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Goals & Schedule

75% goal Done: Develop API functions to export PostgreSQL’s statistics and 
system catalog to a portable and version-independent format (maybe JSON), and 
later import statistics to a PostgreSQL database.

100% goal Done: Use the exported statistics and data samples to estimate joint 
distributions of certain columns, and inject the estimated distribution back to the 
database for better query optimization performance.

125% goal: WAL listener to modify gradually modify statistics for more up-to-date 
statistics



Background: Postgres Histograms

Histograms are created by sampling tuples (by default 30,000) from tables, sort 
values in one column and split the values into equi-width buckets (by default 100).

- Most common values are first excluded from samples, making histograms a 
tail-distribution only

- Hard to use it to derive other statistics directly

PostgreSQL only supports single-column and multi-column statistics within one 
table

VARCHAR columns are simply sorted in lexical order; no sense of “being 
continuous”



Method: Test Column Correlation within Table

1. Similar to Postgres, sample a batch of tuples from each table.

2. Sort the values from each column in order and construct a histogram for each 
column

3. Detect correlation by analyzing histograms from any column pair of the table



Method: Test Correlation with KL Divergence 

Expected distribution when two columns are independent:

- Cartesian product of the ranges of two column distributions, uniform 
distribution

Actual distribution observed from samples:

-

P, Q: Distributions of two random variables

x: Any value these two distributions can take

Measures: “Difference” between two distributions



Method: Classical Statistical Tools 
Chi-Square Test: Test whether two categorical variables are independent

Spearman Test: Assesses how well the relationship between two variables is 
monotonic

Pearson Test: Measures linear relationship between two variables



Experiment Results 

We ran experiments on TPC-DS benchmark 
with scale factor 1. We gather KL divergence 
values from all column pairs and sort them in 
decreasing order.

Capable of detecting facts like:

- Year = Financial Year
- Refunding Address = Returning Address
- Paid amount is related to paid taxes



Experiment Results 

While KL divergence gives meaningful 
results, classical statistical tools are 
confused

- P-value either 0 or 1
- Basically not related to KL divergence
- Explanation?



Further Experiment Setting? 

Understand the effects of building statistics on “most correlated” columns vs. “least 
correlated” columns on query optimizers

1. For one table, sort column pairs by KL divergence values
2. Split column pairs into N consecutive groups
3. For each group, build multivariate statistics on all column pairs, and run 

EXPLAIN on TPC-DS queries.
4. Compare the results with EXPLAIN ANALYZE results.

Problem: Each group gives identical EXPLAIN results.



pg_statistic_ext extraction and injections

Pretty tedious: read C code, write in Rust, basically 

Caveat:

● Datum Import / Export;
● Variable Length Fields
● MCV-family records are serialized, not flattened fields
● Pgrx does not bind extended statistics 👉 PR
● Stats on expressions are not supported:

pg_node_tree 👉 internal expression tree
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How good is pg_statistic_ext?

● Well, …
● Our initial experiment compared query plan differences before and after 

adding statistics by group on 2 tables. Almost all of them were the same.
● Experiment: add all column pairs on the following tables:

call_center, catalog_page, catalog_returns, catalog_sales, 
customer, customer_address, customer_demographics, 

● Total 152 queries, 1179 statistics
● 15 queries entered statext_clauselist_selectivity, 13 tried MCV, 

11 actually applied MCV on 3 statistics



How does PostgreSQL utilize extended statistics?

  make_join_rel 

→ build_join_rel

→ set_joinrel_size_estimates

→ calc_joinrel_size_estimate

→ clauselist_selectivity

→ statext_clauselist_selectivity

 vacuum

→ analyze_rel

→ do_analyze_rel

→ BuildRelationExtStatistics

→ statext_mcv_build

BuildUse
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How does PostgreSQL utilize extended statistics?

1. First try most common values (MCV)
a. Greedily try every available MCV

2. Then, try functional dependencies



Takeaways

● Pg’s extended statistics are quite limited in improving cardinality estimation.
○ Sketches, adaptive stats require major overhaul to Postgres’ planner, cost model
○ add_paths_to_joinrel: called after a join path is costed (built).
○ set_rel_pathlist_hook: called after a scan filters.

● Query-oriented / adaptive approach might yield better results
● Correlation between join predicates is far more important than correlation 

within one table, especially when norm form is high
● Database joint distributions are sparse; classical statistical tools work badly 

under this assumption


