
1

German Unnesting: Final Update
15-799 | 2025 Spring | Project 2
Harivallabha Rangarajan, Roland Liu, Sirui Huang

2

Agenda

■ Project Goals

■ Implementation Discussion

■ Correctness + Benchmarking

■ Next Steps

3

Project Goals

4

Project Goals
■ 80%: 2025 Algorithm Working for Most Operators

■ 100%: 2025 Algorithm Working For One Subquery Type (... ish, more like 90%...)

■ 125%: 2025 Algorithm Fully Working

5

Project Goals
■ 100%: 2025 Algorithm Working For One Subquery Type

○ There are three main types of subqueries: SCALAR, EXISTS, ANY

○ We only implemented for SCALAR and without lateral support

■ Temporary Fallback method: if there exists subqueries and they are all of SCALAR

type and there are no lateral joins, run our prototype of 2025 unnesting

■ Otherwise, run what already exists

6

Project Goals
■ 100%: 2025 Algorithm Working For One Subquery Type

○ There are three main types of subqueries: SCALAR, EXISTS, ANY

○ We only implemented for SCALAR and without lateral support

■ Temporary Fallback method: if there exists subqueries and they are all of SCALAR

type and there are no lateral joins, run our prototype of 2025 unnesting

■ Otherwise, run what already exists

■ What is stopping us from 125%?

○ EXISTS and ANY do not differ substantially, but coming across correctness issues on some

of the null semantics

○ Didn’t have time to read over and understand lateral joins

7

Implementation Discussion

8

DuckDB Unnesting Overview
■ Before:

○ DFS through query plan: operator expressions and operator children

○ Upon discovering subquery: flatten dependent join and hook up duplicate eliminated join

○ Upon discovering nested subquery: ignore, unnest after the current one is unnested

○ Does not take into account equivalence columns

■ After:

○ Unnest queries together, 2025 paper unnests child queries with ancestor queries

○ Takes advantage of equivalence columns, no need to use dup-elim-get when an eq column

can take its place

○ Updated Unnesting Rules

9

DuckDB Unnesting Overview
■ Before:

○ DFS through query plan: operator expressions and operator children

○ Upon discovering subquery: flatten dependent join and hook up duplicate eliminated join

○ Upon discovering nested subquery: ignore, unnest after the current one is unnested

○ Does not take into account equivalence columns

10

Important Design Considerations

■ Unnesting occurs in the binder, before query optimization

■ Shouldn’t be reinventing the wheel

○ A lot of 2015 unnesting constructs are still relevant in 2025 version, e.g. adding the

correlated columns to the group-by

○ Mark-join insertions, null semantics, group-by null semantics, etc.

11

Important Design Considerations
■ Unnesting occurs in the binder, before query optimization

■ Shouldn’t be reinventing the wheel

○ A lot of 2015 unnesting constructs are still relevant in 2025 version, e.g. adding the

correlated columns to the group-by

○ Mark-join insertions, null semantics, group-by null semantics, etc.

■ However, still need to substantially change current structure

○ Currently doesn’t support unnesting multiple subqueries simultaneously

12

Correctness + Benchmarking

13

Correctness + Benchmarking

■ Correctness: tests provided!

○ Small unit tests when debugging

○ DuckDB has large test suite of millions of tests..

14

Correctness + Benchmarking

■ Correctness: tests provided!

○ Small unit tests when debugging

○ DuckDB has large test suite of millions of tests..

■ Unnesting Successful

○ Manually created test cases that have to be manually observed to see if

■ Dup-get isn’t called if an equivalence column can be used

■ No large intermediate cross products

15

Correctness + Benchmarking
■ Correctness: tests provided!

○ Small unit tests when debugging

○ DuckDB has large test suite of millions of tests..

■ Unnesting Successful

○ Manually created test cases that have to be manually observed to see if

■ Dup-get isn’t called if an equivalence column can be used

■ No large intermediate cross products

■ Performance benchmarking

○ Murky.. Nested queries do not exhibit poor behavior under the original version..

16

Next Steps

17

Next steps
■ Issues with demonstrating performance improvement with our algorithm

○ DuckDB runs Sam Arch’s query in 1.2 seconds

■ Likely due to DuckDB’s improvements on speeding up query performance

■ Need to polish up the code

■ PR within the month

○ Hopefully in two weeks

