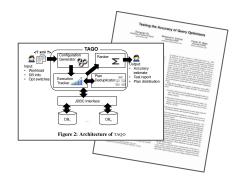
optdbg query optimizer debugger


David, Yu, Jiaying

Motivation

- No standard tools for evaluating query optimizer performance
- Existing tools are limited in scope
- Detecting cardinality errors is currently done in bespoke ways

attps://doi.org/10.1007/s00778-017-0480-7	CrossMa
SPECIAL ISSUE PAPER	
Query optimization through the loo running the Join Order Benchmark Viktor Lek ¹ - Bernhard Radke ¹ - Andrey Gubichet ¹ - Peter Bonz ² - Alfons Kemper ¹ - Thomas Neumann ¹	
Received. 22 January 2017 / Revised: 8 August 2017 / Accepted: 11 Au 0 Springer-Verlag GubH Germany 2017	gust 2017 / Published online: 18 September 2017
Motrael Finding a good join order is crucial for query enformance in dis piper, we introduce far Jaro Mor- ten and Morten and State and State and State and enformation and introduces 110 complex join queries. We repreferrated previate far mana composeries in the classic previous distribution of the state and the state of the state and enditive distribution in piperse, we desche confidence in the state of the state of the state and enditive distribution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state and the state of the state of the state of the state of the state of the state of the state of the state of the state and the state of the state o	meter are essential for finding a good join order, que performance à manitaciony it fue query seguine tatos attransurse freingreises of the our model, estimation at much less tathence or query performance than the califu much less tathence or query performance that the califu competing exhaustive thready some target and appetites and first that exhaustive ensumetion impor- operations and first that exhaustive ensumetion impor- ant through accurate the subspinsio alenationally estima- tion through accurate california performance double thready and the first performance double interpreting the thready and the study accurate california performance double thready and the study accurate california performance double thready sequential to als on the interpreting the performance double.
Si Vakar Link kardin at made Bachard Indek Markowski Markowski pathole Wei man Ale Andre Galakter Pare Inner Pare Inner P	I latroduction The problem of finding a good join order is one of the ma- standar photohesis in the database rifed in Figure 11 Bottowies and the standard standard standard standard standard standard standard standard standard standard standard standard factors and standard standard standard standard standard factors and standard stand

TAQO (Greenplum)

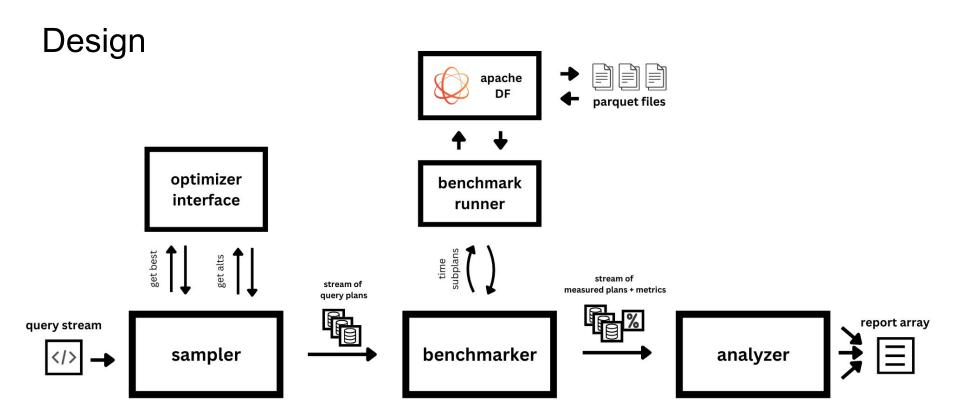
- + Hint-based sampling, hardware-independent
 - Purely numerical evaluation, questionable benchmarking

OptMark (Li et al.)

Intelligent sample sizing, efficiency metrics
 Purely focused on numerical evaluation

AutoDI (Lan et al.)

- + Static analysis of plans to explain regressions
 - Requires known regression, loose analysis


Goals

75% – end-to-end product combining evaluation with static analysis (originally: also support multiple databases – axed by status update)

we are here

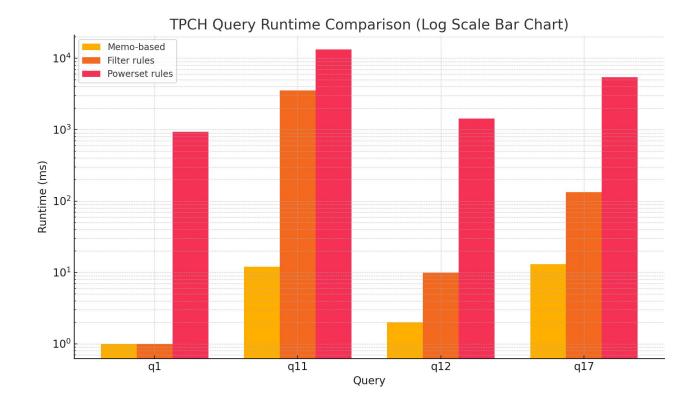
100% – incremental improvements for each component (e.g. better plan sampling, more rigorous benchmarking, better analysis, ...)

125% – fuzzing, fast execution via covering query optimization (SQL Server optimization that runs min # of queries to get true cards)

Sampler (Rule based)

```
for rule_subset in powerset(default_rules):
    optimizer = DataFusionOptimizer(rules=rule_subset)
    plan = optimizer.optimize(logical_plan)
    runtime = execute(plan)
    record(rule_subset, runtime, plan)
```

Prefilter rules & bailing strategies

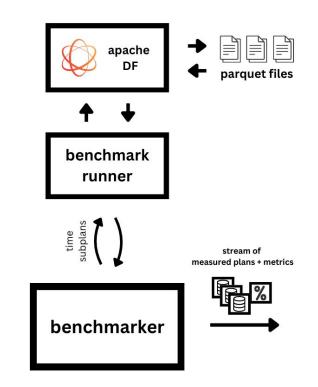

Limitation: Limit diversity on Join ordering

Sampler (Memo based)

```
fn get_alts(group_id):
    exprs = memo.get_group(group_id).physical_exprs
    alts = []
    for expr in exprs:
        child_alts = [get_alts(child_gid) for child_gid in expr.children]
        for combo in cartesian_product(child_alts):
            plan = build_plan(expr, combo)
            cost = compute_cost(plan)
            alts.append((plan, cost))
        return alts
```

Must recompute cost/stat for alternatives

Runtime of different sampling methods



run on TPC-H queries 1, 11, 12, 17 on data with scale factor 0.2

Benchmark Execution Engine

Efficient **top-down** measurement with timeout and caching support

- Recursively run benchmarks for each subplan in the plans returned by sampler
- Subplans run in separate subprocesses via runner
 - Serialize physical plans via datafusion_proto
- Collect true cardinalities for each subplan
- Run multiple times to collect metrics, with outlier filtering applied

Benchmark Execution Engine

Early Stopping

• Skip running subplans of children of failed/timeout plans (configurable)

Subplan Caching

- Avoid re-running subplans across queries
- Maintain small hash set of metrics for small subplans
 - Runtime / space usage tradeoff

Confidence-aware Comparison

- Plans are compared not just by mean time, but also stddev overlap
- Two plans are "equal" if runtime ranges significantly overlap
- Less sensitivity to noise in final results

Benchmark Metrics

Accuracy — Does the optimizer rank plan correctly?

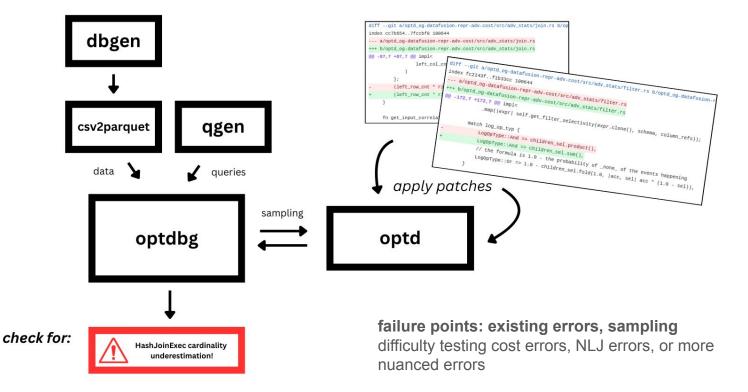
Metric	Meaning	Formula / Definition
TAQO Score (s)	Measures agreement between cost & runtime rankings	Weighted Kendall's Tau
TAQO Accuracy (%)	Normalized TAQO score (higher is better)	100 × exp(- s)
Performance Factor	Fraction of plans slower than the optimizer's pick	$\mathrm{PF} = rac{ \{p \in P T(p) \geq T(\mathrm{opt})\} }{ P }$
Optimality Frequency	% of queries where optimizer picked the fastest plan	${ m OF}=rac{ \{ ext{queries with PF}=1\} }{\# ext{queries}}$

Benchmark Metrics

Quality — Are the estimates close to reality?

Metric	Meaning	Formula / Definition
Average Q-Error	Cardinality estimation error (lower is better)	$Q ext{-}\mathrm{Error} = \max\left(rac{\mathrm{estimated}}{\mathrm{actual}}, rac{\mathrm{actual}}{\mathrm{estimated}} ight)$
Q-Error Distribution	Q-error percentiles (p90, p95, max) & error buckets	Binned as Perfect / Good / Poor / etc.
Cardinality Accuracy	Actual vs estimated rows per subplan (preorder)	Measured during execution

Analysis


- Holistic method rather than pairwise like AutoDI
- Rank all relevant subplans to see cost model errors
- Detect "problems" by extracting most frequently problematic nodes / predicate types across workload

(sometimes only consider leaf errors)

```
SortExec | [CardinalityMisestimation(1, 115, 115.0), CostMisestimation(47, 10767.0, 0, 1)]
  ProjectionExec | [CardinalityMisestimation(1, 115, 115.0)]
      FilterExec | [CardinalityMisestimation(1, 115, 115.0)]
      CrossJoinExec | [CardinalityMisestimation(1, 6466, 6466.0)]
      AggregateExec | [CardinalityMisestimation(10, 6466, 646.6)]
      ProjectionExec | [CardinalityMisestimation(10, 6880, 688.0)]
             HashJoinExec | [CardinalityMisestimation(10, 6880, 688.0)]
             HashJoinExec |
             FilterExec |
                    DataSourceExec | [CardinalityMisestimation(1000, 25, 40.0)]
             DataSourceExec
             DataSourceExec | [CardinalityMisestimation(1000, 160000, 160.0)]
      ProjectionExec
       AggregateExec |
             ProjectionExec | [CardinalityMisestimation(10, 6880, 688.0)]
             HashJoinExec | [CardinalityMisestimation(10, 6880, 688.0)]
             HashJoinExec
                    FilterExec |
                    DataSourceExec | [CardinalityMisestimation(1000, 25, 40.0)]
                    DataSourceExec
             DataSourceExec | [CardinalityMisestimation(1000, 160000, 160.0)]
```

```
Evaluated 3 queries.
Optimality Frequency (OF): 100.00 (higher is better)
Average TAQO Score (s): 0.3957 (lower is better)
Average TAQO Accuracy: 76.84% (higher is better)
Average Performance Factor (PF): 100.00%
Global node perf data
{"AggregateExec": ({"cardinality_misestimation": (6, 0)}, 16),
"ProjectionExec": ({"cardinality_misestimation": (6, 0)}, 23),
"SortExec": ({"cardinality_misestimation": (4, 0)}, 10),
"HashJoinExec": ({"cardinality_misestimation": (5, 0)}, 9),
"FilterExec": ({"cardinality_misestimation": (4, 4)}, 22),
"NestedLoopJoinExec": ({}, 9),
"CrossJoinExec": ({"cardinality_misestimation": (2, 0)}, 15),
"DataSourceExec": ({"cardinality_misestimation": (7, 4)}, 43)}
```

Correctness Testing

Unit Testing & Code Coverage

Current Coverage: 34% overall (measured via cargo-tarpaulin)

- Project centers on runtime benchmarking, so unit testability is inherently limited.
- Sampler logic is tightly coupled with:
 - Requires memo table traversal, optimizer state, or rule combinations, making it hard to isolate in pure unit tests
- Benchmark layer hard to test:
 - Involves subprocess execution, IPC serialization, timeouts, and runtime measurements all difficult to mock and not practical for unit tests

Code Quality

- Strong point: design and interfaces reasonably good
 - Loosely designed with 125% extensions in mind
- Strong point: reasonable for a DBMS to implement support
 - Even patched datafusion-dolomite a bit!
- Notably hacky components include:
 - Memo-based plan sampling
 - Physical expression extraction
 - This would complicate covering queries optimization!
 - Problem deduction (prefer a more general pattern matching system)

Future Work

Sampling: correctly extract costs and fully flesh out memo-based sampler *far future: implement optimizer hint support in optd?*

Benchmarking: integrate with existing Rust benchmarking libraries

Analysis: implement more robust pattern matching, track error growth (and cancellation)

Testing: set up cardinality injection for optd to isolate inserted bugs

+ Implementing 125% goals!