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LA ST  C LA S S

• High-level NoisePage Pilot architecture.
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TO DAY ’S  AG E NDA

• UDO: Universal Database Optimization Using 
Reinforcement Learning. Junxiong Wang, 
Immanuel Trummer, Debabrota Basu. VLDB 
2022.

• Commentary: I think of this as an intelligent 
configuration batching paper. Doesn’t rely on 
models. Splits parameters into cheap / 
expensive to change. Introduces new RL 
algorithm with proofs.
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UDO: UNIVERSAL DATABASE OPTIMIZATION
USING REINFORCEMENT LEARNING
VLDB 2021
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M OT I VATIO N

Cost models

• Require training data.

• Error-prone estimates.

Rely on sample runs instead

• Regime: high-quality, high-
overhead optimization.
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M OT I VATIO N

Primary use cases

• Tuning when a configuration can be reused 
over an extended period.

• Analysis tool for other tuning approaches.

Generalizes to many tuning problems

• e.g., transaction query order, index selection, 
knob tuning.
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R E I NFO RC E M E NT  LEA R NI NG

Learning from sample runs

• Classic use case for reinforcement learning.

• Actions The tuning actions we’ve seen in class.

• Reward The improvement in target metrics.
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R E I NFO RC E M E NT  LEA R NI NG

Learning from sample runs

• Algorithm
for config in search space

try next action
evaluate performance

• What’s the problem?
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Insert RL here
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R E I NFO RC E M E NT  LEA R NI NG

Learning from sample runs

• Algorithm
for config in search space

try next action
evaluate performance

• What’s the problem?

• Trying actions can be expensive!
• High cost per iteration, slow convergence.
• Key insight: yet not all actions are equally expensive.
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T E R M I NO LO GY

• Parameter Each tuning choice.

Explicitly: a knob, a create index, etc.

• Configuration An assignment from parameters to values.

• Heavy parameter A parameter which is expensive to change.

Currently, anything involving physical data 

structures or database restarts.

• Light parameter A parameter which is cheap to change.

Anything which isn’t heavy.
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UD O :  K E Y  I D EA S

Give heavy parameters special treatment

• Use RL algorithm that supports delayed rewards.

• e.g., create an expensive index once, batch evaluate 
similar configurations with that expensive index.

• For each heavy parameter, the optimization of light 
parameters is a separate Markov decision process.

Light parameters, business as usual

• Use standard no-delay RL.
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UD O :  S UPPO RT ING C A ST

Planning component

• Each configuration selected by RL is forwarded here.

• Decides when and in what order to evaluate configs.

New RL algorithms that accept delayed feedback

• Variant of Monte Carlo Tree Search, delayed-HOO.
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M C TS ,  d e l ayed -HO O

Monte-Carlo Tree Search

• Recent publicity: AlphaGo, Total War, Tesla Autopilot.

• Game = tree, nodes are states, edges are actions.
• Selection From root, select children until you reach a leaf.
• Expansion Expand the leaf (if non-terminal) with children.
• Simulation Rollout/playout until the game is won/lost.
• Backprop Update weights.

Delayed-Hierarchical Optimistic Optimization

• (same authors) [AAAI22] Procrastinated Tree Search.

• Proofs, details, regret bounds, etc. are there.

12

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022


15-799 Special Topics (Spring 2022)

FO R M A L M O D E L:  D E F I NI T IO NS

• Parameter As previously defined.

Has a value domain, e.g., is index built 0/1, query position in txn.

• Configuration c = vector [ parameter -> value ].

• Configuration space C = {all possible c}.

C_H : heavy parameters, C_L: light parameters,

C = C_H X C_L.

• Benchmark metric f : C -> real number, stochastic.

• UDO instance (f, C), find c* = argmax E[f(c)]
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FO R M A L M O D E L:  UD O  ->  M D Ps

Given a UDO instance (f, C),

where the goal is to find c* = argmax E[f(c)],

map (f, C) to multiple episodic Markov decision processes.

Episodic MDP (S, A, T, R, S_d, S_e), in this case,

(S state space, A actions, T : S*A->S deterministic transition,

R : S->real stochastic reward, 

S_d episode start states, S_e episode end states)
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FO R M A L M O D E L:  Heav y  Pa ra meter  M D P

Heavy Parameter MDP

• Each action changes one heavy parameter to a new value.

• Start state is default configuration.

• Reward is max over c_L, f(c_H o c_L) - f(c_default).

• End state is all states that are N actions away (they use N=4).
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FO R M A L M O D E L:  L i ght  Pa ra meter  M D P

Light Parameter MDP M_L[c_h] for each heavy parameter c_h

• Actions are value changes for light parameters.

• End states are a fixed number of light parameter changes.

• Reward is f(c_H o c_L) - f(c_default).
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UD O  OVE RVI E W

Iterate until the time limit is reached

• Note other stopping conditions could be used instead.
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E VA LUAT ING CO NF I G UR ATI ONS :  A P I

EVAL.Submit(config, deadline)

• Deadline = max additional future 
configs that can be buffered before this 
specific config must be evaluated.

EVAL.Receive(RL algorithm to use, f, light 
config space, current time)

• Get the next set of evaluated configs.
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E VA LUAT ING CO NF I G UR ATI ONS :  P I C K I NG

PickConf-Threshold

• If you have “too much” work to do, you 
must do everything now.

PickConf-Secretary

• Do everything that must be done.

• Then, secretary problem style, do 
whatever doesn’t require “too much” 
reconfiguration work.
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E VA LUAT ING CO NF I G UR ATI ONS :  O R D E R I NG

Ordering configurations is NP-HARD

• Hamiltonian graph.

PlanConf

• Greedy algorithm.

Integer linear programming

• Optimal solution.
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R E I NFO RC E M E NT  LEA R NI NG

Three main subroutines: RL.SELECT, RL.UPDATE, RL.OPTIMIZE.
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RL.SELECT RL.UPDATE RL.OPTIMIZE

Pick the next action 
based on some statistics.

Update the statistics 
used by RL.SELECT.

Invoke the other two 
repeatedly for 
optimization. 

See paper for details. Update num visits to 
state-action pairs, 
present state, sample 
mean and variance of 
accumulated rewards.
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T HEO RY

• Minimizes expected regret.

• See paper for details.

• Extended proofs in [AAAI22] Procrastinated Tree Search.
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E X P E R I M E N TS :  S E T UP

Hardware

• Server, 2x Intel Xeon Gold 5218, 2.3 GHz, 32 physical cores.

• 384 GB RAM.

• 1 TB HDD.

DBMSs

• MySQL 5.7.29.

• PostgreSQL 10.15.
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E X P E R I M E N TS :  S E T UP

UDO

• Delay = 10 for heavy MDP.

• b = 3 in UCB-V (RL.SELECT picking the next action).

• Per episode,
• Up to 8 actions for TPC-H.
• Up to 13 actions for TPC-C (four heavy parameter changes).
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E X PE R I M E NTS :  WO R K LOA DS

Workloads

• TPC-C (SF 10, 32 terminals), maximize throughput.
• Reload snapshot every 10 iterations of main loop.
• Standard mix for 5 seconds.
• Parameters: 71 index, 19 reorder, 10 MySQL / 15 PostgreSQL knobs.

• TPC-H (SF 1), minimize latency.
• Parameters: 99 index, 10 MySQL / 15 PostgreSQL knobs.
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E X PE R I M E NTS :  I M PLE M E NTATIO N

UDO

• Python3 + OpenAI gym

• Gurobi for cost-based planning

Baselines (targeted at no prior training data scenario)

• For RL comparisons, against Keras-RL’s SARSA, DDPG.

• Some combination of MySQL-Tuner, PGTuner, Gaussian 
Process Regression, DDPG++, Quro, Dexter, EverSQL.

• When combining, optimize transaction code, then 
parameters, then index selection.
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UD O  vs  BA S E L I NES
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UD O  vs  BA S E L I NES
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UDO  is always the best

Followed by DDPG++ with Dexter
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UD O  vs  BA S E L I NES
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UD O  vs  BA S E L I NES
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UDO can reduce reconfiguration 
time by a factor of 3
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UD O  VA R I ANTS
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UD O  VA R I ANTS
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No delay = slower convergence.
10 was the sweet spot here.
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UD O  VA R I ANTS
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No delay = slower convergence.
10 was the sweet spot here.

The higher the delay, the quicker 
secretary was relative to batch 

(earlier called threshold).
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UD O  VA R I ANTS

34

No delay = slower convergence.
10 was the sweet spot here.

The higher the delay, the quicker 
secretary was relative to batch 

(earlier called threshold).

As you’d expect, ILP produces 
better solutions but costs 

exponential optimization time.
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UD O  VA R I ANTS
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No delay = slower convergence.
10 was the sweet spot here.

The higher the delay, the quicker 
secretary was relative to batch 

(earlier called threshold).

As you’d expect, ILP produces 
better solutions but costs 

exponential optimization time.

Justifies why we should separate 
out the heavy/light MDPs.
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S C E NA R I O  VA R I A NTS
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S C E NA R I O  VA R I A NTS
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Higher scalefactor, similar trends.
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S C E NA R I O  VA R I A NTS
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Higher scalefactor, similar trends. Multi-objective optimization.

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022


15-799 Special Topics (Spring 2022)

S C E NA R I O  VA R I A NTS

39

https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022


15-799 Special Topics (Spring 2022)

S C E NA R I O  VA R I A NTS
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Restricted to just indexes, still good.
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S C E NA R I O  VA R I A NTS
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Restricted to just indexes, still good.
Workload 

shift is 
difficult.
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S C E NA R I O  VA R I A NTS

42

Restricted to just indexes, still good.
Pingpong

between even 
/ odd TPC-H.

Workload 
shift is 

difficult.
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PA RT ING T HO UG HTS

Parameters are not equal cost.

• Batch light parameters, multiple MDPs.

• delayed-HOO to account for delayed rewards.

Thoughts and commentary.

• Good use of both DBMS and RL domain 
knowledge; fig 10 cautionary of xkcd1838.

• Universal, counterexamples?

• Where do cost models still play a role? Other 
parts of the quality/overhead regime?
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