
Image: ChatGPT, prompt: “Can you create a logo for me for a software called AutoHint? AutoHint is an extension that
automatically adds hints to Postgres. The logo should be database themed”

An Extensible Framework
for Improving Postgres
Plans via Hints

M A Y 2 , 2 0 2 5

Bobby Norwood, Wenda Fu, Xueqi Li

Agenda

1. Goals (What we wanted to do)

2. Design (What we actually made)

3. Results! (Pretty colors that show what happened)

Motivation

Research question: Can we use hints to enable an external query
optimizer to influence Postgres plans without modifying Postgres?

1. Perform preliminary work on converting a Physical Plan back to
SQL, in preparation for adding a SQL adapter to optd in the Fall.

2. Experiment with automatically generating hints based on a Physical
Plan

3. Combine these motivations to explore using hints to improve bad
Postgres query plans

Goals

• 75%

• Manual examples of improving plan by changing hints - Done

• Parse Postgres json to sql, no hints - LIMIT, UNION ALL, INDEX SCAN, Hash Join, NLJ, Seq Scan,
Projects

100%

• Parse postgres internal plan json to sql with hints (join order, access method, join algorithm) -
Done (we add hints to original SQL without actually converting plan JSON to SQL)

• Optimize NLJ to hash join (Done), SELECT X + 0 (Can’t change with hints)

• Results easily replicable, can work with any SQL query - Done

• 125%

• Solve additional Postgres problems besides those mentioned above (Inject join cardinality)

• Package as a Postgres extension - No

• Improve plan parser to also convert to other SQL dialects, from different plan types - No

AutoHint Architecture

SQL Query
Postgres Execution

Postgres
EXPLAIN/
ANALYZE

AutoHint
Rule Engine

SQL
with Hints

AutoHint
1. Get physical plan from Postgres

2. Apply rules to get a list of hints

3. Concat with SQL to get hinted SQL

4. Execute hinted SQL

6

Features

• Can save hints to hint table – automatically applied to similar queries

• Can connect to any Postgres DB with ability to install pg_hint_plan

• Uses Postgres default Rust crate for results and connections, so easy to add into
existing workflows

• Two fully implemented rules:

• Cardinality injection → for each join, create a hint that says how many results
it produces (Rows(A B C D E #123))

• NLJ to HashJoin → Convertes NLJ to hashjoin when NLJ yields more than some
given rows (HashJoin(A))

• Trait defined to easily implement more rules

7

8

Initial Approach: Convert and Hint

• Rebuild a new SQL query from optimized plan, and add hints.

• Difficult, but can capture additional nuance from the plan structure.

Plan to
SQL

Concat Hints
+ SQL

Parse to
Hints

External
Optimizer

Postgres

Physical Plan
SQL

Hint List

Original SQL

Plan → SQL

9

SeqScan(t1)
output = [a, b]

IndexScan(t2, pk)
output = [c, d]
filter = d >10

NestedLoopJoin
Join_filter: t1.a=t2.c
output = [a, b, d]

Query {
body =
Select {
from = t1,
projection = [a, b]

}
}

Query {
body =
Select {
from = t2,
projection = [c, d],
selection = Expr (d > 10)

}
}

Query {
body =
Select {
from = TablewithJoin {
relation: t1,
joins: [Join {
relation: t2
join_operator: Inner (t1.a = t2.c)

}]
},
projection = [a, b, d]
selection = Expr (d > 10)

}
}

Physical Plan

Output AST

SELECT a, b, d
FROM
t1 INNER JOIN t2
ON t1.a = t2.c

SQL Query

Problem: EXPLAIN plans lose data!

Original SQL: SELECT primarytitle FROM title_basics ORDER BY
startyear, primarytitle LIMIT 10;

Reconstructed SQL: SELECT primarytitle, startyear FROM title_basics
AS title_basics ORDER BY title_basics.startyear ASC,
title_basics.primarytitle ASC LIMIT 10

Problem: Postgres EXPLAIN plains add columns to output they shouldn’t

10

11

Final Approach: Hint Only

• Create a list of hints from the plan, concatenate with original SQL.

• Sufficient when we aren’t really using an external optimizer

Concat Hints
+ SQL

Generate
Hints

Postgres
Planner

Postgres

Original SQL

Hint List

Original SQL

Code Quality

• Strengths

• Clearly defined implementation for adding new rules

• Interface for accessing catalog information like indexes and
including in rules

• Scripts to run JOB, scripts to setup test DB (mostly)

• Weaknesses:

• Converting Postgres plans does not cover all node types – some
half-built conversions left in code – but works without due to our
implementation choice

• Not at 100% code coverage

• Tests require loading the test database, a few manual steps

14

Test Coverage

Most of the uncovered code is either partially implemented
Postgres to SQL converter nodes or error cases

Experiments

Setup

• Experiment run on AWS EC2 z1d.2xlarge (8 Intel Xeon vCPU, 64GB memory), using
single core and all cores.

• Postgres 17.4. Query timeout of 40 minutes. Each setting is run 3 times and we
take average of the execution time.

• JOB benchmark

• "Single core" vs "multi core": max_parallel_workers_per_gather = 0 vs 2

21

• Single core Result summaries (excluding timeouts):

o Average Speedup: 20.95x

o Max Speedup: 471.34x

o Timeout queries: 9 -> 11

Fork JOB repo: https://github.com/danolivo/jo-bench

Results

22

Average Execution Time on Whole JOB Workload (Single Core)

Average Execution Time on Whole JOB Workload (8 Cores)

Setting
Average Execution

Time (ms)
Average Standard

Deviation
Number of Timeout

Queries

Autohint-2-rules 47,477.85 81.22 11

Autohint-card-only 31,346.74 62.55 13

Postgres 114,184.99 1,056.78 9

Setting
Average Execution

Time (ms)
Average Standard

Deviation
Number of Timeout

Queries

Autohint-2-rules 2,561.99 32.80 0

Autohint-card-only 2,617.72 30.45 0

Postgres 1,852.03 44.41 0

Single Core, both rules

23

Setting Average Execution Time (ms)
Excluding Timeout Queries

Timeout Queries

Hinted, Both Rules 47477.85 11

Postgres 114184.99 9

Single Core, cardinality only

24

Setting Average Execution Time (ms)
Excluding Timeout Queries

Timeout Queries

Hinted, Cardinality Rule Only 31346.74 13

Postgres 114184.99 9

Multicore, both rules

25

Setting Average Execution Time (ms)
Excluding Timeout Queries

Timeout Queries

Hinted, Both Rules 2561.99 0

Postgres 1852.03 0

Multicore, cardinality only

26

Setting Average Execution Time (ms)
Excluding Timeout Queries

Timeout Queries

Hinted, Cardinality Rule Only 2617.72 0

Postgres 1852.03 0

AutoHint Rule Example

27

Hint
Engine

19 minutes 3.17 seconds

250x
improvement

ChatGPT prompt: <plan json> Visualize this plan as a tree, only keep "Node Type", "Relation Name", "Plan Rows", "Actual
Rows" for each node. Make the visualization a png, similar to the style of this <screenshot of previous the slide>

4 HashJoins to
7 HashJoins

Nested Loop Join
Planned 50000 rows
Actual 2 billion rows

Nested Loop Join
Planned 10000 rows
Actual 600 million rows

Plan Comparison – 22a (single core hint improve)

Plan Comparison – 33a (multicore hint improve)

28

Multicore-raw Multicore-hinted

9897.86 ms

Cartesian Product
500 million rows

313.88 ms

Plan Comparison – 27a (multicore - card only
worse)

29

Multicore-raw Multicore-hinted

930.0106667 ms967.5413333 ms

Multicore-hinted-cardonly

34410.52333 ms

Nested Loop removing
7 million rows

Enforcing hash join made it
switch back to the original
plan

Plan Comparison – 22a (single vs multi)

30

Multicore-raw (8 cores)Singlecore-raw

19 minutes 1.2 seconds

Nested Loop Join
Planned 50000 rows
Actual 2 billion rows

Observations

• Injecting correct join cardinality does show significant impact → Potential benefit
of using an external optimizer to better estimate cardinality

• Injected cardinalities doesn't cover all join orderings. Injected cardinalities are
sometimes ineffective. Consider:
- Truth: plan A better than plan B,
- Cost: estimated A < estimated B < truth A < truth B
- Original Plan: chooses plan A :)
- Cardinality Injection: gives truth for plan A, it is worse than you thought!
- New plan: chooses plan B over plan A :(

• Enforcing nested loop join to hash join on top of cardinality injection brings some
improvement and reduces the number of timeout queries

• No real benefit on multi-core

• Related, performance doesn’t scale linearly from single to multi core. Postgres
sometimes chooses more reasonable plans under multicore setting

31

Future work

• Use hints to inject information from an entirely different optimizer into Postgres

• Can theoretically dictate join order and cardinality of those joins

• Can specific which indexes to use

• Support Postgres 16's hint table – change insert function

• Explore why Postgres make such different optimization decisions on single vs
multi-core environments

32

Future Work: Next Semester Architecture

SQL Query

Postgres Execution

optd

Hint Engine

AST Factory Optimized SQL

Optimized SQL
with Hints

optd2SQL

4. Convert plan to
DataFusion AST

Statistics Provider

3. Use Physical Plan to
generate list of hints1. DB statistics need to be

pulled into optd

2. SQL optimized
within otpd

5. Concat SQL and hints
and execute

33

Questions?

	Slide 2
	Slide 3
	Slide 4: Motivation
	Slide 5: Goals
	Slide 6: AutoHint Architecture
	Slide 7: Features
	Slide 8: Initial Approach: Convert and Hint
	Slide 9: Plan  SQL
	Slide 10: Problem: EXPLAIN plans lose data!
	Slide 11: Final Approach: Hint Only
	Slide 14: Code Quality
	Slide 15: Test Coverage
	Slide 20
	Slide 21: Setup
	Slide 22: Results
	Slide 23: Single Core, both rules
	Slide 24: Single Core, cardinality only
	Slide 25: Multicore, both rules
	Slide 26: Multicore, cardinality only
	Slide 27: AutoHint Rule Example
	Slide 28: Plan Comparison – 33a (multicore hint improve)
	Slide 29: Plan Comparison – 27a (multicore - card only worse)
	Slide 30: Plan Comparison – 22a (single vs multi)
	Slide 31: Observations
	Slide 32: Future work
	Slide 33: Future Work: Next Semester Architecture
	Slide 34

