Note that is possible to rewrite the above complex join
predicate. For example, it is equivalent to Ri.a + R2.b =
Ry.d+ Rs.e + Res.f — Rs.c. This leads to a hyperedge
({R1, R2},{R3, R4, Rs, Rs}). If the query optimizer is ca-
pable of performing this kind of algebraic transformations,
all derived hyperedges are added to the hypergraph, at least
conceptually. We will come back to this issue in Section 6.

To decompose a join ordering problem represented as a
hypergraph into smaller problems, we need the notion of
subgraph. More specifically, we only deal with node-induced
subgraphs.

DEFINITION 2 (SUBGRAPH). Let H = (V, E) be a hy-
pergraph and V' C V a subset of nodes. The node in-
duced subgraph G|y of G is defined as G|y = (V',E’)
with B = {(u,v)|(u,v) € E,u C V';v C V'}. The node
ordering on V' is the restriction of the node ordering of V.

As we are interested in connected subgraphs, we give

DEFINITION 3 (CONNECTED). Let H = (V, E) be a hy-
pergraph. H is connected if |V| =1 or if there exists a par-
titioning V', V"' of V and a hyperedge (u,v) € E such that
uC V', v C V" and both G|y and G|y~ are connected.

If H = (V,E) is a hypergraph and V' C V is a subset
of the nodes such that the node-induced subgraph G|y is
connected, then we call V' a connected subgraph or csg for
short. The number of connected subgraphs is important
for dynamic programming: it directly corresponds to the
number of entries in the dynamic programming table. If a
node set V" C (V\ V') induces a connected subgraph G|y,
we call V" a connected complement of V' or ¢mp for short.

Within this paper, we will assume that all hypergraphs
are connected. This way, we can make sure that no cross
products are needed. However, when dealing with hyper-
graphs, this condition can easily be assured by adding ac-
cording hyperedges: for every pair of connected components,
we can add a hyperedge whose hypernodes contain exactly
the relations of the connected components. By considering
these hyperedges as ™ operators with selectivity 1, we get
an equivalent connected hypergraph (i.e., one that describes
the same query).

2.2 Csg-cmp-pair
With these notations, we can move closer to the heart of
dynamic programming by defining a csg-cmp-pair.

DEFINITION 4  (CSG-CMP-PAIR). Let H = (V,E) be a
hypergraph and S1, S2 two subsets of V' such that S1 C V
and Sz C (V'\ S1) are a connected subgraph and a connected
complement. If there further exists a hyperedge (u,v) € E
such that u C S1 and v C Sa, we call (S1,S52) a csg-cmp-
pair.



Note that if (S1,S2) is a csg-cmp-pair, then (S2, S1) is one
as well. We will restrict the enumeration of csg-cmp-pairs
to those (S1,S2) which satisfy the condition that min(S;) <
min(S2), where min(S) = s such that s € S and Vs’ €
S :s # s = s < s. Since this restriction will hold
for all csg-cmp-pairs enumerated by our procedure, we are
sure that no duplicate csg-cmp-pairs are calculated. As a
consequence, we have to take some care in order to ensure
that our dynamic programming procedure is complete: if
the binary operator we apply is commutative, the procedure
to build a plan for S; U Sz from plans for S; and Sz has to
take commutativity into account. However, this is not really
a challenge.

Obviously, in order to be correct, any dynamic program-
ming algorithm has to consider all csg-cmp-pairs [17]. Fur-
ther, only these have to be considered. Thus, the minimal
number of cost function calls of any dynamic programming
algorithm is exactly the number of csg-cmp-pairs for a given
hypergraph. Note that the number of connected subgraphs
is far smaller than the number of csg-cmp-pairs. The prob-
lem now is to enumerate the csg-cmp-pairs efficiently and
in an order acceptable for dynamic programming. The lat-
ter can be expressed more specifically. Before enumerat-
ing a csg-cmp-pair (S1,S2), all csg-cmp-pairs (S7,.55) with
S1 C 81 and S5 C S have to be enumerated.

2.3 Neighborhood

The main idea to generate csg-cmp-pairs is to incremen-
tally expand connected subgraphs by considering new nodes
in the neighborhood of a subgraph. Informally, the neighbor-
hood N(S) under an exclusion set X consists of all nodes
reachable from S that are not in X. We derive an exact
definition below.

When choosing subsets of the neighborhood for inclusion,
we have to treat a hypernode as a single instance: either
all of its nodes are inside an enumerated subset or none
of them. Since we want to use the fast subset enumeration
procedure introduced by Vance and Maier [24], we must have
a single bit representing a hypernode and also single bits for
relations occurring in simple edges. Since these may overlap,
we are constrained to choose one unique representative of
every hypernode occurring in a hyperedge. We choose the
node that is minimal with respect to <. Accordingly, we
define:

min(S) = {s|s € S,Vs' € S s # s = s <5}

Note that if S is empty, then min(S) is also empty. Other-
wise, it contains a single element. Hence, if S is a singleton
set, then min(S) equals the only element contained in S.
For our hypergraph in Fig. 2 and with S = {R4, Rs, R}, we
have min(S) = {R4}.

Let S be a current set, which we want to expand by adding
further relations. Consider a hyperedge (u,v) with v C S.
Then, we will add min(v) to the neighborhood of S. How-
ever, we have to make sure that the missing elements of v,
i.e. v \ min(v), are also contained in any set emitted. We
thus define

min(S) = S \ min(S)

For our hypergraph in Fig. 2 and with S = {Ru4, Rs, Rs}, we
have min(S) = {Rs, Re}.

We define the set of non-subsumed hyperedges as the min-
imal subset F | of E such that for all (u,v) € E there exists
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a hyperedge (u’,v") € E| with ' C u and v’ C v. Addition-
ally, we make sure that none of the nodes of a hypernode are
contained in a set X, which is to be excluded from neigh-
borhood considerations. We thus define a set containing the
interesting hypernodes for given sets S and X. We do so in
two steps. First, we collect the potentially interesting hy-
pernodes into a set E |’ (S, X) and then minimize this set
to eliminate subsumed hypernodes. This step then results
in F| (S, X), with which the algorithm will work.

E|" (8, X) = {v|(u,v) € E,u C S,vNnS=0,vNnX =0}

Define E | (S, X) to be the minimal set of hypernodes such
that for allv € E |" (S, X) there exists a hypernode v’ in E |
(S, X) such that v" C v. Note that apart from the connect-
edness, we test exactly the conditions given in Def. 4. For
our hypergraph in Fig. 2 and with X = S = {R1, Rz, Rs},
we have E | (S, X) = {{R4,Rs,Rs }}.

We are now ready to define the neighborhood of a hyper-
node S, given a set of excluded nodes X.

NESx) =

vEE|(S,X)

For our hypergraph in Fig. 2 and with X = S = {Ru1, Rz, R3},
we have N'(S, X) = {R4}. Assuming a bit vector represen-
tation of sets, the neighborhood can be efficiently calculated
bottom-up.

min(v)

(1)

3. THE ALGORITHM

Before starting with the algorithm description we give a
high-level overview of the general principles used in the al-
gorithm:

1. The algorithm constructs ccps by enumerating con-
nected subgraphs from an increasing part of the query
graph;

2. both the primary connected subgraphs and its con-
nected complement are created by recursive graph tra-
versals;

3. during traversal, some nodes are forbidden to avoid
creating duplicates. More precisely, when a function
performs a recursive call it forbids all nodes it will
investigate itself;

4. connected subgraphs are increased by following edges
to neighboring nodes. For this purpose hyperedges are
interpreted as n : 1 edges, leading from n of one side
to one (specific) canonical node of the other side (cmp.
Eq. 1).

Summarizing the above, the algorithm traverses the graph in
a fixed order and recursively produces larger connected sub-
graphs. The main challenge relative to [17] is the traversal
of hyperedges: First, the "starting” side of the edge can re-
quire multiple nodes, which complicates neighborhood com-
putation. In particular the neighborhood can no longer be
computed as a simple bottom-up union of local neighbor-
hoods. Second, the ”ending” side of the edge can lead to
multiple nodes at once, which disrupts the recursive growth
of components. The algorithm therefore picks a canonical
end node (the 1 in the n : 1 of item 4 above, see also Eq. 1),
starts recursive growth and uses the DP table to check if a
valid constellation has been reached (this exploits the fact



that DP strategies enumerate subsets before supersets). We
now discuss the details of the algorithm.

We give the implementation of our join ordering algorithm
for hypergraphs by means of pseudocode for member func-
tions of a class DPhyp. This allows us to minimize the num-
ber of parameters by assuming that the query hypergraph
(G = (V, E)) and the dynamic programming table (dpTable)
are class members.

The whole algorithm is distributed over five subroutines.
The top-level routine Solve initializes the dynamic program-
ming table with access plans for single relations and then
calls EmitCsg and EnumerateCsgRec for each set containing
exactly one relation. The member function EnumerateCs-
gRec is responsible for enumerating connected subgraphs.
It does so by calculating the neighborhood and iterating
over each of its subset. For each such subset Si, it calls
EmitCsg. This member function is responsible for finding
suitable complements. It does so by calling EnumerateCm-
pRec, which recursively enumerates the complements S» for
the connected subgraph S; found before. The pair (S, S2)
is a csg-cmp-pair. For every such pair, EmitCsgCmp is called.
Its main responsibility is to consider a plan built up from the
plans for S; and S2. The following subsections discuss these
five member functions in detail. We illustrate them with
the example hypergraph shown in Fig. 2. The correspond-
ing traversal steps are shown in Fig. 3, we will illustrate
them during the algorithm description.

3.1 Solve

The pseudocode for Solve looks as follows:

Solve()

for each v € V' // initialize dpTable
dpTable[{v}] = plan for v

for each v € V descending according to <
EmitCsg({v}) // process singleton sets
EnumerateCsgRec({v}, By) // expand singleton sets

return dpTable[V]

In the first loop, it initializes the dynamic programming ta-
ble with plans for single relations. In the second loop, it
calls for every node in the query graph, in decreasing or-
der (according to <) the two subroutines EmitCsg and Enu-
merateCsgRec. The algorithm calls EmitCsg({v}) for single
nodes v € V to generate all csg-cmp-pairs ({v}, S2) via calls
to EnumerateCsgCmp and EmitCsgCmp, where v < min(Ss2)
holds. This condition implies that every csg-cmp-pair is gen-
erated only once, and no symmetric pairs are generated. In
Fig. 3, this corresponds to single vertex graphs, e.g. step 1
and 2. The calls to EnumerateCsgRec extend the initial set
{v} to larger sets Si, for which then connected subsets of
its complement S» are found such that (Si,.S2) results in a
csg-cmp-pair. In Fig. 3, this is shown in step 2, for exam-
ple, where EnumerateCsgRec starts with Rs and expands it
to {Rs, Re} in step 4 (step 3 being the construction of the
complement). To avoid duplicates during enumerations, all
nodes that are ordered before v according to < are prohib-
ited during the recursive expansion [17]. Formally, we define
this set as B, = {w|w < v} U {v}.

3.2 EnumerateCsgRec

The general purpose of EnumerateCsgRec is to extend a
given set Si1, which induces a connected subgraph of G to
a larger set with the same property. It does so by consid-
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ering each non-empty, proper subset of the neighborhood of
S1. For each of these subsets N, it checks whether S; U N
is a connected component. This is done by a lookup into
the dpTable. If this test succeeds, a new connected com-
ponent has been found and is further processed by a call
EmitCsg(S1 UN). Then, in a second step, for all these sub-
sets N of the neighborhood, we call EnumerateCsgRec such
that S1 U N can be further extended recursively. The rea-
son why we first call EmitCsg and then EnumerateCsgRec
is that in order to have an enumeration sequence valid for
dynamic programming, smaller sets must be generated first.
Summarizing, the code looks as follows:

EnumerateCsgRec(S1, X)
for each N C N(S1,X): N #10
if dpTable[S1 U N]# 0
EmitCsg(S1 UN)
for each N C N(S1,X): N #0
EnumerateCsgRec(S1 U N, X UN(S1, X))

Take a look at step 12. This call was generated by Solve
on S; = {R2}. The neighborhood consists only of {Rs3},
since Ry is in X (R4, Rs, Re are not in X either, but not
reachable). EnumerateCsgRec first calls EmitCsg, which will
create the joinable complement (step 13). It then tests
{R27 R3} for connectedness. The according dpTable entry
was generated in step 13. Hence, this test succeeds, and
{Rz2, R3} is further processed by a recursive call to Enumer-
ateCsgRec (step 14). Now the expansion stops, since the
neighborhood of {R2, R3} is empty, because R1 € X.

3.3 EmitCsg

EmitCsg takes as an argument a non-empty, proper subset
S1 of V., which induces a connected subgraph. It is then re-
sponsible to generate the seeds for all S2 such that (S, S2)
becomes a csg-cmp-pair. Not surprisingly, the seeds are
taken from the neighborhood of S;. All nodes that have
ordered before the smallest element in S; (captured by the
set Bin(s,)) are removed from the neighborhood to avoid
duplicate enumerations [17]. Since the neighborhood also
contains min(v) for hyperedges (u,v) with |v| > 1, it is not
guaranteed that Sp is connected to v. To avoid the gener-
ation of false csg-cmp-pairs, EmitCsg checks for connected-
ness. However, each single neighbor might be extended to
a valid complement Sz of S;. Hence, no such test is nec-
essary before calling EnumerateCmpRec, which performs this
extension. The pseudocode looks as follows:

EmitCsg(S1)

X = Sl U Bmin(Sl)

N =N(51,X)

for each v € N descending according to <
Sy = {v}
if J(u,v) EE:uC S1AvC S,

EmitCsgCmp(S1, S2)

EnumerateCmpRec(S1, Sz, X)

Take a look at step 20. The current set S; is Si
{R1, R2, R}, and the neighborhood is N’ = {R4}. As there
is no hyperedge connecting these two sets, there is no call
to EmitCsgCmp. However, the set { R4} can be extended to a
valid complement, namely { R4, Rs, R¢ }. Properly extending
the seeds of complements is the task of the call to Enumer-
ateCmpRec in step 21.
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Figure 3: Trace of algorithm for Figure 2

3.4 EnumerateCmpRec

EnumerateCsgRec has three parameters. The first param-
eter S1 is only used to pass it to EmitCsgCmp. The second pa-
rameter is a set Sa which is connected and must be extended
until a valid csg-cmp-pair is reached. Therefore, it considers
the neighborhood of S2. For every non-empty, proper subset
N of the neighborhood, it checks whether S2 U N induces
a connected subset and is connected to Si. If so, we have
a valid csg-cmp-pair (S1,52) and can start plan construc-
tion (done in EmitCsgCmp). Irrespective of the outcome of
the test, we recursively try to extend S2 such that this test
becomes successful. Overall, the EnumerateCmpRec behaves
very much like EnumerateCsgRec. Its pseudocode looks as
follows:

EnumerateCmpRec(S1, S2, X)
for each N C N(S2,X): N #10
if dpTable[S2 U N]# 0 A
Hu,v) EE:uCS1AvC SaUN
EmitCsgCmp(Si, S2 U N)
X = X UN(Sz, X)
for each N C N(S2,X): N #10
EnumerateCmpRec(S1, S2 U N, X)

543

Take a look at step 21 again. The parameters are S1 =
{R1, Rz, R3} and S2 = {Ra4}. The neighborhood consists of
the single relation Rs. The set { R4, Rs} induces a connected
subgraph. It was inserted into dpTable in step 6. However,
there is no hyperedge connecting it to S;1. Hence, there is no
call to EmitCsgCmp. Next is the recursive call in step 22 with
So changed to {R4, Rs}. Its neighborhood is {R¢}. The set
{Ru4, Rs, R¢} induces a connected subgraph. The according
test via a lookup into dpTable succeeds, since the according
entry was generated in step 7. The second part of the test
also succeeds, as our only true hyperedge connects this set
with Si. Hence, the call to EmitCsgCmp in step 23 takes
place and generates the plans containing all relations.

3.5 EmitCsgCmp

The task of EmitCsgCmp(Si,S2) is to join the optimal
plans for S; and S, which must form a csg-cmp-pair. For
this purpose, we must be able to calculate the proper join
predicate and costs of the resulting joins. This requires that
join predicates, selectivities, and cardinalities are attached
to the hypergraph. Since we hide the cost calculations in an
abstract function cost, we only have to explicitly assemble
the join predicate. For a given hypergraph G = (V, E) and
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Figure 4: Cycle and Star with initial hyperedge (n =
8)

a hyperedge (u,v) € E, we denote by P(u,v) the predicate
represented by the hyperedge (u,v).
The pseudocode of EmitCsgCmp should look very familar:

EmitCsgCmp(S1, S2)

plan; = dpTable[S:]

plan, = dpTable[Ss]

S=5US

p= /\(ul,uz)GE,u,;gS,; P(Ul,UQ)

newplan = plan; %, plans

if dpTable[S]= 0 V cost(newplan) < cost(dpTable[S])
dpTable[S] = newplan

newplan = plany X, plan; // for commutative ops only

if cost(newplan) < dpTable[S]
dpTable[S] = newplan

First, the optimal plans for S; and S2 are recovered from the
dynamic programming table. Then, we remember in S the
total set of relations present in the plan to be constructed.
The join predicate p is assembled by taking the conjunction
of the predicates of those hyperedges that connect S; to So.
Then, the plans are constructed and, if they are cheaper
than existing plans, stored in dpTable.

The calculation of the predicate p seems to be expensive,
since all edges have to be tested. However, we can attach
the set of predicates

ps = {P(u,v)|(u,v) € E,u C S}

to any plan class S C V. If we represent the ps by a bit
vector, then for a csg-cmp-pair we can easily calculate ps, N
ps, and just consider the result.

3.6 Memory Requirements

All dynamic programming variants DPsize, DPsub, DPccp,
and DPhyp memoize the best plan for each subset of relations
that induces a connected subgraph of the query graph. Since
this is the major factor in memory consumption, the memory
requirements of all algorithms are about the same. It is only
about the same, because the number of bytes necessary for
each such subset may differ sligthly. For example, DPsub
needs an additional pointer to link plans of equal size.

4. EVALUATION

Unfortunately, there are no experiments on join ordering
for hypergraphs reported in the literature. Thus, we had
to invent our own experiments. The general design princi-
ple of our hypergraphs used in the experiments is that we

start with a simple graph and add one big hyperedge to it.
Then, we successively split the hyperedge into two smaller
ones until we reach simple edges. As starting points, we use
those graphs that have proven useful for the join ordering
of simple graphs. In the literature, we often find the use of
chain, cycle, star, and clique queries [17]. The behavior of
join ordering algorithms on chains and cycles does not differ
much: the impact of one additional edge is minor. Hence,
we decided to use cycles as one starting point. Star queries
have also been proven to be very useful to illustrate different
performance behaviors of join ordering algorithms. More-
over, star queries are common in data warehousing and thus
deserve special attention. Hence, we also used star queries
as a starting point. The last potential candidate are clique
queries. However, adding hyperedges to a clique query does
not make much sense, as every subset of relations already
induces a connected subgraph. Thus, we limited our exper-
iments to hypergraphs derived from cycle and star queries.

Fig. 4a shows a starting cycle-based query. It con-
tains eight relations Rpo,...,R7. The simple edges are
({Rz}, {Ri+1}) fOI‘ 0 S 7 S 7 (With R7+1 = Ro). We
then added the hyperedge ({Ro,...,Rs}, {Ra4,...,R7}).
Each of its hypernodes consists of exactly half of the re-
lations. From this graph (call it Go), we derive hypergraphs
G1,...,Gs by successively splitting the hyperedge. This
is done by splitting each hypernode into two hypernodes
comprising half of the relations. That is, apart from the
simple edges, G1 has the hyperedges ({Ro, Ri},{Rs, R7})
and ({R2, Rs},{R4,Rs}). To derive G2, we split the first
hyperedge into ({Ro},{Rs}) and ({R1},{R7}). Gs addi-
tionally splits the second hyperedge into ({R2}, {R4}) and
({Rs}, {Rs}).

For star queries, we apply the same procedure. Fig. 4b
shows an initial hypergraph derived from a star. It consists
of nine relations Ry, ..., Rs and simple edges ({Ro},{R:})
for 1 <4 < 8. The hyperedgeis ({R1,...,Ra}, {Rs5,...,Rs}).
More hypergraphs are generated by successively splitting
this hyperedge as described above.

4.1 The Competitors

We ran DPhyp against DPsize and DPsub. For regular
graphs, these algorithms are explained in detail in [17]. Since
DPsize is the most frequently used dynamic programming
algorithm, we give its pseudocode in Fig. 1. In order to
deal with hypergraphs, the pseudocode does not have to
be changed: only the second test marked by (*) has to be
implemented in such a way that it is capable to deal with
hyperedges instead of only regular edges. Whereas DPsize
enumerates plans by increasing size, DPsub generates sub-
sets. Assume the best plan for a set of relations S is to be
found. Then DPsub generates all subsets S1 C S and joins
the best plans for S; and Sz = S\ S1. Before doing so, there
are tests checking that (S1, S2) is a csg-cmp-pair. Again, the
pseudocode of DPsub does not have to be changed, but the
test checking that S1 and S2 are connected has to be imple-
mented in such a way that it can deal with hyperedges.

4.2 Cycle-Based Hypergraphs

For very small queries with 3 or fewer relations, there is
no observable difference in the execution time of the differ-
ent algorithms. Cycle queries with four relations exhibit a
small difference. However, since each hypernode in the ini-
tial hyperedge consists of only two relations, there is only



Cycle Queries with 8 Relations

2.5 T
DPhyp
DPsize
DPsub ©
2+ 4
) ‘@
E E
O |8
= <
s | S
= : T
N 1r 1 N
£ U e i £
I § [ 3 IS
° [ P 5 °
05 L o | b
- Pl %
3 H | (
O i Ll H ! H !
0 1 2 3
hyperedge splits
Figure 5: Results for cycl

one more derived hypergraph. Hence, we do not plot the
runtimes but give them in tabular form. The runtime is
given in milliseconds. The experiments were carried out on
a PC with a 3.2 GHz Pentium D CPU. In the following table
we show the result for cycles with 4 relations.

splits | DPhyp DPsize DPsub
0 0.02 0.035 0.035
1 0.025 0.025 0.025

Only small differences in runtime are observable here. This
changes if we go to cycles with 8 and 16 relations. The cpu-
times in milliseconds are given in the graphs in Fig. 5. The
first graph contains the results for cycles with 8 relations,
the second one those for cycles with 16 relations. As we
can see, in all cases DPhyp is superior to any of the other
algorithms. Further, DPsize is superior to DPsub for large
queries.

4.3 Star-Based Hypergraphs

Let us start by giving the results for star queries with four
satellite relations in tabular form. The table is organized the
same way as before.

splits | DPhyp DPsize DPsub
0 0.03 0.085  0.065
1 0.055 0.09 0.08

We already observe small runtime differences. For example,
DPsize, which is used in commercial systems, is slower than
DPhyp by a factor of almost two. Further, DPsub is slightly
superior to DPsize, but less efficient than DPhyp. For larger
star queries with eight and 16 satellite relations (see Fig. 6),
these differences become rather huge. We observe that DPhyp
is highly superior to DPsize and DPsub. Further, DPsub is
superior to DPsize.

4.4 Queries with Regular Graphs

For completeness we also study the performance for regu-
lar graphs (i.e., simple hypergraphs without hyperedges), as
these are more common in practice and DPhyp might have
large constants than other approaches. But the results are
similar to the hypergraph results (see Fig. 7), DPhyp is highly
superior to DPsize and DPsub (note the logarithmic scale).
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This is also true for other graph structures, where DPhyp
performs exactly like DPccp on regular graphs.

S. NON-REORDERABLE OPERATORS

This section is organized as follows. We start with enu-
merating the set of binary operators which we handle. Then,
we discuss their reorderability properties. Sec. 5.3 provides
an overview of existing approaches. Problems occurring for
non-commutative operators are discussed in Sec. 5.4. Here-
after, we introduce SESs and TESs, which capture possible
conflicts among operators. Finally, we discuss issues con-
cerning dependent joins and show how TESs can be used
to generate the query hypergraph. An evaluation concludes
this section.

5.1 Considered Binary Operators

Let us define the set of binary operators which we allow for
in our plans. Besides the fully reorderable join (X ), we also
consider the following operators with limited reorderability
capabilities: full outer join (), left outer join (), left an-
tijoin (»), left semijoin (x), and left nestjoin (). Except
for the nestjoin, these are standard operators. The nestjoin
(also called binary grouping or MD-join) has been proposed
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to unnest nested queries in the object-oriented [6, 22], the
relational [3], and the XML context [14]. It is further used
to speed up data warehouse queries [5]. Since the various
definitions of the nestjoin differ slightly, we use the most
general one, from which all others can be derived by spe-
cialization. Let R and S be two relations, p a join predicate
between them, a; attribute names and e; expressions in one
free variable. Then we use the following definition of the
nestjoin:

RWP;[aliﬁh-»-,an:cn]S = {7" o S(T)IT € R}

with s(r) [a1 : e1(g(r)),...,an : en(g(r))] and g(r) =
{s|ls € S,p(r,s)}. Verbally, the operation can be described
as follows. For every tuple r € R, we collect all those tu-
ples from S which successfully join with it. This gives g(r).
Then, the expressions e; are evaluated with their free vari-
able bound to g(r). Often, e; will consist of a single aggre-
gate function call. Implementational issues for the nestjoin
have been discussed in [5, 15].

Additionally to the above operators, we consider their de-
pendent variants. Here, the evaluation of one side depends
on the other side. Consider, for example, the left dependent
join (or d-join for short) [6]. Let R be a relation and S an
algebraic expression whose evaluation depends on R because
it references attributes from R. Then, we define the d-join
between R and S as follows:

Rwx,S={roslre R,s € S(r),p(r,s)}

The d-join is very useful for table-valued functions with
free variables [16], unnesting relational queries [9], object-
oriented query processing [6], and XML query processing [4,
13, 14, 18).

It is straightforward to define the following dependent op-
erators: left dependent join (%, d-join for short), dependent
left outer join (™), dependent left antijoin (»), dependent
left semijoin (), and dependent left nestjoin (¥). Again,
different names have been supplied for these operators. For
example, the d-join is sometimes called [cross] apply [9, 13,
18], and the dependent left outer join outer apply [13, 18].

Let LOP be the set of operators consisting of X, >, x,
W, X b K oand .

Star Queries with 16 Relations
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5.2 Reorderability

We will start with a definition that is at the core of what
will be allowed in terms of reorderability and what will not.

DEFINITION 5  (LINEAR). Let o be a binary operator on
relations. If for all relations S and T the following two con-
ditions hold, then o is called left linear:

1. 0o T =0 and

2. (S1US82)0oT =(S10T)U(S20T) for all relations S1
and Ss.

Similarly, o is called right linear if
1. Sod =0 and

2. So(T1UTs) = (SoTy)U(SoTs) for all relations Ty
and Ts.

OBSERVATION 1. All operators in LOP are left-linear, and
X is left- and right-linear.

The full outer join is neither left- nor right-linear.

This observation simplifies the proofs of equivalences. We
only have to prove that the operators are reorderable on sin-
gle tuple relations. Before giving the reorderability results
for our operators, we need some notation. Let S and T be
two relation-valued algebraic expressions. Then we use the
convention that a predicate psr references attributes from
relations in S and 7" and no other relation.

We can now state the following equivalences.

THEOREM 1 (REORDERABILITY). Let —' and —2 be op-
erators in LOP. Then
(R _>;RS S) —>127RT T = (R _>127RT T) _)Zlms s (2)
(R™ppsS) 4’12)5T T = RMp,e(S *)12957" T) (3)
(R™ppsS) _’127RT T = Swppg(R _)IQJRT T) (4)

Another way to write the first equivalence by using the right
variant of —1 is

( R) (

With only very few exceptions, all valid reorderings are
captured by the equivalences in the above theorem. Most of

1 2 1 2
S — —prr T =5 —pps (R —=ppr

PRS

1)



these exceptions occur if the given expression can be sim-
plified. For example, let the predicate psr be strong with
respect to S.} Then

(R¥ppgS) M pgr T = SXpp o (R¥ e, T)

[11]. For this reason, we assume that all proposed simplifi-
cations [2, 11] have been applied. This is a typical assump-
tion [19]. Another important assumption we make is that
all predicates are strong on all tables. Predicates that are
not strong are only reorderable if attached to regular joins.
Hence, they can be treated by splitting query blocks [19].
Since the plan generator is called for each query block, we
do not have to handle them.

5.3 Existing Approaches

A query (hyper-) graph alone does not capture the seman-
tics of a query in a correct way [11]. What is needed is an ini-
tial operator tree equivalent to the query [19]. As mentioned,
the initial operator tree has to be simplified. Then, our
equivalences can be applied to derive all equivalent plans.
Typically, not all valid reorderings will be equivalent to the
original tree. Thus, any plan generation algorithm must be
modified such that it restricts its search to valid reorder-
ings. Several proposals to do so exist. For join trees with
joins, left outer joins and full outer joins with predicates ref-
erencing only two relations, Galindo-Legaria and Rosenthal
provided a procedure that analyzes paths in the query graph
to detect conflicting reorderings [11]. Then, they modify a
dynamic programming algorithm to take care of these con-
flicts. This approach was extended to conflict analysis with
paths in hypergraphs [1]. As pointed out by Rao et al. there
is a more efficient and easier to implement approach to deal
with this problem [19]. They propose to compute a set of
relations for every predicate that must be present in the ar-
guments before the predicate can be evaluated. This set is
called extended eligibility list, or EEL for short. Assume our
algorithm enters EmitCsgCmp with sets Si and Sz and the
join predicates have an EEL E. Then, E C S7 U S2 must be
checked. We could finish the current section at this point if
there were not two problems. First, only regular joins, left
outer joins, and antijoins are covered in [19]. Specifically,
no dependent join operator is handled by their approach.
Second, applying the test as late as in EmitCsgCmp results in
enumerating csg-cmp-pair candidates, which will eventually
fail. We would like to minimize this generation of irrelevant
candidates.

5.4 Non-Commutative Operators

Only the join and the full outer join are commutative; all
other operators are not. This requires some additional care.
Consider, for example, the expression

(Rl X py R2)NP3 (RS X po R4)

BOth ({Rl, Rz}, {Rg, R4}) and ({RS, ]’%4}7 {Rl, RQ}) are Valid
csg-cmp-pairs. In order to build a plan for the pair ({ Rs, R4},
{R1, R2}), we must reestablish the fact that { Rs, R4} occurs
on the right-hand side of a left outer join and build the plan
accordingly. The same applies to ({R1, Rz}, {Rs, Ra}). As
a result, we would construct the same plan twice. Fortu-
nately, our algorithm generates only csg-cmp-pairs (S, S2)

! A predicate p is strong w.r.t. S if the fact that all attributes
from S are NULL implies that p evaluates to false [11, 20].
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such that S1 < Sz if < denotes lexicographical ordering
among the sets of relations and is based on <, our ordering
of single relations. To avoid the problem of reestablishing
which part of a hyperedge occurred on the left-hand and
which on the right-hand side, we order relations from left to
right in the operator tree. That is, if R and S are two leaves
in the operator tree and R occurs left of S, then R < S.
Additionally, we associate with each hyperedge the opera-
tor from which it was derived. This operator can then be
recovered by EmitCsgCmp to correctly build the plan.

5.5 Computing SESs and TESs

A procedure for calculating EELs bottom-up for opera-
tor trees containing joins, left outer joins and left antijoins
is given in [19]. This approach is riddled with different
cases and their complex interplay renders any extension im-
possible. Thus, we take a radically different approach by
handling conflicts directly. Assume we have an expression
E = (Rop, S)op, T. Then we ask whether it is valid to
transform E into E' = Ro,, (S op, T). Similarly, given an
expression E’, we ask whether it can be safely reordered to
an expression F. If we can detect a conflict, i.e. the reorder-
ing is invalid, then we report this. The problem is that we
have to report conflicts for operators not only where one is
a child of the other, but also for pairs of operators where
one is a descendant of the other. To see why this is neces-
sary, assume o2 is a descendant operator in the left subtree
of o;. Then, due to valid reorderings of the left subtree of
o1, the operator oy might become a child of o;. Then the
conflict will count. During this rotation, all tables found on
the right branches on the path from oz to o1 in the original
operator tree will be found in the right argument of o3 in the
reordered operator tree, where os is a child of o;. Our pro-
cedure will record conflicts for all pairs of operators where
one is the descendant of the other.

Let us now formalize this approach. As usual, F(e) de-
notes the set of attributes occurring freely in an expression
e, and A(R) denotes the set of attributes a relation R pro-
vides. For a set of attributes A, we denote by 7T (A) the
set of tables to which these attributes belong. We abbre-
viate T (F(e)) by Fr(e). Let o be an operator in the op-
erator tree. We denote by left(o) (right(o)) its left (right)
successor. ST O(o) denotes the operators under o in the
operator tree and 7 (o) the set of tables occurring in the
subtree rooted at o, i.e. its leaves. Let oz be an opera-
tor in ST O(left(o1)). Then we define RightTables(oq,02)
as the union of 7 (right(os)) for all oz on the path from o
(inclusive) to o1 (exclusive). If oy is commutative, we add
7T (left(o2)) to RightTables(oq,02). Analogously, we define
LeftTables(o1,02) in case o2 € ST O(right(01)).

The syntactic eligibility set (SES) is used to express the
syntactic constraints: all referenced attributes/relations must
be present before an expression can be evaluated. First of
all, it contains the tables referenced by a predicate. Further,
as we are also dealing with table functions and dependent
join operators as well as nestjoins, we need the following ex-
tensions. Let R be a relation, T" a table-valued function call,
op any join except a nestjoin, and nj € {w ,r}. Then, we



define:

SES(R) = {R}
SES(T) = T}
SES(op) = |J SES(R)NT(op)
ReFr(p)
SES(nly jay:er,...anen]) = SES(R) N T (nl)

ReF1 (p)UFT(e;)

We illustrate these definitions in the next subsection, where
we discuss the handling of dependent join operations.

The total eligibility set (7E€S) — to be introduced next
— captures the syntactic constraints and additional reorder-
ability constraints. Assume the operator tree contains two
operators o1 and oz, where oo € ST O(01). If they are not
reorderable, i.e. there occurs a conflict, this is expressed by
adding the TES of oy to the TES of o;.

After initializing 7ES(o) with SES(o) for every opera-
tor o, the following procedure is called bottom-up for every
operator to complete the calculation of TES(o).

CalcTES(op, ) // operator o1 and its predicate p1
for V o,, € STO(left(op,))
if LeftConflict((op,), 0p,) // add op, < op,
TES(op,) =TES(0p,) UTES(0p,)
for V oy, € STO(right(op,))
if RightConflict(op,, (op,)) // add op, < op,
TES(op,) =TES(0p, ) UTES(0p,)
for V o (4,:0;] € STO(0p,)
if Ja; : a; € F(p1) // add ¥y [a,0e,) < Opy
TES(op,) =TES(0p )UTES(W pt [a;ie,])

where

LeftConflict((op,),0p,))
RightConflict(op,, (0p,))

LC A OC(opy,0p, )
RC A OC(0p, , 0py )

and

LC((ops)s 0p1)
RC(OP17 (op3))
OC(o1, 02)

Fr(p1) NRightTables(op, , 0p,) # 0
Fr(p1) N LeftTables(op,,0p,) # 0
(o1 =% Aoy =2)V (01 # X A

- (01 =09 =X)

A= (o1 =2 Aoy € {m,x}))

where each operator also stands for its dependent counter-
part. We show of the derivations of these conditions here in
the appendix.

5.6 Dependent Join Operators

When reordering dependent joins, some care is required,
as can been seen in the following equivalences:

R¥pps (S(R)™ s T(R)) (B¥prsS(R))Mpsr T
R¥pps (S5, T(R)) (R¥ppsS) Mpsr T(R)

In the first equivalence, the join between S and T on the left-
hand side must be turned into a dependent join on the right-
hand side. In the second equivalence, the first dependent
join between R and S becomes a regular join between R
and S on the right-hand side and the regular join between
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S and T on the left-hand side becomes a dependent join on
the right-hand side.

The general decision of whether to use a dependent or reg-
ular join (semijoin, antijoin, ...) can be made rather simple
due to the numbering and enumeration properties of our
algorithm discussed in Sec. 5.4. We attach only regular bi-
nary operators with hyperedges. When a hyperedge is used
by EmitCsgCmp to generate a plan, we retrieve this opera-
tor. Then, EmitCsgCmp has to turn it into its dependent
counterpart if and only if the following condition holds:

Fr(P)NS1 #£0
where P is the best plan for Ss.

5.7 Faster TESs Handling Using Hypergraphs

Note the following: if the hypernodes in the hyperedges of
the query graphs become larger, the search space decreases.
We could use 7E&S directly to test for conflicts in EmitCs-
gCmp, as described. However, taking the introductory state-
ment into account, we use 7 ES to construct the hypergraph,
which then serves as the input to our algorithm. For every
operator o, we construct a hyperedge (I, 7) such that

r=TES(o) N T (right(o))
and
l=TES()\r

Again, it is more efficient, as the hyperedges directly cover
all possible conflicts. Note that this significantly reduces the
search space. Even for the relatively simple example of a
star query of anti-joins, the explored search space is reduced
from O(n?) to O(n), the runtime from O(n?®) to O(n). The
hypergraph formulation greatly speeds up the handling of
non-inner joins.

5.8 Evaluation

We ran several experiments to evaluate the different al-
gorithms under different settings. Due to lack of space, we
selected two typical experiments.

In the first experiment, we wanted to answer the question
how much we benefit from the search space reduction in
Sec. 5.7. We compared a generate-and-test paradigm using
TESs with deriving hypergraphs from TESs. We construct
a left-deep operator tree for a star query with 16 relations,
with an increasing number of antijoins. Thus, the search
space size decreases over time, as the antijoins are more re-
strictive than inner joins. The results are shown in Fig. 8a.
For both approaches the optimization time decreases as the
search space shrinks, but the hypergraph performs much
better. The reason is that a TES-test-based approach gen-
erates many plans which have to be discarded, while the
hypergraph-based formulation can avoid generating them.
This shows that hypergraphs can greatly reduce the opti-
mization time when handling non-inner joins, even though
the original query does not induce a hypergraph.

Antijoins are very restrictive. Hence, the relevant search
space shrinks quite fast. Outer joins are more interesting,
as they can be reordered relatively to each other, which in-
creases the search space again. To study this effect and
to get a better comparison with the other algorithms, we
construct a cycle query with 16 relations similar to the star
query above, and replaced inner joins with outer joins. Note
that cycle queries are very favorable for DPsize. DPsub is so
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Figure 8: Star and Cycle Query with 16 relations

slow that we excluded it (> 1400 ms). The results are shown
in Fig. 8b. The runtime decreases at first, as the outer joins
cannot be reordered with inner joins. As the number of
outer joins increases, the search space increases again as the
outer joins are associative. Both algorithms benefit from
the search space reduction, but DPhyp is clearly faster than
DPsize in all cases. Apparently, DPhyp profits even more
from the reduced search space than DPsize, as the ratio be-
tween slowest and fastest optimization is =~ 2.88 for DPhyp
and ~ 1.96 for DPsize.

6. TRANSLATION OF JOIN PREDICATES

As mentioned in Section 2, hypergraph edges are formed
by using the relations from both sides of the join condition
as edge anchors. For example the join predicate

_}“1(]'2140,7 Rz.b, R34C) = f2 (1%4.d7 ]%5.67 Raf)
forms the hyperedge
({Rlv R27 R3}v {R47 R5v RG})

But for some predicates this construction is not as straight-
forward. For example, the very similar join predicate Ri.a+
R2.b+ Rs.c = R4.d + Rs.e + Rs.f could be translated into
the same hyperedge, but also to other hyperedges like

({R1, R2},{R3, R4, Rs, Re }),

as Rs could be moved to the other side of the equation. Fi-
nally, some predicates do not have an inherent ordering, like
f(Ri.a,R2.b, R3.c) = true. Note that while the previous
cases could be subsumed under the last form of predicates,
it is not desirable to do so, as it implies a nested loop eval-
uation.

In general, the relations involved in a join predicate can
be classified into three groups: Those that must appear on
one side of the join, those that must appear on the other side
of the join and those that can appear on any of the two. To
simplify the already not overly intuitive discussion about hy-
pergraph edges, our hypergraph definition in Section 2 could
not express this degree of freedom caused by the relations
in the third group. After explaining all the mechanisms, we
can now generalize the hypergraphs to include this freedom.
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DEFINITION 6  (GENERALIZED HYPERGRAPH). A gener-
alized hypergraph is a pair H = (V, E) such that

1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is a triple
(u, v, w) of non-empty subsets of V. (u C V and v C
V') with the additional condition that uw, v and w are
pairwise disjoint.

We call any non-empty subset of V' a hypernode. A hy-
peredge (u,v,w) is simple if |u] = |v]| = 1A |w| =0. A gen-
eralized hypergraph is simple if all its hyperedges are simple.

DEFINITION 7  (CONNECTED HYPERNODES). Two hyper-
nodes Vi, Va in a generalized hypergraph H = (V,E) are
connected if I(u,v,w) € E such that u CVi Av CVaAw C
(ViuWa) oru CVaAv C Vi Aw C (ViU V).

Intuitively, the triple (u, v, w) connects all nodes in u with
all nodes in v, where the nodes in w can appear on any side of
the edge. All other definitions follow analogously. Note that
while these generalized hypergraphs are difficult to visualize
for humans, they are easy to use in practice and the previ-
ously described algorithms require no changes. In particular,
following such a hyperedge (e.g., for neighborhood computa-
tion) is simple, as one side of the hyperedge is known: Given
a hypernode Vi and an edge (u,v,w) such that v C Vi, the
neighbouring hypernode V2 must be vU(w\ V1). This makes
use of the fact that we create a join tree, i.e., that V4 and
V2 must be disjoint.

Overall, the usage of generalized hypergraphs does not
complicate the optimization algorithm. It is interesting to
note, though, that the generalized hypergraph interacts with
the non-reorderable operators. The initial edges (u,v,w)
can be derived directly from the join predicates, where the
w part implies degrees of freedom. When handling non-
reorderable joins, the hyperedge computation from Section 5.7
places some relations explicitly on separate sides of a join.
Thus, initially unordered relations from w can be moved to u
or v due to reorderability constraints. As a consequence, the
search space shrinks, as the resulting hyperedge is more re-
strictive. This illustrates why this relatively complex triple
form is required: Using only pairs of hypernodes is too re-
strictive for some predicates, while considering hyperedges



as connecting an unordered set of nodes (as is sometimes
done for hypergraphs) is wasteful for the search space. By
combining them, we can both maintain expressiveness and
preserve an efficient exploration of the search space.

7. RELATED WORK

We already discussed closely related approaches in Sec-
tion 5.3. Hence, we give only a brief overview here. While
there exist many algorithms for ordering inner joins (see [16]
for an overview), there exist only very few to deal with other
join operators and hypergraphs.

The basic idea of using csg-cmp-pairs for join enumeration
for simple graphs was published in [17]. DeHaan and Tompa
used the same idea to formulate a top down algorithm [7].
In both cases, neither hypergraphs nor operators other than
inner joins have been considered.

Galindo-Legaria and Rosenthal extend DPsize to deal with
full and left outer joins [11]. They extend DPsize by incorpo-
rating a conflict analysis, which analyzes paths in the query
graph to detect conflicting join operators. However, the ex-
tension to hypergraphs was left to Bhargava et al. [1]. The
main idea here is to analyze paths in a hypergraph to detect
possible conflicts.

A much simpler ordering test using EELs has been pro-
posed by Rao et al. [19]. It performs a bottom-up traversal
of the initial operator tree and builds relation dependencies,
handling left outer joins and antijoins. They extend DPsize
with an EEL test much in the same way as our first (less
efficient) alternative (see Sec. 5.8). A more thorough discus-
sion of their approach and the differences to our approach
can be found in Sec. 5.3 and 5.5.

8. CONCLUSION

We presented DPhyp, a join enumeration algorithm ca-
pable of handling hypergraphs and a much wider class of
join operators than previous approaches. The extension to
hypergraphs enables us to optimize queries with non-inner
joins much more efficiently than before, even for queries with
binary join predicates.

Although our algorithm is way the fastest competitor for
join ordering for complex queries, there is still plenty of room
for future research. First, the generation of csg-cmp-pairs
still does some generate-and-test. It will be interesting to see
whether connected subgraphs of hypergraphs can be gener-
ated without any tests. Further, compensation is a means
to allow for more reordering if there is a conflict [1, 11, 19].
Our algorithm does not incorporate compensation. Thus,
this is a natural next step to consider. Lately, a new ap-
proach for a top-down join enumeration algorithm has been
proposed by DeHaan and Tompa [7]. It is only a linear fac-
tor apart from the optimal solution and thus highly superior
to existing top-down join enumeration algorithms. It suffers
from the same issues as DPccp did, namely, no hypergraph
and no outer join support. It will be interesting to see how
their algorithm can be extended to deal with these issues.

Acknowledgement. We thank Guy Lohman for point-
ing out the importance of hypergraphs, Simone Seeger for
her help preparing the manuscript, and Vasilis Vassalos and
the anonymous referees for their help to improve the read-
ability of the paper.
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9. REPEATABILITY ASSESSMENT RESULT

All the results in this paper were verified by the SIGMOD
repeatability committee.
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APPENDIX

A. EQUIVALENCES AND CONFLICT RULES

In Section 5.5 we needed conflcit rules for all considered
operators. The following two subsections provide an overview
over all equivalences and conflict rules. The first subsection
deals with operators nested on the left side, the second with
operators nested on the right side. Note that this is re-
dundant, but it is better for an overview of the situation.
There is a parenthesized comment on every equivalence or
conflict rules. Within these comments, you sometimes find
pst (prs) strong. This has to be read as psr (prs) strong
with respect to S. Further, the numbers 4.77 refer to equiv-
alences in Galindo-Legarias thesis [8].

A.1 Equivalences and Conflict Rules for Left
Nesting

Let R, S, and T be arbitrary algebraic expression in our
operators. Then, assume that we have an expression E

(Rop, S)op, T
and would like to reorder it to E’, which looks as follows:
Rop, (Sop, T)

For our original expression E, we observe the following:

Fr(T) € T(R)UT(S)

Fr(S) € T(R)

Fr(p) € T(R)UT(S)

Fr(p2) € T(R)UT(S)UT(R)
Fr(p)NT(T) = 0

These are syntactic constraints, that must be covered.
If

Fr(p2) NT(R) #0 N Fr(p2) NT(S)#0

then reodering E to E’ is not possible. However, this is also
covered by our syntactic constraints SES.
If

Frip)NT(R)=0 A Fr(p:)NT(S)=0

then p2 can be a constant predicate like true or false. The
first case can lead to e.g. cross products. In the second case,
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simplifications apply. If neither is the case, then the predi-

cate might reference attributes outside the arguments. This

kind of algebraic expression results from some nested queries

[6]. Anyway, in this paper we do not consider the case that

Fr(p2) has no intersection with any argument relations.
Hence, we have to consider only two cases here:

L1 Fr(p2) NT(R) #0 A Fr(p2) NT(S) =10

L2 Fr(p2) NT(R) =0 A Fr(p2) NT(S)#0

Case L1 allows for free reorderability, if no full outerjoin is

present (see Theorem 1). We will consider Case L2 below.
For commutative operators (x, x), Case L1 can be re-

cast to Case L2 by normalzing the operator tree (prior to
calculating SES and TES) by demanding that

Fr(p2) NT(S) #0

for all commutative operators o,,, which occur on the left
under some other operator. After this step, all possible con-
flicts are of Case L2.

Fig. 9 contains a complete listing of valid and invalid cases
for reordering F to E’. It follows from these equivalences
and conflict rules, that we can safely detect conflicts of re-
orderability for F, if we check

L2 A ((Opl = X A op, :N)
V (0p, # M
/\( ﬁ(0171:]”/\0:02:])‘1)
A =(op =X Aop, € {X,3}))))

Then, we can reorder E to E’ if and only if the above con-
dition does not return true, i.e. returns false.

A.2 Equivalences and Conflict Rules for Right
Nesting

Let R, S, and T be arbitrary algebraic expression in our
operators. Then, assume that we have an expression FE

Roy, (Sop, T)
and would like to reorder it to E’, which is defined as follows:
(Rop, S)op, T

For our original expression F, we observe the following:

Fr(S) € T(R)

Fr(T) € T(R)UT(S)

Fr(p1) € T(R)UT(S)UT(R)

Fr(p:) C T(S)UT(R)
Frp2)NT(R) = 0

These are syntactic constraints, that must be covered. If
Frp)NT(S)#0 N Frp)NT(T)#0

then reodering E to E’ is not possible. However, this is also
covered by our syntactic constraints SES. Again, we do not
consider the case where

Frip2)NT(R)=0 AN Fr(p2)NT(S)=0

here.
Hence, we have to consider only two cases here:

R1 Fr(p)NT(S)=0 AN Fr(p))NT(T)#0
R2 Fr(p)NT(S)#£0 AN Fr(p)NT(T)=10



(RMppeS)™per T RXppo(S™perT)  (join associativity), 4.44

(RXppgS) ™ psr T RXp s (S¥pernT)  (lhs not possible)

(RPprgS)Mpgy T Ropps(SXperT)  (lhs not possible)
(R PRS S)m psrl Ry pps (Swx PST T) (lhs not possible)
(R™ppg S)™Mper T R»y, o (S™peT)  (false, Ihs simplifiable if pgr strong, 4.48)
(R™ppsS) M pgr T R, s (S™per T)  (false, lhs simplifiable, GOJ 4.54)

(R ppsS)Xpgr T Ry (SXpgrnT)  (linearity, 4.44)

(RXppsS)Xpgr T RXppo(SXperT)  (lhs not possible)

(RrprsS)%pgr T Rvppg (S%pernT) lhs not possible)

(R ppgS)™%pgpT Rw s (S%per T)  (lhs not possible)

(RXppe S)¥per T R¥p s (SXpgrT)  (false, lhs simplifiable if pgr strong, 4.48)
(R S)¥psr T Rty s (S%pgrT) falbe)

(R¥ppsS)Ppsr T R Mprs (SDPST T) linearity)

(RXprgS)Ppsr T RXppg (SPperT) lhs not possible)

(RPprsS) T Rvpo (S0 T) lhs not possible)

(1 N N N N 1N N N N I N N N N LT N N N N TN N N N N
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(
(
(
(
(
(
(
(
(

T RW e (SPpsrT)  (lhs not possible)
(R¥p g S)Ppsr T Ry (SPpsrT)  (false)
(Bpps5)psr T R (S5, T) false)
(R ppsS) 0 psp T R pps (S psrT)  (linearity)
(RXppgS) MW porT Ry, (S o T)  (Ihs not possible)
(RrppsS) o pgrT Ropps(SwperT)  (lhs not possible)
(R¥ ppsS) ¥ psye T R pps (S perT)  (lhs not possible)
(R™ppg S) ¥ por T R¥py e (S perT)  (false)
(R™ppsS) ¥ pgyrT Ry (S oy T)  (false)
(R~ PRS S)NPSTT R¥pps (SNPSTT) linearity, 4.45)
(RXpreS)Mper T RXppo(S™pgrT)  (lhs not possible)
(RPprgS)™¥pgrT Ryp s (8,0, T)  (lhs not possible)
(RM ppeS)Xper T RY ppe(S™perT)  (lhs not possible)
(R™ppgS)XpgpT Ry, (S™pgn T)  (extra, if psr strong, 4.46)
(RMPRS S)NPSTT = RMPRS(SNPSTT) if psr strong, 4.51)
(RMppsS)Mpsr T #F RMppg(SXpg,T)  (false, GOJ 4.54)
(R%ppreS)™Xpgr T  #  RXppo(S¥,4,T)  (lhs not possible)
(RPppsS)™Mper T #  Rbppo (S T) lhs not possible)
(R0 ppeS)¥per T # RW e (S™XpeT) (lhs not possible)
(BMppgS)™pgr T #F  RXyps (82,4, T)  (false)
(RMPRS S)NPSTT = RXyppg (SNPSTT) if psT and prs strong, 4.50)

Figure 9: Equivalences and conflict rules for left nesting

Case R1 allows for free reorderability, if no full outerjoin is
present (see Theorem 1). We will consider Case R2 below.

For commutative operators (x, ), Case R1 can be re-
cast to Case R2 by normalzing the operator tree (prior to
calculating SES and TES) by demanding that

Fr(p)NT(S) #0

for all commutative operators op,, which occur on the right
under some other operator. After this step, all possible con-
flicts are of Case R2.

For space reasons we ommit the table for the right nesting,
it is symmetric to Fig 9. It follows from these equivalences
and conflict rules, that we can safely detect conflicts of re-
orderability for F, if we check

R2 A ((Op1 = X ANop, = N)
V (©0p, # ™

A = (op, =2 Aop, =)
A = (0p, =X Aoy, € {X,x}))))

Then, we can reorder E to E’ if and only if the above
condition does not return true, i.e. returns false.

A.3 Summary

Note that the conditions at the end of the preceding sub-
sections differ only in L2 and R2. Hence, we can factorize
these conditions into a condition OC(o1, 02) which is defined
as

OC(01,02) = (o1 =X Aog =)V (01 # XA
—\(01202:)4)

A= (o1 =2 Aoz € {x,2}))
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