Carnegie Mellon University

\mathbf{O} Ð tu J

Special Topics: Self-Driving Database Management Systems

Autonomous Systems I

Wan Shen Lim // 15-799 // Spring 2022

LAST CLASS

• High-level NoisePage Pilot architecture.

TODAY'S AGENDA

- UDO: Universal Database Optimization Using Reinforcement Learning. Junxiong Wang, Immanuel Trummer, Debabrota Basu. VLDB 2022.
- Commentary: I think of this as an intelligent configuration batching paper. Doesn't rely on models. Splits parameters into cheap / expensive to change. Introduces new RL algorithm with proofs.

MOTIVATION

Cost models

- Require training data.
- Error-prone estimates.

Rely on sample runs instead

• Regime: high-quality, highoverhead optimization.

luality	high	UDO	the dream	
Tuning Quality	low	<bleep></bleep>	cost models	
high C		high Over	low head	

MOTIVATION

Primary use cases

- Tuning when a configuration can be reused over an extended period.
- Analysis tool for other tuning approaches.

Generalizes to many tuning problems

• e.g., transaction query order, index selection, knob tuning.

Learning from sample runs

- Classic use case for reinforcement learning.
- Actions The tuning actions we've seen in class.
- **Reward** The improvement in target metrics.

Learning from sample runs

Algorithm

for config in search space try next action evaluate performance

Insert RL here

Learning from sample runs

Algorithm

for config in search space try next action evaluate performance

- What's the problem?
- Trying actions can be expensive!
 - High cost per iteration, slow convergence.
 - Key insight: yet not all actions are equally expensive.

TERMINOLOGY

Each tuning choice. Parameter Explicitly: a knob, a create index, etc. Configuration An assignment from parameters to values. Heavy parameter A parameter which is expensive to change. • Currently, anything involving physical data structures or database restarts. Light parameter A parameter which is cheap to change. Anything which isn't heavy.

UDO: KEY IDEAS

Give heavy parameters special treatment

- Use RL algorithm that supports delayed rewards.
- e.g., create an expensive index once, batch evaluate similar configurations with that expensive index.
- For each heavy parameter, the optimization of light parameters is a separate Markov decision process.

Light parameters, business as usual

• Use standard no-delay RL.

15-799 Special Topics (Spring 2022)

UDO: SUPPORTING CAST

Planning component

- Each configuration selected by RL is forwarded here.
- Decides when and in what order to evaluate configs.

New RL algorithms that accept delayed feedback

• Variant of Monte Carlo Tree Search, delayed-HOO.

MCTS, delayed-HOO

Monte-Carlo Tree Search

- Recent publicity: AlphaGo, Total War, Tesla Autopilot.
- Game = tree, nodes are states, edges are actions.
 - Selection From root, select children until you reach a leaf.
 - Expansion Expand the leaf (if non-terminal) with children.
 - Simulation Rollout/playout until the game is won/lost.
 - Backprop Update weights.

Delayed-Hierarchical Optimistic Optimization

- (same authors) [AAAI22] Procrastinated Tree Search.
- Proofs, details, regret bounds, etc. are there.

SECMU.DB 15-799 Special Topics (Spring 2022)

FORMAL MODEL: DEFINITIONS

- Parameter As previously defined.
 Has a value domain, e.g., is index built 0/1, query position in txn.
- **Configuration** c = vector [parameter -> value].
- **Configuration space** C = {all possible c}.

C_H : heavy parameters, C_L: light parameters,

- $C = C_H \times C_L.$
- Benchmark metric
- UDO instance

f : C -> real number, stochastic.
(f, C), find c* = argmax E[f(c)]

FORMAL MODEL: UDO -> MDPs

```
Given a UDO instance (f, C),
where the goal is to find c* = argmax E[f(c)],
map (f, C) to multiple episodic Markov decision processes.
```

Episodic MDP (S, A, T, R, S_d, S_e), in this case,
(S state space, A actions, T : S*A->S deterministic transition,
R : S->real stochastic reward,
S d episode start states, S e episode end states)

EFCMU·DB 15-799 Special Topics (Spring 2

FORMAL MODEL: Heavy Parameter MDP

Heavy Parameter MDP

- Each action changes one heavy parameter to a new value.
- Start state is default configuration.
- Reward is max over c_L, f(c_H o c_L) f(c_default).
- End state is all states that are N actions away (they use N=4).

FORMAL MODEL: Light Parameter MDP

Light Parameter MDP M_L[c_h] for each heavy parameter c_h

- Actions are value changes for light parameters.
- End states are a fixed number of light parameter changes.
- Reward is f(c_H o c_L) f(c_default).

UDO OVERVIEW

Iterate until the time limit is reached

• Note other stopping conditions could be used instead.

Algorithm 1 UDO main function. 1: Input: Benchmark metric f, configuration space C, RL algorithms Alg_H and Alg_I for heavy and light parameter optimization 2: Output: a suggested configuration for best performance 3: function UDO(f, C, Alg_H, Alg_I) // Divide into heavy (CH) and light (CL) parameters 4: $(C_H, C_L) \leftarrow SSA.SplitParameters(C)$ 5: // Until optimization time runs out 6: for $t \leftarrow 1, \dots, Alg_H$. Time do 7: // Select next heavy parameter configuration 8: $c_{H,t} \leftarrow \text{RL.Select}(\text{Alg}_H, C_H, c_{H,t-1})$ 9: // Submit configuration for evaluation 10: EVAL.SUBMIT($c_{H,t}$, $t + Alg_H.maxDelay$) 11: // Receive newly evaluated light configurations 12: $E \leftarrow \text{EVAL.Receive}(\text{Alg}_I, f, C_I, t)$ 13: // Update statistics for heavy parameters 14: RL.UPDATE(Alg_H, E) 15: end for 16: return best obtained configuration 17: 18: end function

Best Configuration

Figure 2: Overview of UDO system (rectangles represent processing steps, arrows represent data flow).

SECMUDE

EVALUATING CONFIGURATIONS: API

EVAL.Submit(config, deadline)

 Deadline = max additional future configs that can be buffered before this specific config must be evaluated.

EVAL.Receive(RL algorithm to use, f, light config space, current time)

• Get the next set of evaluated configs.

	// Global variable representing evaluation requests R ← ∅
4: 1 5: 1 6;	Input: heavy configuration c_{H} to evaluate and time t Effect: adds new evaluation request procedure EVAL_SUMMIT (c_{H}, t) $R \leftarrow R \cup \{(c_{H}, t)\}$ end procedure
91.	Input: RL algorithm Alg_I , benchmark metric f , time t , and space C_I Output: evaluated configurations with reward values
10: 1	function EVAL.RECEIVE(Alg_L, f, C_L, t)
11:	// Choose configurations from R to evaluate now
\$2:	$N \leftarrow \operatorname{PickConf}(R, t)$
13:	// Remove from pending requests
14:	$R \leftarrow R \setminus N$
15:	// Prepare evaluation plan
16:	$P \leftarrow PLANCONF(N)$
17:	// Collect evaluation results by executing plan
18:	E == 0
197	for $s \in P$.steps do
20:	// Prepare evaluation of next configurations
21:	CHANGECONFIG(s.hconf)
22:	// Find (near-)optimal light parameter settings
23:	$c_L \leftarrow RL.Optimize(Alg_L, s.hconf, C_L, f)$
24:	// Take performance measurements on benchmark
25:	$b \leftarrow Evaluate(f, s.hconf, c_L)$
26:	// Add performance result to set
27:	$E \leftarrow E \cup \{(c_L, s.hconf, b)\}$
28:	end for
29;	// Return evaluation results
30	return E
31.0	end function

EVALUATING CONFIGURATIONS: PICKING

PickConf-Threshold

• If you have "too much" work to do, you must do everything now.

PickConf-Secretary

- Do everything that must be done.
- Then, secretary problem style, do whatever doesn't require "too much" reconfiguration work.

1	Input: Evaluation requests R, current timestamp t
2	Output: Set of configurations to evaluate
3	function PECKCONF-THRESHOLD(R, t)
4	// Was size threshold reached?
5	if $ R \ge \rho$ then
b.	// Return all requests
7	return R
*	else
9	return 0
10	end if
11	end function
12	// Initialize maximal cost savings for each request
	S = 0
14	Input: Evaluation requests R, current timestamp t
15	Output: Set of configurations to evaluate
In:	function PICKCONF-SECRETARY(R, I)
17.	// Add requests whose deadline is reached
18	$E \leftarrow \{(c_H, t_D) \in R t_D \ge t\}$
19	// Remove requests from pending set
20	그는 이 방법에 대한 문화를 알려도 수 있는 것이 같아.
21:	// Iterate over requests
22	for $r = \langle c_{H}, t_{D} \rangle \in \mathbb{R}$ do
23	// Calculate re-configuration cost savings
24	$s \leftarrow CostSavings(r, E)$
25	// Retrieve maximal savings so far
36	
zħ.	// Should we evaluate?
28	if $t - (t_D - \delta) \ge \delta/e \wedge s > m$ then
29	$E \leftarrow E \cup \{r\}$
10	end if
11.	// Update maximally possible savings
32	$S(r) \leftarrow \max(m, s)$
33	end for
34	return E
	and function

EVALUATING CONFIGURATIONS: ORDERING

Ordering configurations is NP-HARD

• Hamiltonian graph.

PlanConf

• Greedy algorithm.

Integer linear programming

• Optimal solution.

1:	Input: Evaluation requests R		
2:	Output: Requests in suggested evaluation order		
3;	function PlanConf-Greedy(R)		
4:	// Initialize list of ordered requests		
5:	$O \leftarrow []$		
6:	// Iterate over all requests		
7:	for $r \in R$ do		
8:	// Find optimal insertion point		
9;	$i \leftarrow \arg\min_{i \in 0, \dots, O } C_R(O[i-1], O[i]) + C_R(O[i], O[i+1])$		
10:	// Insert current request there		
11:	O.insert(i, r)		
12:	end for		
13:	return O		
14:	end function		

Three main subroutines: RL.SELECT, RL.UPDATE, RL.OPTIMIZE.

RL.SELECT	RL.UPDATE	RL.OPTIMIZE
Pick the next action based on some statistics.	Update the statistics used by RL.SELECT.	Invoke the other two repeatedly for optimization.
See paper for details. $c_{t+1} = \underset{c}{\operatorname{argmax}} \hat{\mu}_{c}(t) + \sqrt{2.4\hat{\sigma}_{c}^{2}(t)} \frac{\log(v_{c_{t}})}{v_{c}} + \frac{3b\log(v_{c_{t}})}{v_{c}}$	Update num visits to state-action pairs, present state, sample mean and variance of accumulated rewards.	Algorithm 5 RL: Monte Carlo Tree Search optimization. 1 Input: Algorithm Alg. configuration space C, state v_0 , benchmark B 2 Output: Final parameter configuration 3: function RL.Orrowsz(Alg. C, c_1) 4: Initialize Stat $\leftarrow 0$ 5: for $t = 0, \ldots, Alg.Time$ do 6: $\langle c_{t+1}, a_t \rangle \leftarrow \mathbb{RLSumm}(Alg. C, c_t)$ 7: Evaluate the new configuration $r_t \leftarrow \mathbb{BEVAUATE}(c_{t+1})$ 8: Update Stat $\leftarrow Stat \cup \{\langle c_t, a_t, c_{t+1}, r_t, t \rangle\}$ 9: RL.MPRATE(Alg.Stat) 10: end for 11: return Final parameter configuration c_T 12: end function

THEORY

- Minimizes expected regret.
- See paper for details.
- Extended proofs in [AAAI22] Procrastinated Tree Search.

THEOREM 6.1 (REGRET OF HOO (THEOREM 6, [9])). If the performance metric f is smooth around the optimal configuration (Assumption 2 in [9]) and the upper confidence bounds on performances of all the configurations at depth h create a partition shrinking at the rate $c\rho^{h}$ with $\rho \in (0, 1)$ (Assumption 1 in [9]), expected regret of HOO is

$$\mathbb{E}[\operatorname{Reg}_T] = O\left(T^{1-\frac{1}{d+1}}(\log T)^{\frac{1}{d+1}}\right)$$
(2)

for a horizon T > 1, and 4/c-near-optimality dimension⁴ d of f.

THEOREM 6.2 (REGRET OF DELAYED-HOO). Under the same assumptions as Thm. 6.1, the expected regret of delayed-HOO is

$$\mathbb{E}[\operatorname{Reg}_T] = O\left((1 + \tau)T^{1-\frac{1}{d+2}}(\log T)^{\frac{1}{d+2}}\right)$$
 (3)

for delay $\tau \ge 0$, horizon T, and 4/c-near-optimality dimension d of f.

THEOREM 6.3 (REGRET OF UDO). If we use the delayed-HOO as the delayed-MCTS algorithm with delays τ and 0, and time-horizons T_h and T_l for heavy and light parameters respectively, the expected regret of UDO is upper bounded by

$$\mathbb{E}[\operatorname{Reg}_{T}] = O\left((1+\tau)T_{h}^{1-\frac{1}{d+2}}(\operatorname{HOO}^{2}(T_{l})\log T_{h})^{\frac{1}{d+2}}\right), \quad (4)$$

under the assumptions of Thm. 6.1. Here, $HOO(T_l) \triangleq O\left(\left[\log T_l/T_l\right]^{\frac{1}{d+2}}\right)$

Deviation in expected performance of the configuration returned by UDO from the optimum is $O\left((1 + \tau) \left[HOO^2(T_l)HOO(T_h)\right]^{\frac{1}{d+2}}\right)$. Here, T_h and T_l are the number of steps allotted for the heavy and light parameters respectively. Deviation in expected performance of the configuration selected by UDO vanishes as $T_h, T_l \rightarrow \infty$.

EXPERIMENTS: SETUP

Hardware

- Server, 2x Intel Xeon Gold 5218, 2.3 GHz, 32 physical cores.
- 384 GB RAM.
- 1 TB HDD.

DBMSs

- MySQL 5.7.29.
- PostgreSQL 10.15.

ECMU·DB 15-799 Special Topics (Spring 2022)

EXPERIMENTS: SETUP

UDO

- Delay = 10 for heavy MDP.
- b = 3 in UCB-V (RL.SELECT picking the next action).
- Per episode,
 - Up to 8 actions for TPC-H.
 - Up to 13 actions for TPC-C (four heavy parameter changes).

EXPERIMENTS: WORKLOADS

Workloads

- TPC-C (SF 10, 32 terminals), maximize throughput.
 - Reload snapshot every 10 iterations of main loop.
 - Standard mix for 5 seconds.
 - Parameters: 71 index, 19 reorder, 10 MySQL / 15 PostgreSQL knobs.
- TPC-H (SF 1), minimize latency.
 - Parameters: 99 index, 10 MySQL / 15 PostgreSQL knobs.

EXPERIMENTS: IMPLEMENTATION

UDO

- Python3 + OpenAI gym
- Gurobi for cost-based planning
- Baselines (targeted at no prior training data scenario)
- For RL comparisons, against Keras-RL's SARSA, DDPG.
- Some combination of MySQL-Tuner, PGTuner, Gaussian Process Regression, DDPG++, Quro, Dexter, EverSQL.
- When combining, optimize transaction code, then parameters, then index selection.

SECMU-DB 15-799 Special Topics (Spring 2022

Figure 3: Comparing UDO to baselines on TPC-C.

(a) TPC-H performance as a function (b) TPC-H performance as a function of optimization time in MySQL of optimization time in Postgres.

Figure 4: Comparing UDO to baselines on TPC-H.

SECMU-DB 15-799 Special Topics (Spring 2022)

Figure 5: Time spent per episode by different RL algorithms when optimizing MySQL for TPC-C.

Figure 6: Time spent per episode by different RL algorithms when optimizing Postgres for TPC-H.

Figure 5: Time spent per episode by different RL algorithms when optimizing MySQL for TPC-C.

Figure 6: Time spent per episode by different RL algorithms when optimizing Postgres for TPC-H.

UDO can reduce reconfiguration time by a factor of 3

Figure 8: Impact of evaluation time selection on UDO performance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

SECMU-DB

(a) Time spent in plan optimization.

(b) Time spent in reconfiguration.

Figure 9: Impact of reconfiguration planning algorithm on UDO performance (MySQL on TPC-C).

Figure 10: Impact of search space design and search strategy on UDO performance (MySQL on TPC-C).

Figure 9: Impact of reconfiguration planning algorithm on UDO performance (MySQL on TPC-C).

Figure 8: Impact of evaluation time selection on UDO performance (MySQL on TPC-C).

10

Delay (Episodes)

15

15-799 Special Topics (Spring 2022)

SECMU-DB

12,000

5

Figure 10: Impact of search space design and search strategy on UDO performance (MySOL on TPC-C).

15,000

10,000

5,000

Planning time (s) RC time (s) 14,000 10 15 5 10 15 5 Delay (Episodes) Delay (Episodes) (a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Greedy
 Integer Linear Programming

15,000

Figure 9: Impact of reconfiguration planning algorithm on UDO performance (MySOL on TPC-C).

Figure 8: Impact of evaluation time selection on UDO performance (MySQL on TPC-C).

Figure 10: Impact of search space design and search strategy on UDO performance (MySOL on TPC-C).

15-799 Special Topics (Spring 2022)

SECMU-DB

Delay (Episodes)

Greedy
 Integer Linear Programming

As you'd expect, ILP produces better solutions but costs exponential optimization time.

Delay (Episodes)

Delay (Episodes)

(a) Time spent in plan optimization.

(b) Time spent in reconfiguration.

Figure 9: Impact of reconfiguration planning algorithm on UDO performance (MySQL on TPC-C).

Figure 8: Impact of evaluation time selection on UDO performance (MySQL on TPC-C). Figure 10: Impact of search space design and search strategy on UDO performance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

SECMU.DB

Figure 8: Impact of evaluation time selection on UDO performance (MySQL on TPC-C). Figure 10: Impact of search space design and search strategy on UDO performance (MySQL on TPC-C).

15-799 Special Topics (Spring 2022)

SECMULDR

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

of optimization time in MySQL.

 TPC-H performance as a function of optimization time in Postgres.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

Higher scalefactor, similar trends.

Figure 12: Optimizing weighted sum of run time and disk space for TPC-H SF 10 on Postgres.

SECMU-DB 15-799 Special Topics (Spring 2022)

of optimization time in MySQL. opti

TPC-H performance as a function of optimization time in Postgres.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

Higher scalefactor, similar trends.

Figure 12: Optimizing weighted sum of run time and disk space for TPC-H SF 10 on Postgres.

Multi-objective optimization.

SPCMU·DB 15-799 Special Topics (Spring 2022)

(a) TPC-H performance as a function of (b) TPC-H performance as a function optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recommendation (TPC-H SF 10).

(a) Varying number of TPC-H quer templates used for training. (b) Performance for dynamic workload switching every full hour.

Figure 14: Performance for non-representative training sets and changing workloads (TPC-H SF 10, Postgres).

(a) TPC-H performance as a function of (b) TPC-H performance as a function optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recommendation (TPC-H SF 10).

Restricted to just indexes, still good.

(a) Varying number of TPC-H query templates used for training.

(b) Performance for dynamic workload switching every full hour.

Figure 14: Performance for non-representative training sets and changing workloads (TPC-H SF 10, Postgres).

SECMU-DB 15-799 Special Topics (Spring 2022)

(a) TPC-H performance as a function of (b) TPC-H performance as a function optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recommendation (TPC-H SF 10).

Restricted to just indexes, still good.

SECMU-DB 15-799 Special Topics (Spring 2022)

(a) Varying number of TPC-H query templates used for training.

(b) Performance for dynamic workload switching every full hour.

Figure 14: Performance for non-representative training sets and changing workloads (TPC-H SF 10, Postgres).

Workload shift is difficult.

(a) TPC-H performance as a function of (b) TPC-H performance as a function optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recommendation (TPC-H SF 10).

Restricted to just indexes, still good.

SECMU-DB 15-799 Special Topics (Spring 2022)

(a) Varying number of TPC-H query templates used for training.

(b) Performance for dynamic workload switching every full hour.

Figure 14: Performance for non-representative training sets and changing workloads (TPC-H SF 10, Postgres).

Workload shift is difficult. Pingpong between even / odd TPC-H.

PARTING THOUGHTS

Parameters are not equal cost.

- Batch light parameters, multiple MDPs.
- delayed-HOO to account for delayed rewards.
 Thoughts and commentary.
- Good use of both DBMS and RL domain knowledge; fig 10 cautionary of xkcd1838.
- Universal, counterexamples?
- Where do cost models still play a role? Other parts of the quality/overhead regime?