
PostgreSQL
Statistics Injection
Final Presentation

Ethan Lin, Zhiping Liao

Goals & Schedule

75% goal Done: Develop API functions to export PostgreSQL’s statistics and
system catalog to a portable and version-independent format (maybe JSON), and
later import statistics to a PostgreSQL database.

100% goal Done: Use the exported statistics and data samples to estimate joint
distributions of certain columns, and inject the estimated distribution back to the
database for better query optimization performance.

125% goal: WAL listener to modify gradually modify statistics for more up-to-date
statistics

Background: Postgres Histograms

Histograms are created by sampling tuples (by default 30,000) from tables, sort
values in one column and split the values into equi-width buckets (by default 100).

- Most common values are first excluded from samples, making histograms a
tail-distribution only

- Hard to use it to derive other statistics directly

PostgreSQL only supports single-column and multi-column statistics within one
table

VARCHAR columns are simply sorted in lexical order; no sense of “being
continuous”

Method: Test Column Correlation within Table

1. Similar to Postgres, sample a batch of tuples from each table.

2. Sort the values from each column in order and construct a histogram for each
column

3. Detect correlation by analyzing histograms from any column pair of the table

Method: Test Correlation with KL Divergence

Expected distribution when two columns are independent:

- Cartesian product of the ranges of two column distributions, uniform
distribution

Actual distribution observed from samples:

-

P, Q: Distributions of two random variables

x: Any value these two distributions can take

Measures: “Difference” between two distributions

Method: Classical Statistical Tools
Chi-Square Test: Test whether two categorical variables are independent

Spearman Test: Assesses how well the relationship between two variables is
monotonic

Pearson Test: Measures linear relationship between two variables

Experiment Results

We ran experiments on TPC-DS benchmark
with scale factor 1. We gather KL divergence
values from all column pairs and sort them in
decreasing order.

Capable of detecting facts like:

- Year = Financial Year
- Refunding Address = Returning Address
- Paid amount is related to paid taxes

Experiment Results

While KL divergence gives meaningful
results, classical statistical tools are
confused

- P-value either 0 or 1
- Basically not related to KL divergence
- Explanation?

Further Experiment Setting?

Understand the effects of building statistics on “most correlated” columns vs. “least
correlated” columns on query optimizers

1. For one table, sort column pairs by KL divergence values
2. Split column pairs into N consecutive groups
3. For each group, build multivariate statistics on all column pairs, and run

EXPLAIN on TPC-DS queries.
4. Compare the results with EXPLAIN ANALYZE results.

Problem: Each group gives identical EXPLAIN results.

pg_statistic_ext extraction and injections

Pretty tedious: read C code, write in Rust, basically

Caveat:

● Datum Import / Export;
● Variable Length Fields
● MCV-family records are serialized, not flattened fields
● Pgrx does not bind extended statistics 👉 PR
● Stats on expressions are not supported:

pg_node_tree 👉 internal expression tree

Pretty tedious: read C code, write in Rust, basically

Caveat:

● Datum Import / Export;
● Variable Length Fields
● MCV-family records are serialized, not flattened fields
● Pgrx does not bind extended statistics 👉 PR
● Stats on expressions are not supported:

pg_node_tree 👉 internal expression tree

pg_statistic_ext extraction and injections

Pretty tedious: read C code, write in Rust, basically

Caveat:

● Datum Import / Export;
● Variable Length Fields
● MCV-family records are serialized, not flattened fields
● Pgrx does not bind extended statistics 👉 PR
● Stats on expressions are not supported:

pg_node_tree 👉 internal expression tree

pg_statistic_ext extraction and injections

How good is pg_statistic_ext?

● Well, …
● Our initial experiment compared query plan differences before and after

adding statistics by group on 2 tables. Almost all of them were the same.
● Experiment: add all column pairs on the following tables:

call_center, catalog_page, catalog_returns, catalog_sales,
customer, customer_address, customer_demographics,

● Total 152 queries, 1179 statistics
● 15 queries entered statext_clauselist_selectivity, 13 tried MCV,

11 actually applied MCV on 3 statistics

How does PostgreSQL utilize extended statistics?

 make_join_rel

→ build_join_rel

→ set_joinrel_size_estimates

→ calc_joinrel_size_estimate

→ clauselist_selectivity

→ statext_clauselist_selectivity

 vacuum

→ analyze_rel

→ do_analyze_rel

→ BuildRelationExtStatistics

→ statext_mcv_build

BuildUse

How does PostgreSQL utilize extended statistics?

 make_join_rel

→ build_join_rel

→ set_joinrel_size_estimates

→ calc_joinrel_size_estimate

→ clauselist_selectivity

→ statext_clauselist_selectivity

 vacuum

→ analyze_rel

→ do_analyze_rel

→ BuildRelationExtStatistics

→ statext_mcv_build

BuildUse What could go wrong?

How does PostgreSQL utilize extended statistics?

1. First try most common values (MCV)
a. Greedily try every available MCV

2. Then, try functional dependencies

Takeaways

● Pg’s extended statistics are quite limited in improving cardinality estimation.
○ Sketches, adaptive stats require major overhaul to Postgres’ planner, cost model
○ add_paths_to_joinrel: called after a join path is costed (built).
○ set_rel_pathlist_hook: called after a scan filters.

● Query-oriented / adaptive approach might yield better results
● Correlation between join predicates is far more important than correlation

within one table, especially when norm form is high
● Database joint distributions are sparse; classical statistical tools work badly

under this assumption

