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Design Goals

● Plan Quality (Return the fastest plan possible) 
● Optimization Latency (Optimize Quickly)
● Plan Quality % Optimization Latency (Best Plan possible in T Time)
● Future proofness for Adaptivity (Support feedback mechanisms for 

in-situ streaming workloads)
● Explainability (easier to reason about rules and guidance, produce 

better plans with fewest amount of guidance)
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What does Calcite do?

- Breaks enumeration into tasks similar to Cascades
- Lacks guidance mechanism so reduces to Volcano
- No intra-query or inter-query parallelism
- Triggers redundant work when groups are found to be equivalent (group- merging)
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Talk by Alexey Goncharuk at Calcite Meetup January 2022
About Join Enumeration and Logical Space Explosion

http://www.youtube.com/watch?v=5wQojihyJDs


Problem: Plan Space Explosion

Applying all the transformation and implementation rules in a search space may 
not give you back a good enough physical plan in timely manner.

There are approaches proven to work well in the wild:

➔ Guidance (except we don’t know how smart it is).
➔ Multi-stage optimization: QuickPlan and Heuristics first.
➔ BlackBox operator (MultiJoin), stratified optimization within the operator.

Our Approach: Can a slightly different enumeration approach help?
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https://calcite.apache.org/javadocAggregate/org/apache/calcite/rel/rules/LoptOptimizeJoinRule.html


Yes! But to show you how, let’s first look at the design!
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Architecture

Event loop architecture; communication done 
through message passing.

Modeling optimization objectives as tasks

A task has other dependent subtasks.

A task can schedule discrete unit of work (job) 
to be executed on other coroutines.

An in-memory (possibly, on disk in future) 
memo table
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Task Graph

More tasks comparing to Cascades:

➔ Needed for flexible scheduling, as we 
might revisit a task later.

➔ Cascades do not need it because 
children goals are fully optimized 
before we optimize an expression 
that depends on them

➔ LIFO: Cascades
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Inter-query Parallelism

Allows multiple query to share optimization 
results for subexpressions, not just the root 
plan.

OptimizePlan: 
Optimize for a specific query instance.

Query cache should be done at 
expression level.
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Intra-query Parallelism

The rules and costing procedure for optimizing 
a single query can run in parallel in other 
coroutines.
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On-demand Explored Cascades
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Source: Andy Pavlo



Why is On-demand Exploration Good?

Only expand the search space if the rule specifies.

Search is directed by rules.
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Example: JoinAssocRule
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JoinAssocRule
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Matching Top Node Tag
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On-demand Exploration
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We do not expand G2!



Comparison with Cascades/Columbia
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Forking Execution (CPS)

The rule engine returns a callback when it sees a group 
and resume execution on a logical expression.
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Generate Equivalent Partial Plan
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Update on a Dependent Group, Matches
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Generate an Equivalent Partial Plan
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Update on a Dependent Group, Does not Match
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Simple Merge From the Memo table’s perspective
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Group ID Expressions

4 Join (Group 1, Group 2)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We explore group 3 by 
applying Join Commute 
Rule to the epxression



Simple Merge From the Memo table’s perspective
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Group ID Expressions

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We produce a new expression, that already 
exists in another group. Hence, now we know 
that group 3 and group 4 are equivalent and 
need to be merged.



What does Calcite do?

- Calcite also has a tasks-like structure where Optimize Group tasks launch 
Optimize Expression tasks which then launch Optimize Group task, and so on.

- When two RelSet (groups) are found to contain the same RelNode (logical 
expression), merging is triggered

- On merge, Calcite recursively marks everything that depends on the RelSet as 
unexplored and unoptimized, all the way up to the top Optimize Group task.

- It then relaunches a bunch of Apply Rule Tasks that may not need to be 
reevaluated.

- If the merge happens too low in the plan tree, then a lot of redundant work will 
be done.
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Calcite Over-Simplified
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Calcite Over-Simplified
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Calcite Over-Simplified
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optd Merging

- Due to On-demand exploration, we will have merging occur much 
more frequently; but on-demand exploration is worth doing for 
explainability and efficiency reasons.

- We do no relaunch anything that was marked as red unless 
needed.

- Furthermore, we only propagate stuff upwards when necessary
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Simple Merge From the Memo table’s perspective
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2 Scan (Table A)
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We explore group 3 by 
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Rule to the epxression



Simple Merge From the Memo table’s perspective
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Group ID Expressions

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)

We produce a new expression, that already 
exists in another group. Hence, now we know 
that group 3 and group 4 are equivalent and 
need to be merged.



So, how do we do this?

38



So, how do we do this? 
We use the Union-find Algorithm
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Group ID Representative 
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=(left.col1==right.col2 and right.col3 == left.col6))

3 3 Join (Group 2, Group 1, cond=(right.col1==left.col2 and left.col3 == right.col6)),
Join (Group 2, Group 1, cond=(left.col3 == right.col6 and right.col1==left.col2 ))

2 2 Scan (Table A)

1 1 Scan (Table B)

A more realistic example…

Left and Right indicate the left group and the right group. The conditions in 
group 3 are equivalent but may be different in terms of their performance 
because of the cost of evaluating the condition for each tuple.
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Group ID Representative 
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1)

3 3 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

By default each group’s representative group is itself

A more realistic example…
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Group ID Representative 
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1), Join (Group 2, Group 1, cond=C2)

3 3 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

Apply rule…
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Group ID Representative 
Group ID

Expression

372 372 Sort(Group 356)

… …

4 4 Join (Group 1, Group 2, cond=C1), Join (Group 2, Group 1, cond=C2) ,  Join 
(Group 2, Group 1, cond=C3)

3 4 Join (Group 2, Group 1, cond=C2), Join (Group 2, Group 1, cond=C3)

2 2 Scan (Table A)

1 1 Scan (Table B)

Now we do merge…

Copy all expression from non-repr group to repr group
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Let’s go back to simple merge
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14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)



Add a new expression
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14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)



Group 3 and Group 4 merge and become equivalent
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14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)



So, these two expressions are now equivalent
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14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)



So, now group 14 and group 11 are equivalent
And must now be merged
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14 Join (Group 4, Group 7) …

11 Join (Group 3, Group 7) …

… …

4 Join (Group 1, Group 2), Join (Group 2, Group 1)

3 Join (Group 2, Group 1)

2 Scan (Table A)

1 Scan(Table B)
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Merging Statistics from Calcite TPC-H
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optd DSL
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Designed by the optd team

Parser, Lexer, Analyzer and Rule Engine was Built-by Alexis Schlomer

Supports on-demand exploration

Turing complete



Domain Specific Language
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Logical Operators
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Physical Operators
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Special Types
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Real-Life Demo 

Now we will show a simple DSL compiling and the optimizer optimizing a simple 
plan.
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Future Work: Query Optimization as a Service (QOaaS)

- Make memo table persistent in order to share optimization across queries and 
decrease the optimization latency.

- Allow for conversions to/from for databases other than Datafusion.
- Setup infrastructure to use the feedback mechanism
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Our accomplishments

- Built a working Query Optimizer that
- Requires less guidance than other approaches to achieve the benefits of 

Cascades
- Avoids the inefficiencies found in Calcite (redundant work for merging)
- Supports intra-query and inter-query parallelism
- Can be extended to support more operators or rules using DSL
- Can easily be extended to support feedback based adaptivity - using new statistics 

in the middle of optimization
- Can run scalar optimizations workloads
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Lessons

● Equivalence expression management is needed.
● Choosing a plan representation wisely.
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Cascading Merging in TPC-H Q3
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