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1 Introduction

Cascades is an object-oriented, transformation-based (top-down) query optimization framework [3]. It is the
third query optimizer project from Graefe (preceding projects were EXODUS [4] and Volcano [5]. One of
the first Cascades implementations was the Columbia query optimizer, built by one of Graefe’s students as
part of their 1998 masters thesis [9].

Like Volcano, Cascades uses a top-down approach (backward chaining) with branch-and-bound search. The
primary difference is that Cascades decomposes the search process into tasks, which it manages with a stack.
Cascades also supports expression rewriting through a direct mapping function (e.g., mapping WHERE 1=1
to WHERE true), reducing the need to perform exhaustive search.

Cascade has four key ideas that distinguish it from Volcano.

1. Optimization tasks as data structures: Cascades has dedicated data structures that keep track of
patterns to match and transformation rules to apply.

2. Rules to place property enforcers: Cascades represents enforcers as rules that change the physical
properties of the plan (i.e., no special casing required to implement enforcers).

3. Ordering of moves by promise: Cascades dynamically assigns task priorities to find the optimal
plan more quickly.

4. Unified representation of rules and operators: A single search engine for logical and physical
operators enables interleaving logical and physical transformations.

1.1 Expressions and Groups
The most granular unit of a query plan in Cascades is an expression. An expression represents some op-
eration in the query with zero or more input expressions. Expressions can logical (e.g., (A ⋊⋉ B) ⋊⋉ C),
physical (e.g., (ASeq ⋊⋉HJ BSeq) ⋊⋉NL CIdx), or a combination of both. Therefore, the optimizer must be able
to quickly determine whether two expressions are equivalent, including logical-logical, physical-physical,
and logical-physical expressions. Expressions can specify output properties (e.g., sortedness).

A group is a set of logically equivalent logical and physical expressions that produce the same result. This
set includes all logical forms of an expression and all physical expressions derived from selecting allowable
physical operators for the corresponding logical forms. For example, A ⋊⋉ B ⋊⋉ C can be represented as
{ABC}, as shown in the group below:

Logical Expressions Physical Expressions
{AB} ⋊⋉ {C} {AB} ⋊⋉SM {C}
{BC} ⋊⋉ {A} {AB} ⋊⋉HJ {C}
{AC} ⋊⋉ {B} {AB} ⋊⋉NL {C}
{A} ⋊⋉ {BC} {BC} ⋊⋉SM {A}

Output: {ABC}, Properties: None
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The optimizer implicitly represents redundant expressions in a group with a placeholder (e.g., {ABC}).
This representation allows the optimizer to avoid explicitly instantiating all the possible expressions in a
group. In the example above, the result {AB} appears many times in the group’s expressions. Instead of
repeatedly computing all of {AB}’s expressions, the optimizer saves and refers to {AB} as another group.
This technique reduces the number of transformations, storage overhead, and cost estimations.

1.2 Rules
Like the previous systems that we discussed, a rule is a transformation of an expression into a logically
equivalent expression. There are two types of rules:

• Transformation Rule: logical to logical.
• Implementation Rule: logical to physical.

Each rule is represented as a pair of attributes, a pattern and a substitute. When a logical expression’s
structure matches a rule’s pattern, the optimizer uses the rule’s substitute to produce a new expression.
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Figure 1: A query plan that matches two different rules.

Figure 1 shows a query plan that matches the pattern of two different rules. The transformation rule rotates
the plan left-to-right, whereas the implementation rule realizes the matching equijoins as sort-merge joins.

Transformation rules can only be applied if the output has the same properties as the input (e.g., sort order).
The optimizer also needs to maintain metadata that tracks whether it has applied a given rule to avoid
reapplying the same rule unnecessarily (e.g., commutativity).

Unlike Volcano, Cascades does not require special casing to implement enforcers. Recall that enforcers are
used to guarantee certain plan properties (e.g., sort order). Cascades represents enforcers as rules that insert
physical operators to change the physical properties of a plan.

1.3 Tasks
Cascades breaks down optimization into smaller and more manageable pieces (tasks) to allow for more
flexible and efficient exploration of the search space. A task is a fine-grained unit of work that represents an
operation in the query optimization process. This decomposition allows the optimizer to learn the best order
for invoking its tasks, based on promise. It also allows for parallel task execution (e.g., Orca does this).

1.4 Promises
A task’s promise is the estimated benefit of a move on a given expression relative to other tasks. For
example, when comparing two possible join orderings, the optimizer estimates the cardinality of both tables
and assigns higher promise to a join order swap rule if the outer table is larger than the inner table. Note that
while cost may be a good promise metric if it is available, promise is distinct from cost. Additionally, the
optimizer must still ensure that tasks execute in the order defined by their dependencies.
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2 Cascades: Task Search

2.1 Task Flow
Cascades has six tasks, roughly grouped around Optimize, Explore, and Rewrite.

1. Optimize Group: The task is the entry point to any group. This task finds the best physical plan for
a given group (set of expressions).

2. Optimize Expression: This task finds the best physical plan for a given expression. For both Optimize
Group and Optimize Expression, the set of equivalent expressions must first be generated.

3. Explore Group: This task generates the logical expressions for a given group. Exploring a group
essentially creates an Explore Expression task for each expression in the group.

4. Explore Expression: This task applies rules to create all equivalent expressions to the input expres-
sion. The application of each rule is itself another task.

5. Apply Rule: This task applies a rule to a specific expression and creates additional tasks if necessary.
6. Optimize Inputs: This task takes an expression and creates a new Optimize Group task for each of

its children.
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Figure 2: An example of the task flow in Cascades.

We walk through the task search process in Figure 2.

1. The SQL query creates an Optimize Group task. If its corresponding group has not been explored
yet, we defer the Optimize Group task and start an Explore Group task, which generates all equivalent
logical expressions. This allows the Optimize Group task to proceed.

2. The Optimize Group task creates an Optimize Expression task for each expression in the group. The
Optimize Expression task tries to optimize expressions (e.g., it may be able to immediately produce
constants). It may also create expressions that need to be explored with Explore Expression tasks.

3. Explore Group expands the group with new expressions, creating Explore Expression tasks.
4. The exploration process feeds into itself. As groups are explored, they may produce new logical

expressions. These logical expressions may be converted into physical expressions that then generate
new groups and logical expressions.

5. Apply Rule tasks perform logical-to-logical and logical-to-physical expression conversions.
6. The Optimize Inputs task descends further into the query plan by examining the current group’s inputs.
7. Each input to the current group generates a new Optimize Group task, restarting the process.
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Cascades uses a LIFO stack of tasks to perform these actions on groups and expressions according to the
flow shown in Figure 2. The stack maintains the required ordering of tasks while ensuring that expres-
sions are derived after the best plans of their input expressions are derived and allowing independent task
optimizations to occur. To reduce out of memory errors, the actual tasks are stored on the heap.

2.2 Memo Table
To maximize efficiency and avoid redundant computation, the optimizer stores all previously explored al-
ternatives in a compact graph structure or hash table known as the memo table. Equivalent operator trees
and their corresponding plans are stored together in groups. The memo table provides a way to inspect the
optimizer’s search progress (e.g., for duplicate group detection).

Cascade’s search relies on the Principle of Optimality that assumes that every sub-plan of an optimal plan
is itself optimal. This allows the optimizer to restrict the search space to a smaller set of expressions.
For example, if the optimizer knows the optimal sub-plan for {A}, it does not need to search {A} when
optimizing {A} ⋊⋉ {B}: it can use the optimal plan that was already found.
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Figure 3: An example of a memo table.

Figure 3 contains an example of a memo table in the upper left, where each group is mapped to its optimal
expression and cost. For example, the optimal expression of {C} is IdxScan(C), which will be reused for
any expression involving {C}.

3 Optimizations

The Promise mechanism allows Cascades to potentially apply beneficial transformations earlier in the search
process. The flexible architecture of Cascades also enables other optimizations to reduce search times.

3.1 Simplification Rules
Because some rules simplify the logical plan and almost always reduce the cost, Cascades expresses them
as simplification rules: instead of creating alternative expressions, such rules replace the expression with
the transformed expression, eliminating the need to retain unnecessary state. These rules are equivalent to
Starburst’s rewrite rules [6].

3.2 Macro Rules
Macro rules apply multiple transformations in a single rule to reduce the complexity of the search space.
Although this goes against the spirit of Volcano’s simple and independent rules, Microsoft shows that this
technique works well in practice [2].

15-799 Special Topics in Databases: Query Optimization
Page 4 of 7

https://15799.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #05 Cascades

3.3 Parallel Search
If tasks are independent, the optimizer can execute them in parallel on multiple threads. However, this
requires sharing the memo table and ensuring that internal data structures are thread-safe. Orca [7] may be
the only multi-threaded Cascades optimizer implementation.

4 Cascades Implementations

There are many implementations of the Cascades optimizer:

Standalone:

• Wisconsin OPT++ (1990s)
• Portland State Columbia (1990s)
• Greenplum Orca (2010s)
• CMU optd (2025)

Integrated

• Microsoft SQL Server (1990s)
• Tandem NonStop SQL (1990s)
• Clustrix (2000s)
• CockroachDB (2010s)
• Snowflake (2010s)
• Databricks (2010s)

4.1 Microsoft SQL Server
Microsoft SQL Server started its Cascades implementation in 1995. Derivatives of its optimizer are used in
many Microsoft database products1. The transformations are written in C++ (i.e., there is no domain-specific
language). It expresses scalar and expression transformations as procedural code instead of declarative rules.

Although their optimizer is based on Cascades, the DBMS applies transformations in multiple stages (which
is more similar to Starburst) with increasing scope based on the complexity of the query. This approach
leverages domain knowledge to reduce the search space efficiently.

4.1.1 Multi-Stage Optimization in Microsoft SQL Server

Their multi-stage optimization [1] consists of the following steps:

1. Simplification / Normalization: This step conducts tree-to-tree transformations that apply basic rules
like sub-query removal, outer joins to inner joins, predicate push-down, and empty result pruning. The
rules in this category should have broad applicability (always apply).

2. Pre-Exploration: This step initializes the cost-based search. If required statistics are not in the system
catalog, the system pauses the query optimizer to gather statistics2. Examples of rules at this stage
include trivial plan short-circuit, projection normalization, statistics identification/collection, initial
cardinality estimates, and join collapsing.

3. Exploration: This step conducts multi-stage cost-based search. Stage 1 generates the trivial plan. If
there is still optimization time available, the optimizer goes into stage 2 for quick plan, and lastly to
stage 3 for full plan. The quick plan and full plan may execute in parallel.

1Initially, each product maintained its own fork of the optimizer. Later in the semester, we will read about Microsoft Fabric.
2In data warehouses (e.g., data exists as Parquet files on S3), obtaining statistics is prohibitively expensive.
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4. Post-Optimization: This step performs engine-specific transformations. For example, if the query is
running on the distributed version of SQL Server, the optimizer converts the query plan from the last
stage to a distributed query plan.

4.1.2 Additional Microsoft SQL Server Optimizations

Microsoft SQL Server has additional optimizations that help to generate a better query plan. One optimiza-
tion is setting timeouts based on the number of transformations instead of wall-clock time. This criteria
ensures that systems do not generate different query plans when under heavy load. Another optimization
is pre-populating the memo table with potentially useful join orderings based on heuristics that consider
relationships between tables and syntactic appearance in the query.

4.2 Greenplum Orca
Greenplum Orca [7] is a standalone Cascades implementation in C++. Orca may be the only Cascades
implementation that currently supports multi-threaded search. A DBMS integrates Orca by implementing
an API to send its catalog, statistics, and logical plans, after which it can retrieve physical plans. Orca was
open-sourced in the 2010s but became closed-sourced in 2024 after Broadcom’s acquisition.

4.3 CockroachDB
CockroachDB has a custom Cascades implementation [8] written in 2018 where all transformation rules
are written in a custom DSL (OptGen). These rules then undergo codegen into Golang. The rules support
embedding Go logic to perform more complex analysis and modifications.
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