
Lecture #07: Join Ordering: Bottom-Up
15-799 Special Topics in Databases: Query Optimization (Spring 2025)

https://15799.courses.cs.cmu.edu/spring2025/
Carnegie Mellon University

Prepared By: Jiaying Li & Guan-Ru Chen

1 Background

Joins are the backbone of query processing. They occur in nearly every query, and they can affect query
runtime dramatically. But most queries with joins involve only two tables.

However, there are ridiculous outlier queries with hundreds or thousands of tables in systems like SAP and
Tableau. For instance, the largest known query joins 5000 tables in SAP due its layering of views. Most
complex queries are computer generated (i.e., not written by humans).

As a result, an optimizer must be able to handle the common-case “easy” queries but still support the
occasional freak queries.

2 Adaptive Join Optimization

In adaptive join optimization [2], instead of using a single search strategy for all queries, the optimizer
selects a suitable algorithm for each query based on its logical complexity. Figure 1 shows an example:

• Small Queries: For small queries, which make up the bulk of most workloads, the goal is to find the
optimal join order, achievable through dynamic programming.

• Medium-Sized Queries: For medium-sized queries, while optimality can’t be guaranteed, the opti-
mizer combines dynamic programming with search space linearization to get close to optimal.

• Larger Queries: For larger queries, finding the best plan is impractical, so the focus shifts to achiev-
ing good results, using a greedy approach to ensure that the plan quality degrades gracefully.

Figure 1: Adaptive Optimization Decision Tree

The logical complexity of a query plan is not determined solely by the number of relations it references.
Instead, the complexity depends on the structure of its graph, specifically how different relations join with
each other.

https://15799.courses.cs.cmu.edu/spring2025/
https://15799.courses.cs.cmu.edu/spring2025/
https://www.linkedin.com/in/jiaying-li-537950233/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

2.1 Measuring Complexity through Query Graph Structures

R1 R2 R3 R4

(a) Chain Graph: Linear Join Precedence

R1

R2

R3

R4

(b) Clique Graph: Fully Connected Relations

Figure 2: Query Graph Structures

We can use the complexity and size of the DPHyp dynamic programming (DP) algorithm to measure a
query’s complexity. A query’s complexity depends on the structure of its query graph. Two important
structures are:

• Chain Graph: (Figure 2a)
– Each relation connects to at most two other relations.
– Allows for linear ordering of join precedence.
– Represents the best-case scenario.
– DPHyp complexity is O(n3) with a DP table size of O(n2): feasible to solve queries with up to

1,000 relations exactly.
• Clique Graph: (Figure 2b)

– Every relation connects to all other relations.
– These queries are rare but difficult to optimize.
– Represents the worst-case scenario.
– DPHyp complexity is O(3n) with a DP table size of O(2n): exact solutions limited to queries

with about 14 relations.

2.2 Small Queries
Small queries are defined to have a DP table with up to 10,000 entries, in which case the DPHyp algorithm
can efficiently generate the optimal join ordering. This algorithm adapts to the query’s graph structure,
ensuring complete and minimal enumeration of all possible join orders without cross products.

2.2.1 DHyp: Basic Algorithm

The DHyp algorithm is a dynamic programming-based approach for join optimization. It serves as the
foundation for DPHyp. The algorithm works as follows:

• Enumerate all connected subgraphs of the query graph.
• For each subgraph, enumerate all other connected subgraphs that are disjoint but still connected to it.

Start with one node and expand recursively by following edges.

Figure 3 illustrates the recursive expansion process. Starting from R3, the algorithm enumerates all con-
nected subgraphs by adding R2, then expands further by incorporating R1 or R4. Each subgraph grows by
following edges while maintaining connectivity, ensuring systematic exploration of all valid join plans.

To explore join orders more effectively, the optimizer can consider node groupings instead of individual
nodes by using hypergraphs.

15-799 Special Topics in Databases: Query Optimization
Page 2 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

Figure 3: DHyp Example

2.2.2 Hypergraphs

A hypergraph is defined as a pair H = (V,E) such that:

• V is a non-empty set of nodes.
• E is a set of hyperedges, where a hyperedge is an unordered pair (u, v) of non-empty subsets of V

(u ⊂ V, v ⊂ V) with the additional condition that u ∩ v = ∅.

This representation allows the search algorithm to consider node groupings instead of individual nodes,
which is crucial for efficiently optimizing the join orders of complex queries.

Figure 4: Hypergraph Representation and Query Example

Figure 4 shows an example query with six relations. In the hypergraph representation, the left subgraph
{R1, R2, R3} forms a chain, and the right subgraph {R4, R5, R6} follows a similar structure. These two
groups are connected by a hyperedge, reflecting the complex predicate that spans multiple relations. This
representation allows the optimizer to first optimize each group independently before determining how to
join them while respecting the hyperedge constraint.

15-799 Special Topics in Databases: Query Optimization
Page 3 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

But because hyperedges represent n : m relationships, adding them to a subgraph connects multiple nodes
at once. This introduces new challenges for using the DHyp algorithm:

• When expanding from a subset of relations, it is necessary to ensure that all nodes in a hyperedge are
included in the subgraph.

• Careful selection of expansion order is required to maintain the correctness of the dynamic program-
ming algorithm.

For example, Figure 4 shows that the left portion {R1, R2, R3} and the right portion {R4, R5, R6} are
connected by a hyperedge. If R4 is added prematurely, it causes R6 to become disconnected, violating
the DHyp algorithm’s constraints. Therefore, the expansion order must be carefully controlled to ensure
that the full hyperedge is considered at each step. To address this limitation, DPHyp integrates hypergraph
structures into DHyp’s optimization process.

2.2.3 DPHyp: Dynamic Programming Hypergraph Algorithm

DPHyp models the query as a hypergraph and incrementally expands it to enumerate new plans. It is
implemented in several modern database systems (e.g., HyPer, Umbra, DuckDB). In DPHyp, the hypergraph
is traversed in a fixed order, recursively producing larger connected subgraphs. Key aspects include:

• Incrementally expand connected subgraphs by considering new nodes in the neighborhood of a sub-
graph. Both the primary connected subgraph and its connected complement are created through re-
cursive graph traversals.

• Identify reachable nodes from a subgraph, excluding certain nodes based on constraints. To avoid
redundant exploration, some nodes are forbidden during traversal. Specifically, when a function per-
forms a recursive call, it forbids all nodes that it will investigate itself.

• Treat hypernodes as single instances when choosing subsets. Hyperedges are interpreted as n : 1
edges, leading from n nodes on one side to a single canonical node on the other side. This reduces
the complexity of join enumeration by allowing the optimizer to process grouped relations instead of
individual ones.

DPHyp handles complex join predicates and non-inner joins. The extension to hypergraphs enables the
optimizer to process queries with non-inner joins much more efficiently than before, even for queries with
binary join predicates. Furthermore, DPHyp is designed to handle complex join predicates effectively,
allowing for robust optimization in a broader range of query scenarios.

2.3 Medium Queries
For queries with more than 100 relations, the search strategy depends on the structure of the query graph. The
primary goal is to simplify the problem by converting every query into a chain query. Through linearization,
the optimizer only needs to consider associativity and not commutativity when enumerating join orderings.

2.3.1 Search Space Linearization

Queries are simplified into chain queries through Search Space Linearization. Assume that the order of
relations in the optimal plan is known (see Section 2.3.2). A polynomial DP algorithm then generates
an optimal plan from this linearization, where the algorithm combines optimal solutions for sub-chains of
increasing size.

15-799 Special Topics in Databases: Query Optimization
Page 4 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

Figure 5: Example for Search Space Linearization

Figure 5 shows an example where the query graph on the left is transformed into its linearized representation
in the middle. This process assumes that the order of relations in the optimal plan is already known. Begin-
ning with the leftmost relation, joins are sequentially added to construct increasingly larger subqueries, as
illustrated in the right portion of the figure. The steps are as follows:

1. Begin by examining combinations of 2 relations. From the sequence: {R1, R2} and {R5, R6}.
2. Next, consider combinations of 3 relations. Relation R3 can join with the result of {R1, R2}, forming

{R1, R2, R3}.
3. Continue expanding to larger subqueries by adding joins from left to right.
4. Finally, the entire query plan is constructed.

This step-by-step approach significantly reduces complexity compared to a full DP algorithm. While a full
DP would require a table with 17 entries, linearized DP requires only 6 entries, as shown in the figure. This
difference grows exponentially with the size of the query: the complexity of a full DP algorithm is O(2n),
whereas for linearized DP, it is O(n2).

2.3.2 IKKBZ ALGORITHM

The IKKBZ algorithm was developed in 1984/1986. It generates an optimal left-deep plan in O(n2), effi-
ciently linearizing the query graph. This left-deep plan’s join order is used as the initial join order for Search
Space Linearization. By fixing the relation order, the optimizer will only need to consider associativity
rather than full join reordering.

The algorithm follows these steps:

• Transform the precedence graph into a linear order.
• If the query graph contains cycles, generate a minimum-spanning tree.
• Assign ranks to nodes based on a cost/benefit ratio.
• Merge child chains successively in increasing rank order.
• Resolve contradictory sequences by merging conflicting nodes into a single unit.

15-799 Special Topics in Databases: Query Optimization
Page 5 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

As shown in Figure 6, the IKKBZ algorithm operates as follows:

• Build a precedence graph for each individual relation. Each relation serves as a potential root (e.g.,
A, B, C), generating different join order sequences. Each node represents a relation and is assigned
a cost/benefit ratio, calculated as the selectivity of join predicates divided by the estimated cost of
executing the join (e.g., number of input tuples).

• Resolve contradictory sequences in child chains by merging into a single node. Moving from
top to bottom, E and F are not ranked in ascending order of their cost/benefit ratio, as rank(E) >
rank(F). According to the precedence graph, F should be joined before E, but logically, this is
impossible since E precedes F . To resolve this, E and F are merged into a single node, summing
their ranks to form 7/10.

• Merge child chains based on increasing rank until a linear form is obtained. All nodes are
sequentially merged, producing the initial linearized join order.

Figure 6: IKKBZ Algorithm Example

Thus, we can use IKKBZ to generate an optimal left-deep plan in O(n2) and linearize the query graph.

2.3.3 Processing Medium Queries

To process medium queries, the query graph is first linearized using IKKBZ. Then, the best bushy plan is
built based on this linearized structure. This algorithm runs in O(n3) time and produces results that are at
least as good as the optimal left-deep plan. With proper linearization, it can discover the globally optimal
bushy plan.

2.4 Large Queries
The optimizer handles the most complex queries with an iterative dynamic programming approach. First, it
greedily builds an initial query plan. Then, it iteratively refines the plan by optimizing the most expensive
subtrees up to size k using DP. By applying the linearization trick, the optimizer can go from k = 7 to
k = 100.

The greedy algorithms used include Min-sel (Minimum Selectivity) and GOO (Greedy Operator Ordering).
Min-sel chooses the next join based on the lowest selectivity value. We now discuss GOO in detail.

15-799 Special Topics in Databases: Query Optimization
Page 6 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

2.4.1 Greedy Operator Ordering

Greedy Operator Ordering (GOO) is a heuristic-based optimization algorithm designed to efficiently deter-
mine the join order in large query plans. Instead of exhaustively exploring all possible join orders, GOO
iteratively selects the best join candidates based on a cost function. The algorithm consists of below steps:

1. Identify the Best Pair to Join: it finds the pair of connected relations (i, j) that minimizes:

cost = size(i)× size(j)× selectivity(i, j)

Intuitively, this cost function prioritizes lower selectivity values and smaller relation sizes to minimize
intermediate result sizes. In Figure 7, we choose the pair (B,C).

2. Merge the Selected Pair into a New Node: it combines the selected pair into a single node and
recomputes the selectivities of edges to other nodes. In Figure 7, (B,C) merges into one node with
size 2000, with recomputed costs for pairs (A,BC) and (BC,D).

3. Repeat Until Only One Node Remains: the algorithm continues merging nodes until only a single
node remains, producing either bushy trees or left-deep trees depending on the join order. Figure 7
shows (A,BC) merging first, followed by (ABC,D), resulting in the final left-deep tree.

Figure 7: Example of Greedy Operator Ordering

2.5 Experimental Results
The experimental results in Figure 8 show the performance of different database management systems
(DBMSs) and query optimization techniques on randomly generated queries with an increasing number
of relations. Traditional DBMSs and optimization algorithms struggle significantly as the size and complex-
ity of queries increase. Adaptive approaches, which combine heuristics and targeted dynamic programming,
show promising results, significantly outperforming traditional methods in both compilation time and exe-
cution efficiency.

15-799 Special Topics in Databases: Query Optimization
Page 7 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

Figure 8: Comparison with Existing Systems.

3 Randomized Algorithms

For large queries or queries that have complex structures, it is computationally impractical to find the glob-
ally optimal plan with exhaustive search. Randomized algorithms provide an alternative by exploring the
solution space randomly, allowing the optimizer to find a good enough plan within a reasonable time. These
methods do not guarantee optimality but can efficiently handle cases where traditional dynamic program-
ming or heuristic-based approaches fail due to excessive computation time.

We discuss three randomized algorithms as examples:

3.1 QuickPick
QuickPick[3] is a randomized algorithm that incrementally builds random join trees and selects the one with
the lowest cost. It works by randomly selecting and removing edges from the query graph, iteratively adding
joins or predicates to the plan. If a newly generated plan has a lower cost than the best one seen so far, it
is kept; otherwise, it is discarded, and the process restarts. To improve efficiency, the sampling function is
biased toward edges with lower selectivities, leading to better join orderings.

3.2 Simulated Annealing
Simulated Annealing [1] is a randomized optimization technique inspired by the annealing process in met-
allurgy. It starts with an initial query plan generated using heuristics and iteratively modifies the plan by
randomly swapping operators (e.g., join order of tables).

• If the change reduces cost, it is always accepted.
• If the change increases cost, it may still be accepted with some probability, which decreases over time.
• Invalid changes (e.g., breaking sort order) are always rejected.

This method helps to escape local minima and allows the optimizer to explore a larger solution space,
improving the chance of finding a better query plan compared to purely greedy approaches.

15-799 Special Topics in Databases: Query Optimization
Page 8 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

3.3 Postgres Genetic Optimizer
PostgreSQL’s Genetic Query Optimizer (GEQO) is an alternative query planner designed to handle very
complex queries with many joins. Based on ideas from genetic algorithms, it uses evolutionary techniques
to find cheaper plans when the normal System R style optimizer is too computationally expensive. In prac-
tice, PostgreSQL switches to GEQO when the number of relations exceeds the geqo threshold parameter
(default value is 12). It works as follows:

1. Initial Population: A set of random join orders is generated.
2. Fitness Evaluation: Each join order is evaluated based on the estimated query cost.
3. Selection: Higher-quality (lower-cost) join orders are more likely to be selected for reproduction.
4. Crossover: Selected join orders are combined to create new join orders.
5. Mutation: Random changes are applied to introduce diversity and prevent local optima.
6. Iteration: The algorithm repeats until a stopping condition is met (e.g., a maximum number of gen-

erations or convergence).

In Postgres, there are several parameters to control GEQO’s behavior:

• geqo threshold: Determines when GEQO is used, based on the number of tables in a query. Lower
values make GEQO handle smaller queries, while higher values restrict its usage to larger queries.

• geqo effort: Controls the effort spent on optimizing query plans. Does not do anything directly, used
to set default values for other GEQO parameters. Increasing this value leads to better plans but takes
more time.

• geqo pool size: Specifies the number of join orders considered in each generation. A larger pool size
improves exploration but increases memory and computational cost.

• geqo generations: Determines how many generations GEQO will iterate through. More generations
allow better refinement but take longer to converge.

• geqo selection bias: Controls the selection bias (i.e., the selective pressure within the population).

Figure 9 shows an example of GEQO in action.

SPECIAL TOPICS (SPRING 2025)

POSTGRES GENETIC OPTIMIZER
28

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S
T

NL

NL
Cost:
300

T R
S

NL

HJ

S R
T

HJ

HJ

Cost:
200

Cost:
100

S R
T

HJ

HJ

R T
S

NL

HJ

T R
S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

R S
T

HJ

HJ

R S
T

HJ

HJ

R T
S

HJ

HJ

Cost:
90

Cost:
160

Cost:
120

Figure 9: Example of PostgreSQL’s Genetic Query Optimizer

First Generation (Initial Plans)
• Three different query plans are generated:

15-799 Special Topics in Databases: Query Optimization
Page 9 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

– Plan 1: Uses nested loops (NL) with a cost of 300.
– Plan 2: Uses hash join (HJ) + NL, improving cost to 200.
– Plan 3: Uses only HJ, further reducing the cost to 100.

Second Generation (Mutation and Crossover)
• The optimizer selects the best plans (lower cost) and mutates them:

– New plans are generated by rearranging joins and combining parts of different plans.
– The best plan now has a cost of 80.

Third Generation and Beyond
• The process repeats, refining join orders through mutation and crossover.
• The optimizer gradually improves the join plan until no significant cost reductions occur.
• The final best plan achieves the lowest execution cost among all iterations.

By using heuristics and randomness, GEQO finds a reasonably good join order much faster than exhaustive
search.

Randomized algorithms offer a practical approach to query optimization when exhaustive or heuristic-based
methods become computationally infeasible. They excel in escaping local minima by exploring the search
space non-linearly and require low memory overhead, making them efficient for large or complex queries.
However, their inherent randomness introduces challenges, such as a lack of explainability in plan selection
and the need for additional effort to ensure deterministic query plans.

15-799 Special Topics in Databases: Query Optimization
Page 10 of 11

https://15799.courses.cs.cmu.edu/spring2025/

Spring 2025 – Lecture #07 Join Ordering: Bottom-Up

References

[1] Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data, SIGMOD ’87, page 9–22, New York,
NY, USA, 1987. Association for Computing Machinery. ISBN 0897912365. doi: 10.1145/38713.38722.
URL https://doi.org/10.1145/38713.38722.

[2] T. Neumann and B. Radke. Adaptive optimization of very large join queries. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, page 677–692, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450347037. doi: 10.1145/3183713.3183733.
URL https://doi.org/10.1145/3183713.3183733.

[3] F. Waas and A. Pellenkoft. Join order selection (good enough is easy). In B. Lings and K. Jeffery,
editors, Advances in Databases, pages 51–67, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
ISBN 978-3-540-45033-7. doi: 10.1007/3-540-45033-5 5.

15-799 Special Topics in Databases: Query Optimization
Page 11 of 11

https://doi.org/10.1145/38713.38722
https://doi.org/10.1145/3183713.3183733
https://15799.courses.cs.cmu.edu/spring2025/

	Background
	Adaptive Join Optimization
	Measuring Complexity through Query Graph Structures
	Small Queries
	DHyp: Basic Algorithm
	Hypergraphs
	DPHyp: Dynamic Programming Hypergraph Algorithm

	Medium Queries
	Search Space Linearization
	IKKBZ ALGORITHM
	Processing Medium Queries

	Large Queries
	Greedy Operator Ordering

	Experimental Results

	Randomized Algorithms
	QuickPick
	Simulated Annealing
	Postgres Genetic Optimizer

