
Lecture #04: Volcano
15-799 Special Topics in Databases: Query Optimization (Spring 2025)

https://15799.courses.cs.cmu.edu/spring2025/
Carnegie Mellon University

Prepared By: Melody Hu

1 Introduction

In the late 1900s, optimizer generators emerged as a framework for abstracting away the functionality of an
optimizer. The framework provides an API that allows database management system (DBMS) developers
to avoid the complexity of implementing query optimizers from scratch. Instead, DBMS developers write
the rules for optimizing queries, which the optimizer generator then translates into optimizer source code
that is compiled and linked with the rest of the DBMS. By doing so, these optimizer generators separate (1)
the search strategy from the data model and (2) the transformation rules and logical operators from physical
rules and physical operators, ensuring modularity and flexibility. This design also decouples the optimizer’s
pattern matching mechanism and transformation rules from its search strategy, allowing the search strategy
to be changed without modifying the rest of the optimizer.

One of the first optimizer generators was developed in 1987 as part of the EXODUS extensible DBMS
project by Goetz Graefe, David DeWitt, and their team at the University of Wisconsin-Madison. Graefe
would further improve on the extensibility, efficiency, and expressiveness of the EXODUS Optimizer Gen-
erator by creating the Volcano Optimizer Generator in 1994.

2 EXODUS

The EXODUS optimizer generator takes a rule-based approach that separates concerns between the opti-
mization logic and data structures. It translates its algebraic transformation rules into executable optimizer
code that performs a bottom-up breadth-first search (forward chaining): starting from the query plan roots,
it triggers all rules that match those operators and adds their conclusion to the known facts, repeating this
process until the full query is produced. The generated optimizer avoids exhaustive search by using dynamic
programming and branch-and-bound pruning. It also modifies the search priorities of its rules based on past
experience. The initial implementation of EXODUS’s optimizer generator used Prolog for its pattern match-
ing and search capabilities, but because their Prolog interpreter was too slow and did not support configuring
its depth-first search at runtime, this was replaced with a C implementation.

2.1 Query Optimizer Pipeline
As Figure 1 shows, the optimizer generator is a stand-alone library that can generate query optimizer source
code for different DBMSs. The model description file is metadata that includes operator definitions, access
method definitions, rules for transforming query plans, and rules that tracked the correspondence between
operators and methods. The users of the optimizer generator could also provide their own operator imple-
mentations (e.g., to support new operators).

EXODUS has transformation rules (logical to logical) and implementation rules (logical to physical). Trans-
formation rules are algebraic rules of expression equivalence (e.g., commutativity, associativity) and include
hints to prevent reapplying the same rule to the output to avoid infinite loops. The implementation rules map
one or more logical operators to one or more physical operators, and vice versa (bidirectional).

https://15799.courses.cs.cmu.edu/spring2025/
https://15799.courses.cs.cmu.edu/spring2025/
https://www.linkedin.com/in/melodyyhu/


Spring 2025 – Lecture #04 Volcano

Figure 1: EXODUS’s Query Optimizer Pipeline

2.2 Search Algorithm
EXODUS’s search algorithm maintains a priority queue of transformations (OPEN) to apply on the remain-
ing access plans for a query. These access plans are stored in an in-memory hash table (MESH). At the
beginning of each round, the optimizer chooses the transformation rule that it estimates would provide the
largest cost improvement (i.e., the most promise).

Each transformation rule is associated with an expected cost factor f . The promise of a rule is calculated
using the pre-transformation cost and the expected cost factor. If C is the cost of the query plan before a
transformation with an expected cost factor of f , the query plan cost after applying the transformation is
C × f . Expected cost factors are learned from past experiences through averaging historical data, indirect
adjustment, and propagation adjustment. The paper shows that various averaging methods are all statisti-
cally valid constructs with minor performance differences (e.g., geometric sliding average, geometric mean,
arithmetic sliding average, arithmetic mean). Adjustments occur after an advantageous transformation is
observed. Indirect adjustment lowers the expected cost factor of the last two rules applied to account for
rules that enable subsequent beneficial transformations. Propagation adjustment reduces the expected cost
factor if cost advantages are realized when reanalyzing the parent nodes after a transformation. Intuitively,
rules that are good heuristics should have f < 1, whereas rules that are neutral on average will have f = 1.

As stated above, the round begins with the optimizer picking the transformation rule with the most promise
from OPEN. Next, it applies the transformation rule to the correct node(s) in MESH. It then immediately
applies the implementation rules to convert logical operators into physical operators and eagerly performs
cost analysis for new nodes. It then adds newly enabled transformations to OPEN before moving on to the
next round. The process stops once OPEN is empty.

2.3 Flaws
Some flaws of the EXODUS system include:

• In MESH, the lookup key is a combination of logical operators and the physical operators that they got
converted to. If a logical operator can be converted to different physical operators, each combination
would be a separate entry in MESH (i.e., logical operators are duplicated).

• Enforcing certain properties required embedding logic into the cost functions (i.e., adding operators
may require modifying the cost model).

• EXODUS immediately applies implementation rules and performs cost analysis after invoking a log-
ical transformation rule. It may be more efficient to defer this step until more logical transformations
have been explored.

15-799 Special Topics in Databases: Query Optimization
Page 2 of 5

https://15799.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #04 Volcano

3 Volcano

Volcano is a general purpose cost-based query optimizer that is based on algebraic equivalence rules. It
treats physical properties of data as first-class entities during planning and allows easy additions of new
operations and equivalence rules. It has a similar rule compilation pipeline to EXODUS. However, it uses
a top-down depth-first search (backward chaining): it starts from the query result and works backward to
determine what operators to add to the query plan. It also uses branch-and-bound pruning to improve the
efficiency of its search.

3.1 Design Goals
In an effort to ensure extensibility, the design goals of Volcano [1] are:

1. Interoperable with existing DBMSs
2. Computational and storage efficiency
3. Extensible physical properties
4. Extensible search guidance and pruning
5. Flexible cost model that supports parameterized queries

3.2 Components
Volcano uses two distinct algebras (logical and physical) to map logical expressions to physical expressions.
Logical expressions represent user queries as a directed tree of one or more logical operators (e.g., select,
project, join). Physical expressions represent query evaluation plans using physical algorithms (e.g., sort-
merge join, hash join, nested loop join).

Volcano has three operator types: logical, physical, and enforcer. Logical operators have properties (e.g.,
schema, cardinality) and a property function that is used to query for available properties. Physical operators
also have properties (e.g., sort-order, partitioning) and a property function, however, they additionally have
cost functions and applicability functions (i.e., whether the operator satisfies the required properties of its
logical operator(s)). Enforcer operators are “virtual” physical operators injected into a plan to ensure that
physical properties are satisfied (e.g., sort order).

Rules in Volcano are pattern matching functions with an action function to permute a query plan. These
patterns support parameterized conditionals based on operator types (e.g., match any scan). All the rules
are independent; the system relies on the search engine to find useful combinations of them. The rules also
support auxiliary functions that perform additional analysis after a rule’s pattern matches (e.g., to examine
the structure of the query plan). Volcano prioritizes faster search through rule compilation over the runtime
flexibility of rule interpretation (e.g., Starburst).

In Volcano, cost is represented as an abstract data type (ADT) that supports basic arithmetic and comparison
functions. DBMS implementers must provide the cost function calculation for each physical operator and
enforcer; logical operators have no cost. Volcano does not use the expected cost factor or cost adjustments
from EXODUS.

3.3 Search Engine
Volcano’s search engine uses a top-down, goal-oriented control strategy with dynamic programming, known
as directed dynamic programming [1]. This approach starts with the final result of the query and works
backward to determine the optimal operators required to achieve that result (using depth-first search).

Similar to EXODUS, Volcano maintains a hash table (“lookup table”) with expressions and equivalence
classes. It always checks whether a logical or physical operator already exists in the lookup table to avoid
reapplying the same transformations. Unlike EXODUS, the lookup table also allows the optimizer to reuse
cost calculations without re-analyzing subtrees.

15-799 Special Topics in Databases: Query Optimization
Page 3 of 5

https://15799.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #04 Volcano

Figure 2: Volcano’s Search Process

During the search process, the search engine starts with a logical plan of the final query result. It then
invokes rules to create new nodes and traverses the tree to find the plan with the lowest cost, pruning any
nodes that exceed the cost limit or violate certain properties (e.g. sort order) to reduce the search space. In
particular, the search process is split into two distinct stages:

1. Generation Phase: apply transformation rules to generate all possible logical expression alternatives
2. Cost Analysis Phase: apply implementation rules to generate physical operators

An example of the search process is shown in Figure 2.

3.4 Advantages & Disadvantages
Some advantages of the Volcano system include:

• It compiles declarative rules to generate transformations.
• It offers better extensibility with an efficient search engine and reduces redundant calculations with

the use of a hash table that doesn’t include duplicate operators.

Some limitations of Volcano that eventually led to the development of the Cascades optimizer (1995) in-
clude:

• All equivalence classes are completely expanded to generate all possible logical operators before the
optimization search down the search tree, which increases the search space and leads to unnecessary
computations.

• It is not easy to modify compiled transformation rules.

15-799 Special Topics in Databases: Query Optimization
Page 4 of 5

https://15799.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #04 Volcano

References

[1] G. Graefe and W. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient Search. In
Proceedings of IEEE 9th International Conference on Data Engineering, pages 209–218, 1993. doi:
10.1109/ICDE.1993.344061.

15-799 Special Topics in Databases: Query Optimization
Page 5 of 5

https://15799.courses.cs.cmu.edu/spring2025/

	Introduction
	EXODUS
	Query Optimizer Pipeline
	Search Algorithm
	Flaws

	Volcano
	Design Goals
	Components
	Search Engine
	Advantages & Disadvantages


