
Multiple Query Optimization

Guide (Yuttapichai), Yizhou, Frank

CMU 15-799 Final Presentation

Logical DAG Rewriter



Multiple queries running on 

● dbt (Data Build Tool) is a tool for doing data transformation
○ Allow for creating a dependency graph (a node is a transformation stage)
○ Each stage can be written as an SQL statement

2Ref: https://www.getdbt.com/blog/dag-use-cases-and-best-practices

https://www.getdbt.com/blog/dag-use-cases-and-best-practices


Redundant computations among multiple queries

3

my_raw_orders

daily_aggregates

recent_orders

SELECT *
FROM   {{ source('raw', 'orders') }}

SELECT   order_date, sum(amount) as total
FROM     {{ ref('my_raw_orders') }}
WHERE    order_date >= '2023-01-01'
GROUP BY order_date

SELECT order_id, customer_id, amount, 
order_date
FROM   {{ ref('my_raw_orders') }}
WHERE  order_date >= '2023-01-01'



Solution: (Extensible) Logical DAG Rewriter

4



● Generate a workload for 
benchmarking dbt’s 
DAGs ✅

● Implement a DAG 
rewriter with at least the 
predicate pushdown 
heuristic ✅

● Implement all the 
proposed logical query 
optimizations 🆗 
(We decided to drop some 
optimizations)

● Evaluate the DAG using 
the benchmark ✅

● Explore and implement 
Physical query 
optimization (e.g. 
materialized views from 
ancestors, cache & 
reuse of intermediate 
“subresults”) ❌

● Inject statistics from 
DBMS to decide when to 
optimize ✅

75% Goal 100% Goal

Current Status: Most of the things are done + Statistics

125% Goal

5



Three supported optimization heuristics

● Predicate Pushdown
○ Push-able
○ Not Push-able

● Common CTE Elimination

● Naive Projection Pushdown

6



Two metrics to evaluate our approach

● Correctness
○ The output of the rewritten DAG must be the same as the original DAG

● Performance 
○ Compare the overall execution time between the original and the rewritten DAGs
○ Microbenchmark for each optimization rule to see its performance benefit

7



Evaluate through both micro/macro-benchmark

● Microbenchmark
○ We synthetically create DAGs (derived from TPC-H) for each specific optimization rule:

■ Predicate Pushdown
■ Common CTE Elimination
■ Projection Pushdown

● More Realistic DAGs
○ Existing production DAGs from other repositories

■ jaffle-shop

8



Predicate Pushdown: Push-able

● Push-able nodes refer to nodes that 
we are not interested in their results

● Benchmark results (TPC-H)

9



Predicate Pushdown: Non-pushable

● When the result of the parent node is required, we need to add an 
intermediate node

○ Adding a node means we need to materialize the results
● Trade-offs! 

○ If we add the intermediate node blindly…

10

Worse than unoptimized!



Solution: In-Memory Temporary Table

● Use in-memory storage instead of disk storage for new intermediate nodes
○ Experiment: Memory vs Disk (400K rows)

11



Solution: Use Statistics to Determine

● Still, adding an intermediate node yields an extra cost
○ We may want to add an intermediate node only when predicate push-down yields a lower total 

cost (i.e., if adding predicates saved overall costs, safe to add intermediate node)
● Approximate cost reduction with selectivity of Δp and the number of children

○ Query DuckDB for statistics

12



Predicate Pushdown: Non-pushable (Solution Applied)

● Performance impact only visible on children

13

1.747x 
Speedup



Common CTE Elimination: Result

14

2.549x 
Speedup

Performance improvement depends on the CTE (Similar to the predicate pushdown)
(i.e., materializing CTE incurs overheads that may make performance worse)

🤖 ChatGPT Generated DAG
Database: TPC-H



Projection Pushdown: Result

15

● Assume that the parent-node is 
push-able

○ Less materialization on parent

🤖 ChatGPT Generated DAG
Database: TPC-H



Preliminary Result: Work not quite well on jaffle-shop :(

16

Common CTE

● Only Common CTE 
Elimination can be 
applied

● However, the common 
CTEs do not filter any data

○ The overhead of 
materializing CTE makes 
worse execution time

○ Our rules may help on other 
workloads, but trade-offs 
must be weighed carefully



Code Quality Discussion

● Modularized Components ✅:
○ Abstract Rules (match(), apply())

■ Very extensible
○ Logical rewrite: stages loosely coupled, easy rule registration
○ Execution (performance + optional correctness check)

■ Flexible (no dependency / hardcoding)

● Need further work to work with dbt execution modules
○ We wrote our own execution module to run the queries

17



Conclusion

● Performance can be improved significantly by carefully rewriting DAGs
○ Rewriting through heuristics such as predicate pushdown, common CTE eliminations, 

projection pushdown

● Not all the heuristics should be applied: adding a node in a DAG may 
incur high overheads that it may not worth doing so

○ We demonstrate that by having simple statistics, we are able to heuristically determine 
whether we should adding a node or not

● Complex DAG may require more complicated heuristics (e.g., join sharing)

18



Future Work

● Better heuristics (e.g., refine projection pushdown)
● More heuristics (e.g., join sharing)
● Cost-based optimization

○ Intermediate materialization cost vs Saved I/O from all children nodes
● Demand-driven (push down if user do not really use that table)

○ Lazy transformation for original parent table 
● Evaluate with larger DAGs (e.g., Gitlab’s dbt)

19


