optdbg

query optimizer debugger

David, Yu, Jiaying

Motivation

. @

SPECIAL ISSUE PAPER

Query optimization through the looking glass, and what we found
running the Join Order Benchmark

- No standard tools for evaluating que
optimizer performance

- Existing tools are limited in scope

- Detecting cardinality errors is currently
one in bespoke ways

Viktor Lei
Peter Boncz? « Alfons Kemper! - Thomas Neumann!

Received: 22 January 20

Bernhard Radke' - Andrey Gubiches" - Atanas Mircher! -

muary 2007
© Springer-Verlg bl Germany 2017

Abstract. Finding good join oder is enucial for query
performance. In this paper, we introduce the Jain Order
Benchmark that works on reallife duta riddled with cor.
relations and introduces 113 complex join queries. We
experimentally revisit the main components in the clissic
query optimizer architccture using 4 comples, real-world

17/ Acceped: 11 Augus

207 18 September 017

mates are essental for finding 4 good join order, query
performance is unsatisfactory if the query engine reles 0o
heavily on these estimates. Using another st of experiments
that measure the impact of the cost model, we find that it has
‘much less influence on query performance than the cardi
ity estimtes. We investigate plan enumeration techniques

deseribe cardinality-estimate injection and extraction tech.
nigues that allow us 1o compare the cardinality estimators
of multiple industrial SQL on equal foot-

compiring progna beuristic
algorithms and find that exhaustive erumeration improves
perfomance despite the subopimal cardinality estimates

o

ing, and o charcterize the value of having perfect cardirality
estimates. Ourinvestigation shows that all industrial-strength
cardinality estimators routinely produce large error: though
cardinality estimation wing table samples solves the prob.
lem for single-able queries, there are stil no techniques in

1ol include disk-based query procesing. Here, we find

though accurate cardinality estimation should be the

first prionty. other aspects such as modeling random versus
quential O are also important o predict query runtime.

coneled query predicates. We further show that while esti-

9 VikorLeis
leis®in tum e
Berohud Radke
radketinum &
Andrey Gubichey
pobichev@insum.de

Atanas Mirher
mirches Gin um de

Peter Boncs
phoncatcinl
Alfos Kemper
kemper@in um.de

Thomas Neumann
neunan@in umde

Keywords Join ordering - Cardinality
estimation - Cost models

1 Introduction

The problem of finding a good join order s one of the most
studied problems in the database fickd. Figure | llustrates the
clussical, cost-bused approach, which dates back o System
RI45]. To obtain an cficient query plan, he query opiimizer
@ s some subset of the valid join orders,for example.
using dynamic programming. Using cardinality estimates as
its principal input,the cost model then chooses the cheapest

the cost model are aceurate, this rchitecture obtins the opti-
mal query plan. In reality, cardinality estimates are usully

2 CW, Amstrdam, The Nethetants

and independence. In real-world data sets, these assump-

2 spinger

Can we automate this?

TAQO (Greenplum)

+ Hint-based sampling, hardware-independent
— Purely numerical evaluation, questionable benchmarking

Figure 2: Architeeture of TAQO

OptMark (Li et al.)

+ Intelligent sample sizing, efficiency metrics
— Purely focused on numerical evaluation

AutoDI (Lan et al.)

+ Static analysis of plans to explain regressions
— Requires known regression, loose analysis

Goals

75% — end-to-end product combining evaluation with static analysis

(originally: also support multiple databases — axed by status update)

- weare here

100% — incremental improvements for each component

(e.g. better plan sampling, more rigorous benchmarking, better analysis, ...)

125% — fuzzing, fast execution via covering query optimization
(SQL Server optimization that runs min # of queries to get true cards)

Design
. SISIS

parquet files

optimizer

interface

benchmark
runner
() stream of
measured plans + metrics

get best
—
—
getalts
—)
—
time

subplans

stream of
query plans

query stream E.[:.EI%]
<> —p —_— benchmarker

report array

analyzer

2 4

Sampler (Rule based)

for rule_subset in powerset(default_rules):
optimizer = DataFusionOptimizer(rules=rule_subset)
plan = optimizer.optimize(logical_plan)
runtime = execute(plan)
record(rule_subset, runtime, plan)

Prefilter rules & bailing strategies

Limitation: Limit diversity on Join ordering

Sampler (Memo based)

fn get_alts(group_id):
exprs = memo.get_group(group_id).physical_exprs
alts = []
for expr in exprs:
child_alts = [get_alts(child_gid) for child_gid in expr.children]
for combo in cartesian_product(child_alts):

plan = build_plan(expr, combo)

cost

compute_cost(plan)
alts.append((plan, cost))
return alts

Must recompute cost/stat for alternatives

Runtime of different sampling methods

TPCH Query Runtime Comparison (Log Scale Bar Chart)

I Memo-based
10*F mmm Filter rules

B Powerset rules

103 L

10%E

Runtime (ms)

10t

10°F

ql qll ql2 ql7
Query

run on TPC-H queries 1, 11, 12, 17 on data with scale factor 0.2

Benchmark Execution Engine

: apache "
.tfl.
Efficient top-down measurement with timeout and parquet files

caching support 4 I

_) benchmark
e Recursively run benchmarks for each subplan in the

plans returned by sampler
e Subplans run in separate subprocesses via runner

Serialize physical plans via datafusion_proto
e Collect true cardinalities for each subplan
e Run multiple times to collect metrics, with outlier filtering % %

applied benchmarker e

stream of
measured plans + metrics

time
subplans
—
V

Benchmark Execution Engine

Early Stopping
e Skip running subplans of children of failed/timeout plans (configurable)
Subplan Caching

e Avoid re-running subplans across queries

e Maintain small hash set of metrics for small subplans
- Runtime / space usage tradeoff

Confidence-aware Comparison

e Plans are compared not just by mean time, but also stddev overlap
e Two plans are "equal" if runtime ranges significantly overlap
e Less sensitivity to noise in final results

Total Runtime (s)

Execution Time With vs Without Cache

L 205922 251§4ls
250 |- - B
Performance Metrics

200F

a
] £ 150 |

Cache hit rate: 59.8% £

©
Impact of Caching and Early Stopping on Benchmark Runtime |2 1007 =

78.63s
S = - -
0

Without Cache With Cache

run on TPC-H queries 1, 11, 12, 17 on data with scale factor 0.2

All Optimizations No Caching No Early Stopping

Benchmark Metrics

Accuracy — Does the optimizer rank plan correctly?

Metric Meaning Formula / Definition

TAQO Score (s) Measures agreement between cost & Weighted Kendall's Tau
runtime rankings

TAQO Accuracy (%) | Normalized TAQO score (higher is 100 x exp(-|s]|)
better)
Performance Factor | Fraction of plans slower than the PF — |{p€P|T(p)>T(opt)}|
optimizer’s pick o | P
Optimality % of queries where optimizer picked the OF — [{queries with PF=1}|

Frequency fastest plan #queries

Benchmark Metrics

Quality — Are the estimates close to reality?

Metric

Meaning

Formula / Definition

Average Q-Error

Cardinality estimation error (lower is better)

estimated actual

Q-Error = max (

actual ’ estimated

)

Q-Error Distribution

Q-error percentiles (p90, p95, max) & error
buckets

Binned as Perfect / Good /
Poor / etc.

Cardinality Accuracy

Actual vs estimated rows per subplan
(preorder)

Measured during execution

L
A I SortExec | [CardinalityMisestimation(1, 115, 115.8), CostMisestimation(47, 10767.8, 8, 1)]
na ySIS ProjectionExec | [CardinalityMisestimation(1, 115, 115.8)]
FilterExec | [CardinalityMisestimation(1, 115, 115.8)]
CrossJoinExec | [CardinalityMisestimation(1, 6466, 6466.0)]
AggregateExec | [CardinalityMisestimation(18, 6466, 646.6)]
ProjectionExec | [CardinalityMisestimation(10, 6880, 688.8)]

HashJoinExec | [CardinalityMisestimation(1@, 6888, 688.8)]

- Holistic method rather than pairwise

FilterExec |

|'k A t DI DataSourceExec | [CardinalityMisestimation(1088, 25, 46.9)]
I e u O DataSourceExec |

DataSourceExec | [CardinalityMisestimation(166@, 166060, 160.8)]
ProjectionExec |
AggregateExec |

ProjectionExec | [CardinalityMisestimation(16, 6888, 688.8)]

- Rank a” relevant Subplans to See :2223312322 : [CardinalityMisestimation(10, 6888, 688.0)]

FilterExec |

COSt mOdel errors g:t:gz::zzzzz : [CardinalityMisestimation(1608, 25, 46.8)]

DataSourceExec | [CardinalityMisestimation(1068, 160608, 160.8)]

- Detect “problems” by extracting most
frequently prOblematiC nOdeS / g;ii::::i;é::i::; (OF): 100.0@ (higher is better)

Average TAQO Score (s): ©.3957 (lower is better)
predicate typeS acrOSS Workload Average TAQO Accuracy: 76.84% (higher is better)
Average Performance Factor (PF): 100.00%
Global node perf data
. . {"AggregateExec”: ({"cardinality_misestimation”: (6, @)}, 16)
(Sometlmes onIy consider leaf errors) "ngjegtionExec": ({"cardinaliiy_misestimation": (9, 2)}, 23),
"SortExec”: ({"cardinality_misestimation”: (4, @)}, 10),
“HashJoinExec”: ({"cardinality_misestimation”: (5, @)}, 9),
"FilterExec": ({"cardinality_misestimation”: (4, 4)}, 22),
"NestedLoopJoinExec”: ({}, 9),
"CrossJoinExec”: ({"cardinality_misestimation”: (2, @)}, 15),
“DataSourceExec”: ({"cardinality_misestimation”: (7, 4)}, 43)}

Correctness Testing

i

data \ { queries

apply patches
sampling
optdbg ‘_' optd

failure points: existing errors, sampling
check for: _ o e .
A HashJoinExec cardinality difficulty testing cost errors, NLJ errors, or more
underestimation!
nuanced errors

Unit Testing & Code Coverage

Current Coverage: 34% overall (measured via cargo-tarpaulin)

- Project centers on runtime benchmarking, so unit testability is inherently limited.
- Sampler logic is tightly coupled with:
- Requires memo table traversal, optimizer state, or rule combinations, making it
hard to isolate in pure unit tests

- Benchmark layer hard to test:
- Involves subprocess execution, IPC serialization, timeouts, and runtime

measurements — all difficult to mock and not practical for unit tests

Code Quality

- Strong point: design and interfaces reasonably good
- Loosely designed with 125% extensions in mind

- Strong point: reasonable for a DBMS to implement support
- Even patched datafusion-dolomite a bit!

- Notably hacky components include:
- Memo-based plan sampling
- Physical expression extraction
- This would complicate covering queries optimization!
- Problem deduction (prefer a more general pattern matching system)

Future Work

Sampling: correctly extract costs and fully flesh out memo-based sampler
far future: implement optimizer hint support in optd?

Benchmarking: integrate with existing Rust benchmarking libraries

Analysis: implement more robust pattern matching, track error growth (and cancellation)
Testing: set up cardinality injection for optd to isolate inserted bugs

+ Implementing 125% goals!

