PostgreSQL
Statistics Injection
Final Presentation

Ethan Lin, Zhiping Liao

Goals & Schedule

75% goal Done: Develop API functions to export PostgreSQL's statistics and
system catalog to a portable and version-independent format (maybe JSON), and
later import statistics to a PostgreSQL database.

100% goal Done: Use the exported statistics and data samples to estimate joint
distributions of certain columns, and inject the estimated distribution back to the
database for better query optimization performance.

125% goal: WAL listener to modify gradually modify statistics for more up-to-date
statistics

Background: Postgres Histograms

Histograms are created by sampling tuples (by default 30,000) from tables, sort
values in one column and split the values into equi-width buckets (by default 100).

- Most common values are first excluded from samples, making histograms a

tail-distribution only
- Hard to use it to derive other statistics directly

PostgreSQL only supports single-column and multi-column statistics within one
table

VARCHAR columns are simply sorted in lexical order; no sense of “being
continuous”

Method: Test Column Correlation within Table
1. Similar to Postgres, sample a batch of tuples from each table.

2. Sort the values from each column in order and construct a histogram for each
column

3. Detect correlation by analyzing histograms from any column pair of the table

Method: Test Correlation with KL Divergence

(m) P, Q: Distributions of two random variables

Dxi(P || Q) = ZP log

zelX {L')

x: Any value these two distributions can take

Measures: “Difference” between two distributions
Expected distribution when two columns are independent:

- Cartesian product of the ranges of two column distributions, uniform
distribution

Actual distribution observed from samples:

(x v xz) in samples

T P(x,x) =

#samples

Method: Classical Statistical Tools

Chi-Square Test: Test whether two categorical variables are independent

Spearman Test: Assesses how well the relationship between two variables is
monotonic

Pearson Test: Measures linear relationship between two variables

coll col2

0 d_year d_fy_year 4.619392477646311

1 d_quarter_seq d_fy_quarter_seq 4.60665347976636

Experiment Results

2 d_month_seq d_first_dom 4.605236820901854

3 d_week_seq d_fy_week_seq 4.6050721009512925

We ran experiments on TPC-DS benchmark
with scale factor 1. We gather KL divergence
values from all column pairs and sort them in
decreasing order.

Capable of detecting facts like:

- Year = Financial Year
- Refunding Address = Returning Address
- Paid amount is related to paid taxes

4
5
6
7
8
9

d_date_sk
d_date_sk
d_date_sk
d_date
d_date
d_same_day_ly
t_time_sk
d_date_sk
d_date_sk
d_date
d_date
d_week_seq

d_week_seq

d_fy_week_seq

d_fy_week_seq
d_month_seq
d_month_seq
d_week_seq
d_fy_week_seq
d_date_sk

d_date
d_same_day_1ly
d_same_day_1q
d_same_day_1ly
d_same_day_1q
d_same_day_1q
t_time
d_week_seq
d_fy_week_seq
d_week_seq
d_fy_week_seq
d_same_day_1ly
d_same_day_1q
d_same_day_1ly
d_same_day_1lq
d_week_seq
d_fy_week_seq
d_first_dom
d_first_dom

d_month_seq

4.60505676854301
.60505676854301
.60505676854301
.60505676854301
.60505676854301
.60505676854301
.60505676854301

.579286902816279

.579286902816279

.579286902816279

.579286902816279

.579286902816279

.579286902816279

.579286902816279

.579286902816279

.522463139436349

.522463139436349

.522463139436349

.522463139436349

4.50929149394438

Experiment Results

1.0 1 -.--‘-:"..'.-.F-.-"-'“:-". ,?.'_‘.:..:....'_.!._.__ - e ..:.
While KL divergence gives meaningful B T
081 v S '-"l -
results, classical statistical tools are F g 5.9
COﬂfUSGd P 0.6 1 ; : . : chi_squa.;(;"Q
'_E . :, spearman ¢ : .
- P-value either 0 or 1 “oal D A
- Basically not related to KL divergence . 3 L e
- Explanation? IR - A
R .,...qc'__-',e.
0.0 1 PP - Bdild i oo oo’ ¢ @wewonm
; ; ; ; ;

KL Divergence

Further Experiment Setting?

Understand the effects of building statistics on “most correlated” columns vs. “least
correlated” columns on query optimizers

1. For one table, sort column pairs by KL divergence values
2. Split column pairs into N consecutive groups
3. For each group, build multivariate statistics on all column pairs, and run

EXPLAIN on TPC-DS queries.
4. Compare the results with EXPLAIN ANALYZE results.

Problem: Each group gives identical EXPLAIN results.

pg_statistic_ext extraction and injections

Pretty tedious: read C code, write in Rust, basically

Caveat:

Datum Import / Export;

Variable Length Fields

MCV-family records are serialized, not flattened fields
Pgrx does not bind extended statistics ¢~ PR

Stats on expressions are not supported:
pg_node_tree ¢ internal expression tree

pg_statistic_ext extraction and injections

= O pgcentralfoundation / pgrx Q_ Type (/] to search

. . <> Code (©) Issues 278 19 Pullrequests 25 (») Actions [Projects () Security [~ Insights
Pretty tedious: re e

Include pg_statistic_ext catalog #2053

Caveat = 12 0pen ArArgon wants to merge 2 commits into pg tralfoundatior from ArArgo

Y Conversation 0 -0- Commits 2 [l Checks © [® Files changed 5

To support pg_statistic_ext (extended statistics):
M Cv—fal I I | Iy e Added catalog/pg_statistic_ext.h: pg_statistic_ext, pg_statistic_ext_data catalog definition
¢ Added statistics/statistics.h : necessary data structures and methods to manipulate extended statistics
Pgrx does o
Stats O n eX . E3 ArArgon added 2 commits 6 hours ago

pg nod e -t -0~ @z feat: include pg_statistic_ext catalog 98d1c30

9’?— ArArgon commented 6 hours ago - edited ~

-0 @7 feat: add statistics/statistics.h for more stats data structure f5e7b02

extern MVNDistinct *statext_ndistinct_load(0id mvoid, bool inh);

[extern MVDependencies *statext_dependencies_load(0id mvoid, bool inh); ']d injeCtionS

extern MCVList *statext_mcv_load(0id mvoid, bool inh);

extern void BuildRelationExtStatistics(Relation onerel, bool inh, double totalrows,

F int numrows, HeapTuple *rows, ill)/
int natts, VacAttrStats *%vacattrstats); i
extern int ComputeExtStatisticsRows(Relation onerel, * Multivariate MCV (most-common value) lists
(int natts, VacAttrStats *%vacattrstats); *

* A straightforward extension of MCV items - i.e. a list (array) of
* combinations of attribute values, together with a frequency and null flags.

%/

. DatUI I I II I IDOrt / EXDOrt. typedef struct MCVItem
CATALOG(pg_statistic_ext_data,3429,StatisticExtDataRelationId) {
‘ { X i L o . double frequency; /* frequency of this combination */
H *
0id stxoid BKI_LOOKUP(pg_statistic_ext); i/ S;?tlztlcs'ﬂb_}ect , double bisw Frediete: /» frequency df dndependent +7
* this data is for * .
Py) . f t fl bool *isnull; /% NULL flags */
bool stxdinherit; /* true if inheritance children are included */ no a .
Datum *values; /* item values */
. . . . A } MCVItem;
‘ #ifdef CATALOG_VARLEN /* variable-length fields start here %/ ICS \}-’
. o — — — /* multivariate MCV list - essentially an array of MCV items %/
pg_ndistinct stxdndistinct; |/* ndistinct coefficients (serialized) */ . 5
[) . . . o e typedef struct MCVList
pg_dependencies stxddependerjcies; /* dependencies (serialized) */ -
pg_mcv_list stxdmcv; /% MCV (serialized) */ . i X .
S ; ' uint32 magic; /* magic constant marker x/
pg_statistic stxdexpr[1]; /% stats for expressions x/ »|On rE j .
uint32 type; /* type of MCV list (BASIC) */
sendif CHIfdEHCATALOGIVARLEN uint32 nitems; /* number of MCV items in the array */
AttrNumber ndimensions; /* number of dimensions %/
i s * *,
b FormDEte. fu_ StatiEtiE_axt datn; 0id types[STATS_MAX_DIMENSIONS]; /* 0IDs of data types x/
MCVItem items[FLEXIBLE_ARRAY_MEMBER]; /% array of MCV items */

} MCVList;

How good is pg_statistic_ext?

o Well, ...

e Our initial experiment compared query plan differences before and after
adding statistics by group on 2 tables. Aimost all of them were the same.

e Experiment: add all column pairs on the following tables:
call_center, catalog_page, catalog_returns, catalog_sales,
customer, customer_address, customer_demographics,

e Total 152 queries, 1179 statistics

e 15 queries entered statext_clauselist_selectivity, 13 tried MCV,
11 actually applied MCV on 3 statistics

How does PostgreSQL utilize extended statistics?

Use Build
make_join_rel vacuum
— build_join_rel — analyze_rel
— set_joinrel_size_estimates — do_analyze_rel
— calc_joinrel_size_estimate — BuildRelationExtStatistics
— clauselist_selectivity — statext_mcv_build

— statext_clauselist_selectivity

How does PostgreSQL utilize extended statistics?

Use What could go wrong?Byild
make_join_rel ;//uannum

* Determine if these clauses reference a If so, and if
. . . * it has extended statistics, try to apply those.
— a1
build_join_rel -~ 2
rel = find_single_rel_for_clauses(root, clauses);
if (use_extended_stats && rel && rel->rtekind == RTE_RELATION &% rel->statlist != NIL)
. . o {
— 2 1
set_joinrel_si * . a_re
*x Estimate as many clauses as possible using extended statistics.
*
- - * 'estimatedclauses' is populated with the 0-based list position - - -
— calc_j 1_s tionExtStatist
Ca C— O 1n re —_ * index of clauses estimated here, and that should be ignored below. 10n X a 1S 1C S
*/
. sl = statext_clauselist_selectivity(root, clauses, varRelid, .
— clauselist_sel jointype, sjinfo, rel, sv_build
S&estimatedclauses, is_or: false);

}

— statext_clauselist_selectivity

How does PostgreSQL utilize extended statistics?

1. First try most common values (MCV)
a. Greedily try every available MCV

2. Then, try functional dependencies

/* sum frequencies for all the matching MCV items */
*basesel = 0.0;

*totalsel = 0.0;

for (i = 0; i < mev->nitems; i++)

{
*totalsel += mcv->items[i].frequency;
if (matches[i] != false)
{
*basesel += mcv->items[i].base_frequency;
s += mcv->items[i].frequency;
+
+
return s;

Selectivity sel;

/* First, try estimating clauses using a multivariate MCV list. x/
sel = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype,
sjinfo, rel, estimatedclauses, is_or);

/*
* Functional dependencies only work for clauses connected by AND, so for
* OR clauses we're done.

*/

if (is_or)
return sel;

/*

*

Then, apply functional dependencies on the remaining clauses by calling

* dependencies_clauselist_selectivity. Pass 'estimatedclauses' so the
* function can properly skip clauses already estimated above.

*

* The reasoning for applying dependencies last is that the more complex
* stats can track more complex correlations between the attributes, and
* so may be considered more reliable.

*

* For example, MCV list can give us an exact selectivity for values in
* two columns, while functional dependencies can only provide information
* about the overall strength of the dependency.

*/

sel *= dependencies_clauselist_sehectivity(ront, clauses, varRelid,
jointype, sjinfo, rel,
estimatedclauses);

return sel;

Takeaways

e Pg’'s extended statistics are quite limited in improving cardinality estimation.

o Sketches, adaptive stats require major overhaul to Postgres’ planner, cost model
o add_paths_to_joinrel: called after a join path is costed (built).
o set_rel_pathlist_hook: called after a scan filters.

e Query-oriented / adaptive approach might yield better results

e Correlation between join predicates is far more important than correlation
within one table, especially when norm form is high

e Database joint distributions are sparse; classical statistical tools work badly
under this assumption

