Lecture #19

Carnegie Mellon University
Special Topics:

Self-Driving Database
ManagementSystems

g T

Autonomous Systems |

Wan Shen Lim // 15-799 // Spring 2022

https://15799.courses.cs.cmu.edu/spring2022
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

LAST CLASS

* High-level NoisePage Pilot architecture.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

TODAY'’S AGENDA

e UDO: Universal Database Optimization Using
Reinforcement Learning. Junxiong Wang,
Immanuel Trummer, Debabrota Basu. VLDB
2022.

« Commentary: | think of this as an intelligent
configuration batching paper. Doesn’t rely on
models. Splits parameters into cheap /
expensive to change. Introduces new RL
algorithm with proofs.

DO: U
E‘g CMU'DB D 3?;2?0§EINFORCEMENT LEARNING
15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022
https://15799.courses.cs.cmu.edu/spring2022/papers/19-systems1/p3402-wang.pdf
https://15799.courses.cs.cmu.edu/spring2022/papers/19-systems1/p3402-wang.pdf

MOTIVATION

Cost models
* Require training data. > E" UDO the dream
* Error-prone estimates. E
o]
o1}
£
Rely on sample runs instead § 2 <bleep> cost models
* Regime: high-quality, high-
overhead optimization. high low
Overhead

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

MOTIVATION

Primary use cases

* Tuning when a configuration can be reused
over an extended period.

e Analysis tool for other tuning approaches.

Generalizes to many tuning problems

* e.g., transaction query order, index selection,
knob tuning.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

REINFORCEMENT LEARNING

Learning from sample runs

e Classic use case for reinforcement learning.

* Actions The tuning actions we’ve seen in class.
* Reward The improvement in target metrics.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

REINFORCEMENT LEARNING

Learning from sample runs
e Algorithm

for config in search space
try next action & |nsert RL here
evaluate performance

 What's the problem?

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

REINFORCEMENT LEARNING

Learning from sample runs
e Algorithm

for config in search space
try next action
evaluate performance

 What's the problem?

* Trying actions can be expensive!
* High cost per iteration, slow convergence.
* Key insight: yet not all actions are equally expensive.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

TERMINOLOGY

 Parameter Each tuning choice.
Explicitly: a knob, a create index, etc.
e Configuration An assignment from parameters to values.

* Heavy parameter A parameter which is expensive to change.
Currently, anything involving physical data
structures or database restarts.

Light parameter A parameter which is cheap to change.
Anything which isn’t heavy.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

10

UDO: KEY IDEAS

Give heavy parameters special treatment
* Use RL algorithm that supports delayed rewards.

e e.g., create an expensive index once, batch evaluate
similar configurations with that expensive index.

* For each heavy parameter, the optimization of light
parameters is a separate Markov decision process.

Light parameters, business as usual
* Use standard no-delay RL.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO: SUPPORTING CAST

Planning component

e Each configuration selected by RL is forwarded here.
 Decides when and in what order to evaluate configs.

New RL algorithms that accept delayed feedback
e Variant of Monte Carlo Tree Search, delayed-HOO.

£CMU-DB
15-799 Special Top ics (Spring 2022)

11

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

MCTS, delayed-HOO

Monte-Carlo Tree Search

Recent publicity: AlphaGo, Total War, Tesla Autopilot.
Game = tree, nodes are states, edges are actions.

e Selection From root, select children until you reach a leaf.
 Expansion Expand the leaf (if non-terminal) with children.
e Simulation Rollout/playout until the game is won/lost.

e Backprop Update weights.

Delayed-Hierarchical Optimistic Optimization

£CMU-DB

(same authors) [AAAI22] Procrastinated Tree Search.
Proofs, details, regret bounds, etc. are there.

15-799 Special Topics (Spring 2022)

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

FORMAL MODEL: DEFINITIONS

 Parameter As previously defined.
Has a value domain, e.g., is index built 0/1, query position in txn.
e Configuration c = vector [parameter -> value].
e Configuration space C = {all possible c}.

C_H : heavy parameters, C_L: light parameters,

C=C HXC_L.
 Benchmark metric f : C->real number, stochastic.
 UDO instance (f, C), find c* = argmax E[f(c)]

£CMU-DB
15-799 Special Top ics (Spring 2022)

13

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

FORMAL MODEL: UDO -> MDPs

Given a UDO instance (f, C),
where the goal is to find c* = argmax E[f(c)],
map (f, C) to multiple episodic Markov decision processes.

Episodic MDP (S, A, T, R, S d, S _e), in this case,

(S state space, A actions, T : S*A->S deterministic transition,
R : S->real stochastic reward,

S_d episode start states, S_e episode end states)

£CMU-DB
15-799 Special Top ics (Spring 2022)

14

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

FORMAL MODEL: Heavy Parameter MDP

Heavy Parameter MDP

£CMU-DB

Each action changes one heavy parameter to a new value.
Start state is default configuration.

Reward is max over c_L, f(c Ho c_L) - f(c_default).

End state is all states that are N actions away (they use N=4).

5555555555555555555 (Spring 2022)

15

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

FORMAL MODEL: Light Parameter MDP

Light Parameter MDP M_L[c_h] for each heavy parameter c_h
e Actions are value changes for light parameters.

* End states are a fixed number of light parameter changes.

e Rewardisf(c Hoc_L)- f(c_default).

£CMU-DB

5555555555555555555 (Spring 2022)

16

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO OVERVI

Iterate until the time limit is reached

£CMU-DB

Note other stopping conditions could be used instead.

Algorithm 1 UDO main function.

1: Input: Benchmark metric f, configuration space C, RL algorithms
Algy; and Alg,; for heavy and light parameter optimization
2: Output: a suggested configuration for best performance

3: function UDO(f, C, Algy;, Alg;)

4:

11:

17:

5
6
7:
8
9

// Divide into heavy (Cyr) and light (Cp) parameters

(Ch,CL) « SSA.SPLITPARAMETERS(C)
// Until optimization time runs out
fort «1,..., Algy;.Time do

// Select next heavy parameter configuration

cH,r «RLSELECT(Alg)y, CH, CH,2-1)
// Submit configuration for evaluation
EVAL.SuBMIT(Cfgy, t + Algyy.maxDelay)

// Receive newly evaluated light configurations

E «—EVALReceve(Alg,.f.Cp,t)
// Update statistics for heavy parameters
RL.UppATE(Alg,, E)

end for

return best obtained configuration

18: end function

EW

h

Benchmark Metric, Configuration Space, Time Budge!

Universal Database Optimizer

£

o

RL for Heavy Parameters (A)

Configuration for Heavy Parameters+ Deadline

l

Pick Configurations to Evaluate (B)

Configurations for Heavy Parameters (Set)

[

Order Selected Configurations ((')

Configurations for Heavy Parameters (List)

RL for Light Parameters (D)

Result Configuration for AU Parameters

Evaluate Configuration (E)

‘

Figure 2: Overview of UDO system (rectangles represent pro-

+
Best Configuration

cessing steps, arrows represent data flow).

15-799 Special Topics (Spring 2022)

17

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

EVALUATING CONFIGURATIONS: API

Algorithm 2 EVAL: Functions for evaluating configurations.

1 /! Global variable representing evaluation requests

EVAL.Submit(config, deadline) Lr-o

3. Input: heavy configuration ¢y 1o evaluate and time ¢
4: Effect: adds new evaluation reguest

* Deadline = max additional future Ly el

7 end procedure

configs that can be buffered before this ;i s e e voe ontpcecs

10. function l".\'ALRLcu\'uz\luL. f.Ce, 1)

specific config must be evaluated. (% A e omtgmion e K el

13 ! Rtmu.\'zh'lmm pending requests
EVAL.Receive(RL algorithm to use, f, light & mscoumm

config space, current time) =

0 /! Prepare evaluation of next configurations
. n CuanaeConnc(s hoor N
* Get the next set of evaluated configs 2T il pcs g
° ol g +RLOvriuze(Alg, . s.hconf,Cy f)
24: /! Take performance measurements on benchmark
b e~Evatuare(f, s.hconf, oy)
! Add performance result to set

n E v Eu {(ce,s.hconf, b))
8 end for

% / Return evaluation results

0 return £

1L end function

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

19

EVALUATING CONFIGURATIONS: PICKING

Algorithm 3 PrckCoxng: Methods for picking configurations to
evaluate.

° - Input: Evaluation requests i, current timestamp ¢
P I c kco n f_Th re S h o I d = Output: Set of configurtions 1o evaluste
s function PoxCosr-Taxessoun(1)
4 /! Was size threshald reached?
£ if 1Rl = p then

* If you have “too much” work to do, you oy S

clse
returan O

must do everything now. o it

12)/ Dsituadize maxsmal cost savings for each request
S=#

PickConf-Secretary e

15 Output: Set of configumtions to evaluste
in function ProxCone Secnetany(R, £)

* Do everything that must be done. o

! Romove requests from pemding set

t
0 R~—R\E

* Then, secretary problem style, do > i
whatever doesn’t require “too much” S

reconfiguration work. R A

ead if

/ Update maximsally possible savings
SOr) o= max{m. s}

» end for
+ return £
15 end function

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

EVALUATING CONFIGURATIONS: ORDERING

Ordering configurations is NP-HARD
 Hamiltonian graph.

Algorithm 4 PLANConF: Order configurations for evaluation.

1: Input: Evaluation requests R
2: Output: Requests in suggested evaluation order

P I an CO nf 3: function PLANCONF-GREEDY(R)

4: // Initialize list of ordered requests

° 1 5 0« []
G reedy d Igo rlth m. 6: // Iterate over all requests
7: forr € Rdo
8: // Find optimal insertion point
. . 9: i « argmin;eo__ 0| Cr(O[i-1],0[i]) +Cr(O[i]. Oli+1]))
I ntege r I I nea r prog ra m m I ng 10: // Insert current request there
. . 11: O.insert(i,r)

* Optimal solution. 12 end for

13: return O

14: end function

£CMU-DB

15-799 Special Topics (Spring 2022)

20

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

21

REINFORCEMENT LEARNING

Three main subroutines: RL.SELECT, RL.UPDATE, RL.OPTIMIZE.

RL.SELECT RL.UPDATE RL.OPTIMIZE

Pick the next action Update the statistics
based on some statistics. used by RL.SELECT.

See paper for details. Update num visits to
Ct47 * argmax fic(t) + \’lmﬁmlw + 3blog(0c.) State_aCtion pairs,
‘ present state, sample
mean and variance of

U Ug

accumulated rewards.

£CMU-DB

15-799 Special Topics (Spring 2022)

Invoke the other two
repeatedly for
optimization.

Algorithm 5 RL: Monte Carlo Tree Search optimization,
1 Input: Algarithm Alg, configuration space C, sate o, benchmark 5
& Owtput: Final purameter configuration
+ function BLOrmuzAls C o)
Inutinlize Star + 0
5 forr=0,.. Alg.Time do
{Crar) = RLSELzCTALS, O ¢y)
Evaluate the new configuration ry o BEVAIUATE,)
Upddate Sear «— Stat U ({ep ap, Coqpatait))
RL Urpars(Alg Stae)
0 end for
retwrn Firsal parumeler configuration oy
12 end function

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

THEORY

* Minimizes expected regret.

* See paper for details.
e Extended proofs in [AAAI22] Procrastinated Tree Search.

Trzorem 6.1 (Resaxr or HOO (Trzorsm 6, (91)). If the perfor- THEOREM 6.3 (REGRET OF UDO). If we use the delayed-HOO as
"A'Mfe.mmcf I SG0E ATOBRE Ehe Opsimal configuration A tsmy- the delayed-MCTS algorithm with delays r and 0, and time-horizons
tion 2 in [9]) and the upper confidence bounds on performances of all ;

Ty, and Ty for heavy and light parameters respectively, the expected

the configurations at depth h create a partition shrinking at the rate

cp™ with p € (0, 1) (Assumption 1 in [9]), expected regret of HOO is regret of UDO is upper bounded by

= ;
B[Regr] = O (1'% (log 1) 3) 2) E[Regy] =0 ((1+ r)Thl 3 (HOO (T7) log T) 7%) (4)
. ; fro ; P . ¢
for a horizon T > 1, and 4/c-near-optimality dimension” d of f. under the assumptions of Thm. 6,1. Here, HOO(T;) £ O ([1()g ! P)
TueorEM 6.2 (REGRET OF DELAYED-HOQ). Under the same as- 2 d h X
sumptions as Thm. 6.1, the expected regret of delayed-HOO is Deviation in expected performance of the configuration nlu;r;ed
- 3 - by UDO i i - 00? 00 Ll B
E[ch7.|=O((l+r)T"m(lugT)-7’E) (3) R0 e K o umiim 'SO(“ o) [H (Tf)H (7)))
) Here, Tj, and T} are the number of steps allotted for the heavy and
fordelay r 2 0, horizon T, and 4/c-near-optimality dimension d of f. light parameters respectively. Deviation in expected performance

of the configuration selected by UDO vanishes as T, T) — oo.

$2CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

EXPERIMENTS: SETUP

Hardware

e Server, 2x Intel Xeon Gold 5218, 2.3 GHz, 32 physical cores.
e 384 GB RAM.

e 1TBHDD.

DBMSs
* MySQL 5.7.29.
* PostgreSQL 10.15.

£CMU-DB
15-799 Special Top ics (Spring 2022)

23

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

EXPERIMENTS: SETUP

ubDO

£CMU-DB

Delay = 10 for heavy MDP.
b =3in UCB-V (RL.SELECT picking the next action).

Per episode,
 Up to 8 actions for TPC-H.
 Upto 13 actions for TPC-C (four heavy parameter changes).

5555555555555555555 (Spring 2022)

24

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

25

EXPERIMENTS: WORKLOADS

Workloads

e TPC-C(SF 10, 32 terminals), maximize throughput.

 Reload snapshot every 10 iterations of main loop.
e Standard mix for 5 seconds.

* Parameters: 71 index, 19 reorder, 10 MySQL / 15 PostgreSQL knobs.

 TPC-H (SF 1), minimize latency.
e Parameters: 99 index, 10 MySQL / 15 PostgreSQL knobs.

£CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

EXPERIMENTS: IMPLEMENTATION

UuDO

* Python3 + OpenAl gym

e Gurobi for cost-based planning

Baselines (targeted at no prior training data scenario)
* For RL comparisons, against Keras-RL's SARSA, DDPG.

 Some combination of MySQL-Tuner, PGTuner, Gaussian
Process Regression, DDPG++, Quro, Dexter, EverSQL.

* When combining, optimize transaction code, then

parameters, then index selection.
£=CMU-DB

5555555555555555555 (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO vs BASELINES

—e— UDO = Simplified UDO —e— UDO = Simplified UDO
—e— DDPG ~— SARSA e DDPG +— SARSA
X QURO+Dexter+PGTuner « QURO+EverSQL+PG/MS-Tuner X Dexter+PGTuner < EverSQL+PG/MS-Tuner
- QURO+Dexter+DDPG++ —e— QURO+Dexter+OT GP @ - Dexter+OT DDPG++ —@— Dexter+OT GP
- - - RL with Cache - <+ - RL with Cache
5 5,000 |- 2 14,500 Z 66 3 16
-§ 4,000 = Z 64 ; g 14
= 14,000 o - B,
£ 3,000 g > g 62 o] § M
60 — 10
e ERETRLE S ENER 0 1 2 3 4 0 1 2 3 4
Optimization time (h) Optimization time (h) Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function (b) TPC-H performance as a function

(a) TPC-C performance as a function of (b) TPC-C performance as a function of
of optimization time in MySQL, of optimization time in Postgres.

optimization time in MySQL. optimization time in Postgres.

Figure 3: Comparing UDO to baselines on TPC-C. Figure 4: Comparing UDO to baselines on TPC-H.

$2CMU-DB

15-799 Special Topics (Spring 2022)

27

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO vs BASELINES

—e— UDO = Simplified UDO —e— UDO = Simplified UDO
—e— DDPG ~— SARSA o DDPG +— SARSA
X QURO+Dexter+PGTuner « QURO+EverSQL+PG/MS-Tuner X Dexter+PGTuner < EverSQL+PG/MS-Tuner
- QURO+Dexter+DDPG++ —e— QURO+Dexter+OT GP #- - Dexter+OT DDPG++ —@— Dexter+OT GP
- =+ - RL with Cache - = - RL with Cache
— —— — 70 & ’;75
B 6000 5 15000 £ e8| 3
5 5000 2 14,500 2 66 3
=
-g} 4,000 S Z 64 - 2
= 14,000 % 62 - by
2 3,000 = by v .- 3
= £ 13,500 B g L *e &
0 1 2 3 4 Gl T T 0 1 2 3 14 0 1 2 3 4
Optimization time (h) Optimization time (h) Optimization time (h) Optimization time (h)
TPC-C performan function of (b) TPC-C . a function (b) TPC-H performance as a function
@ opt'unli);t?on timc: ;s :1),5’3110" 2 opti UDO is a |WayS the best AySQL. of optimization time in Postgres.

Figure 3: Comparing UDO to bas ing UDO to baselines on TPC-H.

<2CMU-DB Followed by DDPG++ with Dexter

15-799 Special Topics (Spring 2022)

28

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

RC time (s)

1,000

500

29

UDO vs BASELINES

¢ - UDO m DDPG e SARSA

_.,.
N
-

/ .—.7
B i

200 400 600
Episode

(a) Reconfiguration time of different RL
algorithms for MySQL on TPC-C,

Figure 5: Time spent per episode by different RL algorithms

3,000

Total time (s)

2,000
1,000

0

e
p
.
/. '.
o e

il

Episode

(b) Total time of different RL
algorithms for MySQL on TPC-C,

when optimizing MySQL for TPC-C.

$2CMU-DB

15-799 Special Topics (Spring 2022)

200 400 600

—e— UDO — = DDPG —e— SARSA

el)
o= 30,000 -
Z 10,000 s
v - E 20,000 - *
5 ‘,", 8 P oo
5 5,000 - > P re o :g 10,000 |- {. po
= ‘ P - "
0 - } - h ! | | -
200 400 600 800 200 400 600 800
Episode Episode

(a) Reconfiguration time of different RL (b) Total time of different RL algorithms
algorithms for Postgres on TPC-H. for Postgres on TPC-H.

Figure 6: Time spent per episode by different RL algorithms
when optimizing Postgres for TPC-H.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO vs BASELINES

—e— UDO —& - DDPG —e— SARSA

¢ - UDO m DDPG e SARSA
3,000 ‘ = .l = o~
= ”| = o Z 10,000 o iéa 30,000 =
= 1,000 .,,J' : 2,000 -__.' E - ‘1" £ 20,000 |- .’,‘,’ pe
- / g) e &
£ 500 » 1 = 1,000 o, L ee® < ot ee®®® | 5 10000 _Hge®
g o e £ e ad - *** & ..1".
jE - LeattlF-ENE -oall ol s iy S———
200 400 600 200 400 600 200 400 600 800 200 400 600 800
Episode Episode Episode Episode
(a) Reconfiguration time of different RL (b) Total time of different RL algorithms
for Postgres on TPC-H.

(a) Reconfiguration time of different RL (b) Total time of different RL 4 .

algorithms for MySQL on TPC-C. algorithms for MySQL on TPC-C, algorithms for Postgres on TPC-H.

Figure 5: Time spent per episode by different RL algorithms Figure 6: Time spent per episode by different RL algorithms
when optimizing MySQL for TPC-C. when optimizing Postgres for TPC-H.

UDO can reduce reconfiguration

time by a factor of 3

$2CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

31

UDO VARIANTS

| ® - Greedy —m - Integer Linear Progrmnming]

-~ -
P —&— Delay=0
£ 6,000 | EmEE "j g
= sus * es33 ® Delay=5 % 15,000
£ pol L ttPOTO0 || o Delay=10 ¥ " s N\
s 5,500 |- 42 eee E 10,000 T 15000 &
2 o® +— Delay=15 B g
2 . £ 5000 E
E 5000 = ¢ Delay=20 = I Y 14,000 Re__,
0 2 4 é olme—88 o —a
Optimization time (h) 5 10 15 5 10 15
Delay (Episodes) Delay (Episodes)
Figure 7: Impact of delayed feedback on UDO performance {0 Thinkhyient i plan gpiisiaation: ((b) Tikh St s seccafigiratin;
(MySQL on TPC-C). Figure 9: Impact of reconfiguration planning algorithm on
16,000 g » = UDO performance (MySQL on TPC-C).
= - \} —e— Batch - ; —e
i S, = Secretary P - - 4| —e— 2-Level UDO
- °_ : £ P 3 3 2
5 11,000 a *—_ 5 o*Rfinmn B ® 1-Level UDO
g - £ poes ttt " * || o iLeveluDOD
= 12,000) s
L g
=
5 .1() 15 2 4
Delay (Episodes) Optimization time (h)

Figure 8: Impact of evaluation time selection on UDO per- Figure 10: Impact of search space design and search strategy

$CMU-DB formance (MYSQL on TPC-C). on UDO performance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO VARIANTS

‘_@ z ® - Greedy m - Integer Linear Programming

é 6’000 e z"’,‘- : o - Delﬂy—o | cay nteger Lin r nmin,

g snn *°* A ® Delay=5 % 15000 - ;

= o r— \

‘¥ No delay = slower convergence. 8 anpte 2 15000 %

2 £ 5000 = e

= 10 was the sweet spot here. Pl o | 8T M
Optimization time (h) - 3 10 15 5 10 15

Delay (Episodes) Delay (Episodes)

{a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Figure 7: Impact of delayed feedback on UDO performance

(MySQL on TPC-C). Figure 9: Impact of reconfiguration planning algorithm on
16,000 g~ e Batih UDO performance (MySQL on TPC-C).
—_ By " e .
= e = Secret % 6,000 "= st | -Level UDO
2 14,000 . 2 8 & 2o Rl u u || & Zleve
_—Ej » A — 5 ..:.l-ll : ® 1-Level UDO
é)s - ..a 5.000 .QQ....... =9 ®— I-Level UDO D
12,000 : = E /
5 10 15 £ 4,000 L . :
Delay (Episodes) Optimization time (h)

Figure 8: Impact of evaluation time selection on UDO per- Figure 10: Impact of search space design and search strategy
formance (MySQL on TPC-C). on UDO performance (MySQL on TPC-C).

$2CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO VARIANTS

2 —&— Delay=0
o[- ___r2saaasa=e— | " 0

No delay = slower convergence.

Throughput (tx/s)

10 was the sweet spot here.

Optimization time (h)

Figure 7: Impact of delayed feedback on UDO performance
(MySQL on TPC-C).
16,000 g —

—o— Batch

! The higher the delay, the quicker
secretary was relative to batch
(earlier called threshold).

clay (Episodes

RC time (s)

—_—

Figure 8: Impact of evaluation time selection on UDO per-

Gomupg formance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

| ® - Greedy m - Integer Linear Programming

= 15,000 5 a

u - \

E 10,000 ‘g’ 15,000 ‘\._

=0

3 .00 = -

B 300 14,000 R,

é 0leu-uo8 > » &

5 10 15 5 10 15

Delay (Episodes) Delay (Episodes)

{a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Figure 9: Impact of reconfiguration planning algorithm on
UDO performance (MySQL on TPC-C).

% 6,000 v,...“':“:_":ﬁ —@— 2-Level UDO
:;: ..:.‘-.:.'.... *—9 . e 1D
£ 5000 F pees e 1-Level UDO D
: |
£ 4,000

0 2 4

Optimization time (h)

Figure 10: Impact of search space design and search strategy
on UDO performance (MySQL on TPC-C).

33

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

34

UDO VARIANTS

I ® - Greedy —m - Integer Linear Programming]

2 —&— Delay=0
6,000 I::: 3 !,,_}] = o Delin

As you’d expect, ILP produces

No delay = slower convergence. .
y & better solutions but costs
10 was the sweet spot here. . e .
exponential optimization time.

Optimization time (h)
Delay (Episodes) Delay (Episodes)

Throughput (tx/s)

{a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Figure 7: Impact of delayed feedback on UDO performance

(MySQL on TPC-C). Figure 9: Impact of reconfiguration planning algorithm on

UDO performance (MySQL on TPC-C).

16,000 4 —
= —8— Batch B
u : : % 6000 = R
FR The higher the delay, the quicker e IOl Byt
< i 2 5000]-F eees® % *°® || o iLevlUDOD
=38 secretary was relative to batch]]’ |
(earlier called threshold). £ a0k ; -

clay \Lpis0aes Optimization time (h)
Figure 10: Impact of search space design and search strategy

Figure 8: Impact of evaluation time selection on UDO per-
on UDO performance (MySQL on TPC-C).

Gomupg formance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

UDO VARIANTS

2 —&— Delay=0
6,000 I::: 3 !,,_}] = o Dicliyes

No delay = slower convergence.
10 was the sweet spot here.

Throughput (tx/s)

Optimization time (h)

Figure 7: Impact of delayed feedback on UDO performance
(MySQL on TPC-C).

16,000 F . = —e— Batch
! The higher the delay, the quicker
secretary was relative to batch

(earlier called threshold).

ciay (Episodes

RC time (s)

—_—

Figure 8: Impact of evaluation time selection on UDO per-

Gomupg formance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

I ® - Greedy —m - Integer Linear Programming]

As you’d expect, ILP produces

better solutions but costs
exponential optimization time.

Delay (Episodes) Delay (Episodes)

{a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Figure 9: Impact of reconfiguration planning algorithm on
UDO performance (MySQL on TPC-C).
r T

e

Justifies why we should separate

out the heavy/light MDPs.

Throughput (tx/s)

Optimization time (h)

Figure 10: Impact of search space design and search strategy
on UDO performance (MySQL on TPC-C).

35

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

Best run time(s)

{a) TPC-H performance as a function (b) TPC-H performance as a function of

SCENARIO VARIANTS

e UDO # Simplified UDO
e DDPG ~— SARSA
X Dexter+PGTuner EverSQL+PG/MS-Tuner
- Dexter+OT DDPG++ —&— Dexter+OT GP
- - RL with Cache
550 [} - - =
g 3
500 5 5 TR £
450 eSS T 5
., 4y £
400 i N g 4 (
0 2 4 6 8 0 2 4 6 8

Optimization time (h)

of optimization time in MySQL.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

$2CMU-DB

15-799 Special Topics (Spring 2022)

Optimization time (h)

optimization time in Postgres.

Runtime (s)

Figure 12: Optimizing weighted sum of run time and disk

—eo— UDO

= DDPG —e— SARSA

1,500
1,000 |

500

Opt. time (h)

Index Space (MB)

4,000

2,000

-

024638
Opt. time (h)

space for TPC-H SF 10 on Postgres.

Time (s) + Space (MB)/12

1,500 |-

1,000

500 |

#

Opt. time (h)

36

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

37

SCENARIO VARIANTS

e UDO # - Simplified UDO —eo—UDO = DDPG —e— SARSA
e DDPG «— SARSA
X Dexter+PGTuner EverSQL+PG/MS-Tuner N
m Dexter+OT DDPG++ —&— Dexter+OT GP g ? Y ‘
- - RL with Cache — 1,500 % 4,000 2 1500 | ‘!l N
% s Y : \»
= S50k =z I = < M
% be, S g 20 £ 2,000 & 1,000 1 |
E 5001~ te B E 7] i \’
g & = 500 g = "
a0l ¢ T ERERT 5 2 < Z 500 [“wags
k7 ‘\"—._ 7 's 0 & |
X 400 ® o 2 : - E —
0 2 4 6 8 0 2 4 6 8 02468¢ 024638
Optimization time (h) Optimization time (h) Opt. time (h) Opt. time (h) Opt. time (h)

{a) TPC-H performance as a function (b) TPC-H performance as a function of
of optimization time in MySQL. optimization time in Postgres. Figure 12: Optimizing weighted sum of run time and disk

Figure 11: Comparing UDO to baselines on TPC-H for SF 10. space for TPC-H SF 10 on Postgres.

Higher scalefactor, similar trends.

$2CMU-DB

15-799 Special Topics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

SCENARIO VARIANTS

e UDO # Simplified UDO
e DDPG ~— SARSA
X Dexter+PGTuner EverSQL+PG/MS-Tuner

Dexter+OT DDPG++ —&— Dexter+OT GP

- RL with Cache
B SO =
T PR
E 500[~ 150y E
5 o [ye¥EEEd s
% 400 "-to.,i z 255
0 2 4 6 8 0 2 4 6 8

Optimization time (h) Optimization time (h)

{a) TPC-H performance as a function (b) TPC-H performance as a function of
of optimization time in MySQL. optimization time in Postgres.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

Higher scalefactor, similar trends.

$2CMU-DB

15-799 Special Topics (Spring 2022)

Runtime (s)

1,500

1,000 |

500

Opt. time (h)

Opt. time (h)

—e—UDO = DDPG —e— SARSA
N
& a
;9; 4,000 = 1,500 |
% 4
g]
£ 2,000 & 1,000
b +
- = 500 |
5 ol "
0246 8H

#

Opt. time (h)

Figure 12: Optimizing weighted sum of run time and disk
space for TPC-H SF 10 on Postgres.

Multi-objective optimization.

38

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

SCENARIO VARIANTS

—e— UDO # DDPG —e— SARSA
Cost Model x Dexter

= 1,200 = 500 | -
Z 1,100 = 2 400 | .
= 1,000 e 300 t
4 o E X O—g
= 900 +« 200 T—
$ -]
= .9 =
800 100
0 2 4 1 2 3 4
Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function of (b) TPC-H performance as a function
optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

£CMU-DB

15-799 Special Topics (Spring 2022)

—e— UDO —=— Dexter+OT DDPG++ —@— Dexter+OT GP

- 300 - 250 T
:a; 250 E 200 g
= 150 -

é 200 3 |]
2z 150 K
[a's) | | /M 50 |

5 10 15 20 0 2 4 6

#Templates for training Opt. time (h)

(a) Varying number of TPC-H query (b) Performance for dynamic
templates used for training. workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

39

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

SCENARIO VARIANTS

—e— UDO # DDPG —e— SARSA
Cost Model x Dexter

= 1,200 = 500 | BN
£ 1,100 |-= 2 400} | .
= 1,000 W 300 {
g e BN W
= 900 w200 — NS
L .]
= *—9
800 =100
0 2 4 1 2 3 4
Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function of (b) TPC-H performance as a function
optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

Restricted to just indexes, still good.

£CMU-DB

15-799 Special Topics (Spring 2022)

—e— UDO —=— Dexter+OT DDPG++ —@— Dexter+OT GP

@ 300 3 250 T T T
:s; 250 E 200 g
5 200 g 130 gi
o 5 100 |- -
2 150 @
[a's) | | | /M 50 |

5 10 15 20 0 2 4 6

#Templates for training Opt. time (h)

(a) Varying number of TPC-H query (b) Performance for dynamic
templates used for training. workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

40

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

SCENARIO

—e— UDO # DDPG —e— SARSA
Cost Model < Dexter
= 1,200 O 500 | BN
e | \
E Lo E ol | e
= 1,000 N\ g = 300 |
g Tl B Kk e—o
= 900 S w200 T
5 -]
= .9
800 =100
0 2 -4 1 2 3 4

Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function of (b) TPC-H performance as a function
optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

Restricted to just indexes, still good.
£2CMU-DB

15-799 Special Topics (Spring 2022)

41

VARIANTS

—e— UDO —=— Dexter+OT DDPG++ —@— Dexter+OT GP

- 300 = 2507 T T
:E; 250 E 200 g
= 150 |- -
§ 200 5 |)
@ 150 a
[a's) | | | /M 50 |
5 10 15 20 0 2 4 6

#Templates for training Opt. time (h)

(a) Varying number of TPC-H query

(b) Performance for dynamic
templates used for training.

workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

Workload

shift is
difficult.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

SCENARIO

—e— UDO # DDPG —e— SARSA
Cost Model < Dexter

5 1200 % 500 — BN
£ 1,100 '.b\\ 2 400 | .
= AN = | | .
£ 1,000 S\ Mg 300 |
2 3 3 E X &—g
> 900 \ . % 200 R .
2 go0 Preeg X g

0 2 4 1 2 3 4

Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function of (b) TPC-H performance as a function
optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

Restricted to just indexes, still good.
£2CMU-DB

15-799 Special Topics (Spring 2022)

42

VARIANTS

—e— UDO —=— Dexter+OT DDPG++ —@— Dexter+OT GP

~ 300 = 250

_g 250 £ 200
= 150

E 200 3 s

@ 150 a

m | | | /M 50

[Y

5 10 15 20

#Templates for training

2 4 6
Opt. time (h)

(a) Varying number of TPC-H query
templates used for training.

(b) Performance for dynamic
workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

Workload
shift is
difficult.

Pingpong

between even
/ odd TPC-H.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

PARTING THOUGHTS

Parameters are not equal cost.

* Batch light parameters, multiple MDPs.
* delayed-HOO to account for delayed rewards.
Thoughts and commentary.

 Good use of both DBMS and RL domain
knowledge; fig 10 cautionary of xkcd1838.

e Universal, counterexamples?

* Where do cost models still play a role? Other

parts of the quality/overhead regime?

£CMU-DB
15-799 Special Top ics (Spring 2022)

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022

