Multiple Query Optimization

Logical DAG Rewriter

Guide (Yuttapichai), Yizhou, Frank
CMU 15-799 Final Presentation

Multiple queries running on X dbt

e dbt (Data Build Tool) is a tool for doing data transformation

o Allow for creating a dependency graph (a node is a transformation stage)
o Each stage can be written as an SQL statement

‘ !
k
stg_user_groups

Ref: https://www.getdbt.com/blog/dag-use-cases-and-best-practices

https://www.getdbt.com/blog/dag-use-cases-and-best-practices

Redundant computations among multiple queries

my_raw_orders

daily_aggregates

SELECT order_date, sum(amount) as total
FROM {{ ref('my_raw_orders') }}

WHERE order_date >= '2023-01-01"'

GROUP BY order_date

SELECT *
FROM {{ source('raw',

‘orders') }}

recent_orders

SELECT order_id, customer_id, amount,
order_date

FROM {{ ref('my_raw_orders') }}
WHERE order_date >= '2023-01-01'

Solution: (Extensible) Logical DAG Rewriter

7S5\
Oo-O-0-0-0
~—"

dbt DAG

|

R dbt === (o7 sajLalot

parse | ‘r‘ewr‘ite
Logical
Rewriter

Current Status: Most of the things are done + Statistics

75% Goal

benchmarking dbt’s
DAGs %4

e Implement a DAG

predicate pushdown
heuristic [4

e Generate a workload for

rewriter with at least the

—

100% Goal

~——

Implement all the
proposed logical query
optimizations]

(We decided to drop some
optimizations)

Evaluate the DAG using
the benchmark [4

—

125% Goal W
Y,

Explore and implement
Physical query
optimization (e.g.
materialized views from
ancestors, cache &
reuse of intermediate
“subresults”)

Inject statistics from
DBMS to decide when to
optimize 4

Three supported optimization heuristics

e Predicate Pushdown

o Push-able
o Not Push-able

e Common CTE Elimination

e Naive Projection Pushdown

Two metrics to evaluate our approach

e Correctness
o The output of the rewritten DAG must be the same as the original DAG

e Performance

o Compare the overall execution time between the original and the rewritten DAGs
o Microbenchmark for each optimization rule to see its performance benefit

Evaluate through both micro/macro-benchmark

e Microbenchmark
o We synthetically create DAGs (derived from TPC-H) for each specific optimization rule:
m Predicate Pushdown
m Common CTE Elimination
m Projection Pushdown

e More Realistic DAGs

o Existing production DAGs from other repositories
m jaffle-shop

"...scan tb_parent
preds =P..."

Predicate Pushdown: Push-able [}

Nx Speedup (Sum of Unoptimized / Sum of Optimized)

Push-able nodes refer to nodes that
we are not interested in their results

Benchmark results (TPC-H)

Aggregated Performance Speedup by DAG

& & &
9 S S
<& N <&
Model (Aggregated DAG)

Node 2
"...scan tb_parent
preds =P..."

Node 3
"...scan tb_parent
preds =P..."

refer.

[
refer

refer-

Y

Create Table
tb_parent...

|

U

|

Node 1
"...scan tb_parent"

Node 2
"...scan tb_parent"

Node 3
' "...scan tb_parent"

refer-

I
refer

refer:

Create Table
tb_parent...

with preds +=P

|

Predicate Pushdown: Non-pushable

e When the result of the parent node is required, we need to add an
intermediate node
o Adding a node means we need to materialize the results

e Trade-offs!
o If we add the intermediate node blindly...

ff (Unopt-Opt),Percentimprovesent

Worse than unoptimized!

10

Solution: In-Memory Temporary Table

e Use in-memory storage instead of disk storage for new intermediate nodes
o Experiment: Memory vs Disk (400K rows)

Query Runtime: Intermediate on Disk vs In-Memory Cache
_E dev.main."parent_pushdown"
s g T *
dev"."main"."parent 4000
"RE 1 _shipdate < I
1 shipdate >= DAT

3000

2.2x faster
2000

Execution Time (ms)

'E TEMPORARY TABLE temp.main."parent_pushdown"”

*

“dev® . *main® . *parent® 1000}

- 1 _shipdate < D!
1_shipdate >= DAT

Disk (intermediate persisted) In-Memory (cached)

11

Solution: Use Statistics to Determine

e Still, adding an intermediate node yields an extra cost
o We may want to add an intermediate node only when predicate push-down yields a lower total
cost (i.e., if adding predicates saved overall costs, safe to add intermediate node)
e Approximate cost reduction with selectivity of Ap and the number of children
o Query DuckDB for statistics

Extra A Cost =EC

Added Node
f predicate refer- Pare:nt Node
= Ap predicate = P

A

refer refer.
> ‘ refer ‘

Parent Node

predicate = P Other services

refer- refe
refler
))) Child 1 Child 2 Child 3
Child 1 Child 2 Child 3 predicate = predicate = predicate =
predicate = p1 predicate = p2 predicate = p3 p1-Ap p2 - Ap p3 - Ap
p1Np2Np3=Ap A Cost=C1 A Cost=C2 A Cost=C3
Ap!={}

EC+C1+C2+C37?0 12

Predicate Pushdown: Non-pushable (Solution Applied)

e Performance impact only visible on children

Predicate Pushdown - with statistics, ignore parent

Microbenchmark

Execution Time (in ms)

4000

3000

2000

1000

Before

After

[pushed_down
[childe
B child5
B child4
W child3
B child2
B child1

Predicate Pushdown - with statistics, with parent
Microbenchmark

30000 B parent

[pushed_down
[childé
B child5
B child4
W child3

—~ 20000 [child2

2]

£ M child1

£

)

£

=

=

kel

5

(S

%

@ 10000

0

Before Atfter

13

g ChatGPT Generated DAG
Database: TPC-H

Common CTE Elimination: Result

Before

Common CTE Elimination

topl@_customers_by_revenue
(1148 ms)

average_revenue
(1048 ms)

customers_below_average_revenue
(1164 ms)

Microbenchmark

B shared cte 0 [customers_below_average revenue

B average_revenue

@ top10_customers_by_revenue

After

topl@_customers_by_revenue
(6 ms)

shared_cte_0
(1258 ms)

average_revenue
(5 ms)

customers_below_average_revenue
(49 ms)

2 3000
5
|_p— 2.549x
< Speedup
?)‘ 1000
i

0

Before After

Performance improvement depends on the CTE (Similar to the predicate pushdown)
(i.e., materializing CTE incurs overheads that may make performance worse) 14

Projection Pushdown: Result

Assume that the parent-node is

push-able

(@)

Less materialization on parent

g ChatGPT Generated DAG
Database: TPC-H

Project Pushdown
Microbenchmark
M parent [chid2 [child1
40000

30000
20000

10000

Execution Time (in ms)

Before After

15

Preliminary Result: Work not quite well on jaffle-shop :(

Only Common CTE
Elimination can be
applied

However, the common
CTEs do not filter any data

o The overhead of
materializing CTE makes
worse execution time

o Our rules may help on other
workloads, but trade-offs
must be weighed carefully

jaffle-shop

Benchmark

Execution Time (in ms)

60000

40000

20000

Before

Common CTE

After

supplies
stg_supplies
stg_products
stg_orders
stg_order_items
B stg_locations
B stg_customers
shared_cte_2
B shared_cte_t1
" shared_cte_0
products

5 more

16

Code Quality Discussion

e Modularized Components [%:
o Abstract Rules (match(), apply())
m \Very extensible
o Logical rewrite: stages loosely coupled, easy rule registration
o Execution (performance + optional correctness check)
m Flexible (no dependency / hardcoding)

e Need further work to work with dbt execution modules
o We wrote our own execution module to run the queries

17

Conclusion

e Performance can be improved significantly by carefully rewriting DAGs
o Rewriting through heuristics such as predicate pushdown, common CTE eliminations,
projection pushdown

e Not all the heuristics should be applied: adding a node in a DAG may

incur high overheads that it may not worth doing so
o We demonstrate that by having simple statistics, we are able to heuristically determine
whether we should adding a node or not

e Complex DAG may require more complicated heuristics (e.g., join sharing)

18

Future Work

e Better heuristics (e.g., refine projection pushdown)
e More heuristics (e.g., join sharing)
e Cost-based optimization
o Intermediate materialization cost vs Saved |/O from all children nodes

e Demand-driven (push down if user do not really use that table)
o Lazy transformation for original parent table

e Evaluate with larger DAGs (e.g., Gitlab’s dbt)

19

