
optd: A Cascades-Style QO
15-799 Special Topics in Databases: Query Optimization

Sarvesh Tandon, Yuchen Liang

1

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

2

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

3

Design Goals

● Plan Quality (Return the fastest plan possible)
● Optimization Latency (Optimize Quickly)
● Plan Quality % Optimization Latency (Best Plan possible in T Time)
● Future proofness for Adaptivity (Support feedback mechanisms for

in-situ streaming workloads)
● Explainability (easier to reason about rules and guidance, produce

better plans with fewest amount of guidance)

4

What does Calcite do?

- Breaks enumeration into tasks similar to Cascades
- Lacks guidance mechanism so reduces to Volcano
- No intra-query or inter-query parallelism
- Triggers redundant work when groups are found to be equivalent (group- merging)

5

Talk by Alexey Goncharuk at Calcite Meetup January 2022
About Join Enumeration and Logical Space Explosion

http://www.youtube.com/watch?v=5wQojihyJDs

Problem: Plan Space Explosion

Applying all the transformation and implementation rules in a search space may
not give you back a good enough physical plan in timely manner.

There are approaches proven to work well in the wild:

➔ Guidance (except we don’t know how smart it is).
➔ Multi-stage optimization: QuickPlan and Heuristics first.
➔ BlackBox operator (MultiJoin), stratified optimization within the operator.

Our Approach: Can a slightly different enumeration approach help?

6

https://calcite.apache.org/javadocAggregate/org/apache/calcite/rel/rules/LoptOptimizeJoinRule.html

Yes! But to show you how, let’s first look at the design!

7

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

8

Architecture

Event loop architecture; communication done
through message passing.

Modeling optimization objectives as tasks

A task has other dependent subtasks.

A task can schedule discrete unit of work (job)
to be executed on other coroutines.

An in-memory (possibly, on disk in future)
memo table

9

Task Graph

More tasks comparing to Cascades:

➔ Needed for flexible scheduling, as we
might revisit a task later.

➔ Cascades do not need it because
children goals are fully optimized
before we optimize an expression
that depends on them

➔ LIFO: Cascades

10

Inter-query Parallelism

Allows multiple query to share optimization
results for subexpressions, not just the root
plan.

OptimizePlan:
Optimize for a specific query instance.

Query cache should be done at
expression level.

11

Intra-query Parallelism

The rules and costing procedure for optimizing
a single query can run in parallel in other
coroutines.

12

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

13

On-demand Explored Cascades

14
Source: Andy Pavlo

Why is On-demand Exploration Good?

Only expand the search space if the rule specifies.

Search is directed by rules.

15

Example: JoinAssocRule

16

JoinAssocRule

17

Matching Top Node Tag

18

On-demand Exploration

19

We do not expand G2!

Comparison with Cascades/Columbia

20

Forking Execution (CPS)

The rule engine returns a callback when it sees a group
and resume execution on a logical expression.

21

Generate Equivalent Partial Plan

22

Update on a Dependent Group, Matches

23

Generate an Equivalent Partial Plan

24

Update on a Dependent Group, Does not Match

25

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

26

Simple Merge From the Memo table’s perspective

27

Group ID Expressions

4 Join (Group 1, Group 2)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We explore group 3 by
applying Join Commute
Rule to the epxression

Simple Merge From the Memo table’s perspective

28

Group ID Expressions

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We produce a new expression, that already
exists in another group. Hence, now we know
that group 3 and group 4 are equivalent and
need to be merged.

What does Calcite do?

- Calcite also has a tasks-like structure where Optimize Group tasks launch
Optimize Expression tasks which then launch Optimize Group task, and so on.

- When two RelSet (groups) are found to contain the same RelNode (logical
expression), merging is triggered

- On merge, Calcite recursively marks everything that depends on the RelSet as
unexplored and unoptimized, all the way up to the top Optimize Group task.

- It then relaunches a bunch of Apply Rule Tasks that may not need to be
reevaluated.

- If the merge happens too low in the plan tree, then a lot of redundant work will
be done.

29

Calcite Over-Simplified

30

Optimize
Group

Optimize
Expr2

Optimize
Expr1

ApplyRuleApplyRuleApplyRuleApplyRule

Optimize
Expr3

ApplyRule

Optimize
ChildGroup1

Optimize
ChildGroup2

Optimize
ChildGroup2

Merge ChildGroup1
&
ChildGroup2

Calcite Over-Simplified

31

Optimize
Group

Optimize
Expr2

Optimize
Expr1

ApplyRuleApplyRuleApplyRuleApplyRule

Optimize
Expr3

ApplyRule

Optimize
ChildGroup1

Optimize
ChildGroup2

Optimize
ChildGroup2

Everything in Yellow
Needs to be
re-evaluated

Calcite Over-Simplified

32

Optimize
Group

Optimize
Expr2

Optimize
Expr1

ApplyRuleApplyRuleApplyRuleApplyRule

Optimize
Expr3

ApplyRule

Optimize
ChildGroup1

Optimize
ChildGroup2

Optimize
ChildGroup2

Everything in Yellow
Needs to be
re-evaluated

Calcite Over-Simplified

33

Optimize
Group

Optimize
Expr2

Optimize
Expr1

ApplyRuleApplyRuleApplyRuleApplyRule

Optimize
Expr3

ApplyRule

Optimize
ChildGroup1

Optimize
ChildGroup2

Optimize
ChildGroup2

Everything in Yellow
Needs to be
re-evaluated

Calcite Over-Simplified

34

Optimize
Group

Optimize
Expr2

Optimize
Expr1

ApplyRuleApplyRuleApplyRuleApplyRule

Optimize
Expr3

ApplyRule

Optimize
ChildGroup1

Optimize
ChildGroup2

Optimize
ChildGroup2

Everything in Red
get’s relaunched

optd Merging

- Due to On-demand exploration, we will have merging occur much
more frequently; but on-demand exploration is worth doing for
explainability and efficiency reasons.

- We do no relaunch anything that was marked as red unless
needed.

- Furthermore, we only propagate stuff upwards when necessary

35

Simple Merge From the Memo table’s perspective

36

Group ID Expressions

4 Join (Group 1, Group 2)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We explore group 3 by
applying Join Commute
Rule to the epxression

Simple Merge From the Memo table’s perspective

37

Group ID Expressions

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We produce a new expression, that already
exists in another group. Hence, now we know
that group 3 and group 4 are equivalent and
need to be merged.

So, how do we do this?

38

So, how do we do this?
We use the Union-find Algorithm

39

40

Group ID Representative
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=(left.col1==right.col2 and right.col3 == left.col6))

3 3 Join (Group 2, Group 1, cond=(right.col1==left.col2 and left.col3 == right.col6)),
Join (Group 2, Group 1, cond=(left.col3 == right.col6 and right.col1==left.col2))

2 2 Scan (Table A)

1 1 Scan (Table B)

A more realistic example…

Left and Right indicate the left group and the right group. The conditions in
group 3 are equivalent but may be different in terms of their performance
because of the cost of evaluating the condition for each tuple.

41

Group ID Representative
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1)

3 3 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

By default each group’s representative group is itself

A more realistic example…

42

Group ID Representative
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1), Join (Group 2, Group 1, cond=C2)

3 3 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

Apply rule…

43

Group ID Representative
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1), Join (Group 2, Group 1, cond=C2) , Join
(Group 2, Group 1, cond=C3)

3 4 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

Now we do merge…

Copy all expression from non-repr group to repr group

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

44

Let’s go back to simple merge

45

14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

Add a new expression

46

14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

Group 3 and Group 4 merge and become equivalent

47

14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

So, these two expressions are now equivalent

48

14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

So, now group 14 and group 11 are equivalent
And must now be merged

49

14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

50

Merging Statistics from Calcite TPC-H

51

optd DSL

52

Designed by the optd team

Parser, Lexer, Analyzer and Rule Engine was Built-by Alexis Schlomer

Supports on-demand exploration

Turing complete

Domain Specific Language

53

Logical Operators

54

Physical Operators

55

Special Types

56

Outline

● Recap
● optd’s Architecture
● On-demand Exploration
● Merging
● Cascading Merge Edge case
● Calcite TPC-H Merging Results
● Domain Specific Language (DSL)
● Real-life Demo

57

Real-Life Demo

Now we will show a simple DSL compiling and the optimizer optimizing a simple
plan.

58

Future Work: Query Optimization as a Service (QOaaS)

- Make memo table persistent in order to share optimization across queries and
decrease the optimization latency.

- Allow for conversions to/from for databases other than Datafusion.
- Setup infrastructure to use the feedback mechanism

59

Our accomplishments

- Built a working Query Optimizer that
- Requires less guidance than other approaches to achieve the benefits of

Cascades
- Avoids the inefficiencies found in Calcite (redundant work for merging)
- Supports intra-query and inter-query parallelism
- Can be extended to support more operators or rules using DSL
- Can easily be extended to support feedback based adaptivity - using new statistics

in the middle of optimization
- Can run scalar optimizations workloads

60

Lessons

● Equivalence expression management is needed.
● Choosing a plan representation wisely.

61

Cascading Merging in TPC-H Q3

62

