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Motivation

- No standard tools for evaluating query 
optimizer performance

- Existing tools are limited in scope 

- Detecting cardinality errors is currently 
done in bespoke ways

Can we automate this?



TAQO (Greenplum)
＋ Hint-based sampling, hardware-independent 
－ Purely numerical evaluation, questionable benchmarking

OptMark (Li et al.)
＋ Intelligent sample sizing, efficiency metrics
－ Purely focused on numerical evaluation 

AutoDI (Lan et al.)
＋ Static analysis of plans to explain regressions
－ Requires known regression, loose analysis



Goals

75% – end-to-end product combining evaluation with static analysis 
(originally: also support multiple databases – axed by status update)

100% – incremental improvements for each component 
(e.g. better plan sampling, more rigorous benchmarking, better analysis, …)

125% – fuzzing, fast execution via covering query optimization
(SQL Server optimization that runs min # of queries to get true cards)

we are here



Design



Sampler (Rule based)

●

Prefilter rules & bailing strategies

Limitation: Limit diversity on Join ordering



Sampler (Memo based)

Must recompute cost/stat for alternatives



Runtime of different sampling methods

run on TPC-H queries 1, 11, 12, 17 on data with scale factor 0.2



Benchmark Execution Engine

Efficient top-down measurement with timeout and 
caching support

● Recursively run benchmarks for each subplan in the 
plans returned by sampler 

● Subplans run in separate subprocesses via runner
- Serialize physical plans via datafusion_proto

● Collect true cardinalities for each subplan
● Run multiple times to collect metrics, with outlier filtering 

applied



Benchmark Execution Engine

Early Stopping

● Skip running subplans of children of failed/timeout plans (configurable)

Subplan Caching

● Avoid re-running subplans across queries 
● Maintain small hash set of metrics for small subplans

- Runtime / space usage tradeoff

Confidence-aware Comparison

● Plans are compared not just by mean time, but also stddev overlap
● Two plans are "equal" if runtime ranges significantly overlap
● Less sensitivity to noise in final results



Performance Metrics

Cache hit rate: 59.8%

run on TPC-H queries 1, 11, 12, 17 on data with scale factor 0.2



Benchmark Metrics

Accuracy — Does the optimizer rank plan correctly?

Metric Meaning Formula / Definition

TAQO Score (s) Measures agreement between cost & 
runtime rankings

Weighted Kendall's Tau

TAQO Accuracy (%) Normalized TAQO score (higher is 
better)

100 × exp(-|s| )

Performance Factor Fraction of plans slower than the 
optimizer’s pick

Optimality 
Frequency

% of queries where optimizer picked the 
fastest plan



Benchmark Metrics

Quality — Are the estimates close to reality?

Metric Meaning Formula / Definition

Average Q-Error Cardinality estimation error (lower is better)

Q-Error Distribution Q-error percentiles (p90, p95, max) & error 
buckets

Binned as Perfect / Good / 
Poor / etc.

Cardinality Accuracy Actual vs estimated rows per subplan 
(preorder)

Measured during execution



Analysis

- Holistic method rather than pairwise 
like AutoDI

- Rank all relevant subplans to see 
cost model errors

- Detect “problems” by extracting most 
frequently problematic nodes / 
predicate types across workload
(sometimes only consider leaf errors)



Correctness Testing

failure points: existing errors, sampling
difficulty testing cost errors, NLJ errors, or more 
nuanced errors



Unit Testing & Code Coverage

Current Coverage: 34% overall (measured via cargo-tarpaulin)

- Project centers on runtime benchmarking, so unit testability is inherently limited.
- Sampler logic is tightly coupled with:

- Requires memo table traversal, optimizer state, or rule combinations, making it 
hard to isolate in pure unit tests

- Benchmark layer hard to test:
- Involves subprocess execution, IPC serialization, timeouts, and runtime 

measurements — all difficult to mock and not practical for unit tests



Code Quality

- Strong point: design and interfaces reasonably good
- Loosely designed with 125% extensions in mind

- Strong point: reasonable for a DBMS to implement support 
- Even patched datafusion-dolomite a bit!

- Notably hacky components include:
- Memo-based plan sampling
- Physical expression extraction

- This would complicate covering queries optimization!
- Problem deduction (prefer a more general pattern matching system)



Future Work

Sampling: correctly extract costs and fully flesh out memo-based sampler
far future: implement optimizer hint support in optd?

Benchmarking: integrate with existing Rust benchmarking libraries 

Analysis: implement more robust pattern matching, track error growth (and cancellation)

Testing: set up cardinality injection for optd to isolate inserted bugs

+ Implementing 125% goals!


