**Carnegie Mellon University** 

# Special Topics: Self-Driving Database Management Systems

# **Autonomous Systems II**

@Tim Lee // 15-799 // Spring 2022

**()** 

# LAST CLASS (UDO)

- RL-based database tuning tool that considers multiple types of tuning
- Actually running samples
  - high-quality & high-overhead
- Reduce reconfiguration overhead by distinguishing heavy vs light parameters

UDO: UNIVERSAL DATABASE OPTIMIZATION USING

REINFORCEMENT LEARNING

VI DR 2021

### TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiment

### TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiment

### openGauss

- Intro Video
- openGauss = Huawei GaussDB + open-source + Tsinghua University's autonomous DB research
  - GuassDB
  - Forked from PostgreSQL 9.4
  - multiprocess -> multithread
  - C -> C++





#### Challenges

- 1. Model Selection
  - DL models for cost estimation to capture correlation between columns
  - DRL models for knob tuning to tackle high-dimensional continuous space
- 2. Model Validation ( = behavior modeling)
  - How to validate learned models are better than non-learning methods
- 3. Model Management
  - Unified ML platform for different models in different components
- 4. Training Data Management

# openGauss

- Learned optimizer
  - query rewriter
  - cost/cardinality estimator
  - plan enumerator
- Learned advisor
  - Anomaly detection
  - knob tuning
  - materialize view / index selection
- Model Validator

SECMU-DB

15-799 Special Topics (Spring 2022)

- Predict the performance before deploying a learned model
- Training Data Platform
- Model Management Platform



# Data Flow / Implementation

- 1. Kernel optimizes submitted queries
- 2. Advisor monitors via RPC
- 3. If anomaly is detected, calls corresponding optimization function
- 1. ML platform: periodically collects data and fine-tune models
- 2. If a model is verified by the model validator, deploys the model



#### openGauss – previous papers

- An Autonomous Materialized View Management System with Deep Reinforcement Learning – ICDE 2021
- QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning – VLDB 2019
- An End-to-End Learning-based Cost Estimator VLDB 2019
- Reinforcement Learning with Tree-LSTM for Join Order Selection ICDE 2020
- Query Performance Prediction for Concurrent Queries using Graph Embedding – VLDB 2020

# TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiment



#### Learned Optimizer

#### For every incoming query:

- Query Rewriter
  - Output optimized logical plan
  - Calls cost estimator component to compute cost reduction (???)
- Cost Estimator
  - Estimate the plan execution cost
- Plan Generator
  - Optimize query in physical operator level



### **Query Rewriter**

- Transform a slow SQL query into an equivalent one with higher performance
- Monte Carlo Tree Search
  - MCTS finds rewrite orders that gain the most cost reduction
  - Relies on Cost Estimation model
  - Upper Confidence Bounds (UCB) to expand promising / uncovered branches



### Learned Cost Estimator

- Evaluates cost & cardinality of a query plan
- Traditional cardinality estimation can't capture correlations between different columns
  - (make="Honda" AND model="Accord")
- Neural Networks to the rescue
  - Tree-structured LSTM
  - Embed both queries and physical plan

- Extract representation of a plan tree recursively
- Representation Memory Pool



Figure 2: Architecture of learning-based cost estimator

AN END-TO-END LEARNING-BASED COST ESTIMATO

VI DB 2019

#### Learned Plan Enumerator

- Deal with 2 tasks
  - Join order selection
  - Physical operator selection
- Dynamic programming
  - Search solution space based on cost model
  - Takes exponential time
- Deep Reinforcement Learning
  - Model plan generation as Markov decision process
  - Takes polynomial time

SECMU.DB

15-799 Special Topics (Spring 2022)

• Can't handle schema update due to fixedlength representation of join tree



REINFORCEMENT LEARNING WITH TREE-LSTM FOR JOIN ORDER SELECTION ICDE 2020

#### Learned Plan Enumerator

- openGauss: Deep Q-Network with Tree-LSTM
  - To capture tree structure of the plan tree
  - DQN uses Q-Network to find the next action
- An Action: (table1, table2, operator) is retrieved according to the q-value from the Tree-LSTM network
- RL keep choosing actions until whole plan tree is built
- Plan execution result is used to train Q-Network



15

# TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiment



#### Learned Advisor



- Self-Monitoring: Collects runtime metrics (CPU / RT / sys logs); Detects anomalies
- Self-Diagnosis: Find out root causes of system anomalies
- Self-Configuration: Adopts DRL to tune knobs
- Self-Optimization: Recommends indexes & materialized views

### Self-Monitoring

- Basic idea: when the metrics is far from the prediction result, there may be an anomaly
- Monitors 500+ metrics
  - CPU/memory/disk usage; response time; cache hit
- LSTM-based auto-encoder with attention layer
  - Continuously train with time-series data
  - If reconstruct error > threshold => anomaly
  - **Extreme Value Theory** to calculate threshold dynamically



# Self-Diagnosis

- Diagnose root causes for anomalies
- System Diagnosis
  - Classify metrics anomalies to system-level issue (IO contention, network congestion, insufficient disk space etc.)
- Offline training
  - Train LSTM based on normal data
  - Extract representative metrics in abnormal data
  - Labeling anomaly data requires human effort
- Online diagnosis
  - Kolmogorov-Smirnov test to generate anomaly vector
  - Finds similar anomaly cases



Figure 6: System-level Diagnosis

Sec MU·DB 15-799 Special Topics (Spring 2022)

# Self-Diagnosis

- SQL Diagnosis
  - Find out time-consuming operators (bottleneck) in a slow SQL query
- Model training
  - Input: A vector that encodes SQL query plan and system metrics (e.g. IO contention might make seq scan slower)
  - Output: slowest operator (labeled by running logs or **experts**)





# Self-Configuration

- Tuning 400+ knobs in openGauss
- DB Side
  - Extract internal metrics and current knob settings
- Algorithm Side
  - Search-based algo, DRL (Q-learning, DDPG)
- Tuning Side
  - Input DB status, query features
  - Output recommended knob values
- Workload Side
  - Run benchmark tests, provide execution performance as reward



Figure 8: DRL-Based Knob Tuning

# Self-Configuration

- 3 Modes
- Rule Mode
  - Reduce tuning space
  - Generate knob settings based on rules
  - Report unreasonable knob values
- Training Mode
  - Tryout knob values, train RL model
- DRL Mode

SECMU.DB

15-799 Special Topics (Spring 2022)

- Uses optimization algorithms for knob tuning
- Global Search algo: doesn't need to be trained but worse performance
- DRL: needs training but better performance



Figure 8: DRL-Based Knob Tuning

# Self-Optimization

- Materialized View Recommender
- MV: caching the results of a query
  - A space-for-time trade-off
- How to choose candidate?
  - Select **subqueries** with high frequency and computation cost
- MV estimation
  - Predict the benefit (saved execution time), cost (space, generation time) for a set of MVs
  - Input data: queries & MV features
- MV selection
  - Maximize benefit given space budge using RL



Figure 9: Encoder-Reducer Based View Recommender

Sector DB 15-799 Special Topics (Spring 2022)

### Self-Optimization

#### Index Recommender

Steps:

- 1. Extract representative queries in entire workload
- Score columns based on access frequency and table statistics -> candidate indexes
- 3. Estimate benefit for candidate by **Hypo Index**
- Deep Q-Network to pick indexes that maximize the benefit



Figure 10: DRL-Based Index Recommender

### TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiments

### Model Validation

- Verify if a model is worth deploying
  - If improves query performance, deploy it
  - Otherwise, drop it
- Embed workload as graph to capture correlation between operators
  - Parent-child relation
  - Read-write / write-write conflict
  - Data sharing
- Optimization actions can be encoded into features in the Workload Graph
- Feed graph in DL model to get performance
- Why do we still need Cost Estimator?



| Actions                 | Graph Features                                                     |
|-------------------------|--------------------------------------------------------------------|
| Rewrites/Hints/JoinOrde | rs • Vertex Features                                               |
| Tuned Knob Values       | Configuration Relations                                            |
| Created Indexes         | <ul><li>Vertex Features;</li><li>Configuration Relations</li></ul> |
| Created MVs             | <ul><li>Vertex Features;</li><li>Configuration Relations</li></ul> |
|                         |                                                                    |

### TODAY'S AGENDA

- Overview of openGauss
- Learned Optimizer
- Learned Advisor
- Model Validator
- Experiments

#### Datasets

| Name   | Mode | Table | Size(GB) | #Query  |
|--------|------|-------|----------|---------|
| JOB    | RO   | 21    | 3.7      | 113     |
| TPC-C  | RW   | 9     | 1.30     | 912,176 |
| ТРС-Н  | RO   | 8     | 1.47     | 22      |
| TPC-DS | RO   | 25    | 1.35     | 99      |

#### Learned Query Rewrite

- Able to explore different rewrite order
- TPC-H: perform well because lots of subqueries are removed
- JOB: lots of multi-joins, would be optimized by plan enumerator



#### Learned Cost Estimation

- TLSTM-Hash/Emb: different string embedding in predicate
- TPool: enable MIN-MAX pooling for complex predicate
- Why only JOB workload?
- Not comparing with other learned cost estimator

| Cardinality            | median | 90th  | 95th   | 99th    | max     | mean  | Cost       | median | 90th | 95th | 99th | max  | mean |
|------------------------|--------|-------|--------|---------|---------|-------|------------|--------|------|------|------|------|------|
| PostgreSQL             | 184    | 8303  | 34204  | 106000  | 670000  | 10416 | PostgreSQL | 4.90   | 80.8 | 104  | 3577 | 4920 | 105  |
| MySQL                  | 104    | 28157 | 213471 | 1630689 | 2487611 | 60229 | MySQL      | 7.94   | 691  | 1014 | 1568 | 1943 | 173  |
| Oracle                 | 119    | 55446 | 179106 | 697790  | 927648  | 34493 | Oracle     | 6.63   | 149  | 246  | 630  | 1274 | 55.3 |
| openGauss (TLSTM-Hash) | 11.1   | 207   | 359    | 824     | 1371    | 83.3  | TLSTM-Hash | 4.47   | 53.6 | 149  | 239  | 478  | 24.1 |
| openGauss (TLSTM-Emb)  | 11.6   | 181   | 339    | 777     | 1142    | 70.2  | TLSTM-Emb  | 4.12   | 18.1 | 44.1 | 105  | 166  | 10.3 |
| openGauss (TPool)      | 10.1   | 74.7  | 193    | 679     | 798     | 47.5  | TPool      | 4.07   | 11.6 | 17.5 | 63.1 | 67.3 | 7.06 |

#### Table 2: Cost Estimation – Test errors on the JOB workload

#### Learned Plan Enumerator

- Dynamic programming as baseline (GMRL = 1)
- Outperforms DQL methods (DQ, ReJoin), heuristic (QP), MCTS (Skineer-C)
- TPC-H: shorter, limited search space

|           | JOB  | TPC-H |
|-----------|------|-------|
| openGauss | 0.67 | 0.92  |
| ReJoin    | 1.14 | 0.96  |
| QP100     | NA   | 1.03  |
| QP1000    | 1.90 | 1.00  |
| Skinner-C | 0.89 | 1.03  |
| DQ        | 1.23 | 0.99  |



#### Learned Advisor

• Lack comparison with other ML techniques

Table 4: Knob Tuning Comparison – openGauss (R) denotes rule based tuning, openGauss (D) denotes DRL based tuning.

|               | TPC-H (s) | JOB (s) | TPC-C (tpmC) |
|---------------|-----------|---------|--------------|
| PostgresQL    | 121.3     | 220.19  | 5552         |
| DBA           | 95.1      | 193.37  | 7023         |
| openGauss (R) | 94.3      | 192.81  | 7574         |
| openGauss (D) | 82.7      | 163.88  | 12118.4      |

| Table 5: Index Advisor |                        |       |  |  |  |  |
|------------------------|------------------------|-------|--|--|--|--|
|                        | TPC-H (s) TPC-C (tpmC) |       |  |  |  |  |
| openGauss              | 122.9                  | 10202 |  |  |  |  |
| DBA                    | 130.1                  | 10001 |  |  |  |  |
| Default                | 140.8                  | 9700  |  |  |  |  |



#### Learned Advisor

• Query-embedding: ignoring query plan

#### Table 7: SQL-Level Diagnosis(4 Datasets)

|                 | Precision | Recall | Latency(ms) |
|-----------------|-----------|--------|-------------|
| openGauss       | 0.913     | 0.922  | 0.528       |
| query-embedding | 0.739     | 0.794  | 0.035       |
| PostgreSQL      | 0.826     | 0.831  | 0.372       |
| Actual running  | 1.0       | 1.0    | 3561        |

#### Table 6: Anomaly Detection(TPC-C)

|           | Precision | Recall | F1-score |
|-----------|-----------|--------|----------|
| openGauss | 0.795     | 0.776  | 0.785    |
| VAE       | 0.302     | 0.821  | 0.441    |
| GAN       | 0.554     | 0.745  | 0.635    |

Table 8: System-Level Diagnosis(TPC-C)

|               | Precision | Recall | F1-score |
|---------------|-----------|--------|----------|
| openGauss     | 0.885     | 0.871  | 0.869    |
| kNN           | 0.815     | 0.771  | 0.765    |
| Decision Tree | 0.836     | 0.824  | 0.826    |
| DBSherlock    | 0.826     | 0.553  | 0.549    |

#### Model Validation

• Outperforms state-of-the-arts methods in prediction accuracy and latency



# PARTING THOUGHTS

- No forecasting ability
  - Anomaly detection vs workload forecasting
- No end-to-end long-term experiment results
  - Only mentioned knob tuner & index selector results for real-world customers
- How to collect training data for so many models?

#### References

[1] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li, Tianqing Wang, Shifu Li. openGauss: An Autonomous Database System. PVLDB, 14(12): 3028 - 3041, 2021. doi:10.14778/3476311.3476380