Special Topics:
Self-Driving Database Management Systems
Partitioning

@Karthik R // 15-799 // Spring 2022
LAST CLASS

• Design Choices in Knob Tuning
 • Knob Selection
 • Configuration Optimization
 • Knowledge Transfer

• Survey of Algorithms
TODAY’S AGENDA

• Refresher on Partitioning
• What is Microsoft up to?
• The Partitioning Problem
• Approach
• Results
• Parting Thoughts
TODAY’S AGENDA

• Refresher on Partitioning
 • WHY, WHAT and HOW of Partitioning
 • The Big Picture
• What is Microsoft up to?
• The Partitioning Problem
• Approach
• Results
• Parting Thoughts
WHAT IS PARTITIONING?

• Partitioning splits database across multiple resources
NEED FOR PARTITIONING

When the server crashes and you realize back-up was on that same server

Source: Reddit
NEED FOR PARTITIONING

Improves:

• **Scalability**
 → “Scale out” rather than “Scale up”

• **Performance**
 → Queries run over subset of data

• **Availability**
 → Removes single point of failure
 → Related: Concept of “replicas” or redundancy
TYPES OF PARTITIONING

• By design
 • Horizontal, Vertical, …

• By method
 • Hash, Range, List, …

• By Subject
 • Tables, (n-Cl) Indexes, Materialized Views, Partitions
THE BIG PICTURE

• Physical Database Design involves → Indexes, Materialized Views and **Partitions**

• Performance vs Manageability (for humans)

• Automated partition selection is NP-hard → Combinatorial explosion → Superficially similar to index selection
• Refresher on Partitioning
• What is Microsoft up to?
 • Timeline
 • Database Tuning Advisor
• The Partitioning Problem
• Approach
• Results
• Parting Thoughts
MICROSOFT’S TIMELINE

1997-98
• Cost-driver Index Selection
• Index Analysis

2000
• Selection of Materialized Views

2004
• Release of DB Tuning Advisor (DTA) for MSSQL 2005
• Integration of horizontal and vertical partitioning
DATABASE TUNING ADVISOR

Considerations

→ Co-location of Join columns (size and locality)
→ Mutual exclusivity (unlike indexes)
→ Specificity vs Generality
→ Storage and Update costs
→ Alignment
DATABASE TUNING ADVISOR

WORKLOAD AND DATABASE

COLUMN-GROUP RESTRICTION

CANDIDATE SELECTION

MERGING

ENUMERATION

RECOMMENDATION

DATABASE SERVER

QUERY OPTIMIZER

INTEGRATING VERTICAL AND HORIZONTAL PARTITIONING INTO AUTOMATED PHYSICAL DATABASE DESIGN
SIGMOD 2004
DATABASE TUNING ADVISOR

• Column Group Restriction
 → Simulating vertical partitions is hard!
 → Heuristic based

• Candidate Selection
 → Greedy (m, k) algorithm

• Merging
 → Over the entire workload
 → Involves indexes, MVs and partitions

• Enumeration
TODAY’S AGENDA

- Refresher on Partitioning
- What is Microsoft up to?
- The Partitioning Problem
 - Approach
 - Results
 - Parting Thoughts
PARTITIONING FOR CLOUD DBs

“Learn the optimal partitioning for each cloud customer, for a given database schema, for a given workload”

Suitability of Reinforcement Learning
→ Combinatorial Optimization problem
→ Exploration vs Exploitation instead of Greedy
PARTITIONING FOR CLOUD DBs

- Problems with existing approaches
 → Cost estimates are coupled to hardware
 → Cost estimates themselves are inaccurate
TODAY’S AGENDA

• Refresher on Partitioning
• What is Microsoft up to?
• The Partitioning Problem
• Approach
• Results
• Parting Thoughts
RL FOR PARTITIONING

• State:
 → Given a table T_i with attributes $(a_{i1}, a_{i2}, \ldots, a_{in})$
 → One-hot encoding as $(r_i, a_{i1}, a_{i2}, \ldots, a_{in})$
 → “Edges” for co-partitioning
 → Workload state
 → All appended together
RL FOR PARTITIONING

• Workload state modeling:
 → Encoding JOIN predicates, WHERE clauses etc ….
 Does not account for arbitrary nesting.

 → Nested query featurization …. complex encoding, larger training data

 → Keep It Simple Stupid! Encode only frequency info.
 \[s(Q) = (f_1, f_2, \ldots, f_m) \]

 → Bucketize queries based on Selectivity. How?
RL FOR PARTITIONING

- Action:
 - Q-learning … small state space desirable
 - Partitioning OR Replication
 - Only considers **HASH Partitions**
 - Only considers horizontal partitioning with fixed no. of nodes
 - One-hot encoding of (repl, partition, (de)activation)
 - with at most one active
RL FOR PARTITIONING

(a) Database and Workload

\[\text{q}_1: \text{SELECT * FROM customer c, lineorder l WHERE l.lo_custkey=c.c_custkey; } \]
\[\text{q}_2: \text{SELECT * FROM part p, lineorder l WHERE l.lo_partkey=p.p_partkey; } \]

(b) State Representation

Foreign-Key Edges:
Edge \(e_1\) for \(l.lo_custkey \rightarrow c.c_custkey\): active
Edge \(e_2\) for \(l.lo_partkey \rightarrow c.p_partkey\): inactive
\[s(E) = (e_1, e_2) = (1, 0) \]

Table States:
\(l.lineorder\) partitioned by \(l.lo_custkey\)
\[s(lineorder) = (r_1, a_11, a_12, a_13) = (0, 0, 1, 0) \]
\(c.customer\) partitioned by \(c.c_custkey\)
\[s(customer) = (r_2, a_21) = (0, 1) \]
\(p.part\) replicated
\[s(part) = (r_3, a_31) = (1, 0) \]

Query Frequencies:
\(q_2\) occurs twice as frequently as \(q_1\)
\[s(Q) = (f_1, f_2) = (0.5, 1) \]

(c) Q-Network with Encoded State

Figure 2: State Representation of Simplified SSB Schema and Workload.
RL FOR PARTITIONING

• Cost:
 → “Network-centric” cost model for offline training
 → Runtime of queries for online training

• Reward:
 → Gain in performance for a workload
 → $r = -\sum_{j=1}^{m} f_j * c(P, q_j)$
 → Excludes cost of repartitioning for OLAP Workloads
OFFLINE TRAINING

• Enumeration join orderings
• Estimate optimal join strategy for each join using cost model.
• Sum of costs (network + compute) is the cost of a query
• Each iteration (‘episode’) comprises of $(t_{\text{MAX}} \geq |T|)$ actions
• Train Q-network with SGD and loss
ONLINE TRAINING

- Runs on a copy of the database, workloads
- Cost model = true runtime
- Enumeration-based training → v.v. expensive!
- Optimization 1: Sampling
 - Use of a scale factor (per query) to weigh the costs
 - Very small samples can lead to suboptimal partitions
 - What should the rate/threshold be?
ONLINE TRAINING

- Optimization 2: Query Runtime Caching
 - Maintain a cache of query runtimes per partition
 - Given two states \(s_a, s_b \), their partitions \(P_a, P_b \), a query \(q_i \)
 - We need to estimate costs, only if \(q_i \) queries \(t \in |P_b - P_a| \)

- Optimization 3: Lazy Repartitioning
 - Repartitioning takes time!
 - We partition only if \(q_i \) queries \(t \in |P_b - P_a| \)

- Optimization 4: Timeouts
 - If a query costs more in \(P_b \), it is not a good partition!
WORKLOAD CHANGES

• Committee of Experts:
 • Different queries favor different optimal partitions
 • Poison the freq. vector to extract these “reference partitions”
 • A query belongs to subspace of a reference partition if
 \[P_i = \arg \max_{P_i \in \{P_1, ..., P_n\}} \sum_{j=1}^{m} f_j S_j \times c_{\text{sample}}(P, q_j) \]
 • Train an agent for each subspace

• Incremental Training:
 • New query frequencies added to input state
 • Runtime Cache speeds things up
 • Might not need to train new reference partition
TODAY’S AGENDA

• Refresher on Partitioning
• What is Microsoft up to?
• The Partitioning Problem
• Approach
• Results
• Parting Thoughts
WORKLOADS AND SETUP

• Analytical Workloads:
 → Star Schema Benchmark
 → TPC-DS
 → TPC-CH

• Setup:
 → Postgres-XL (open source, disk-based)
 → System-X (commercial, memory-based)
 → 4-6 node clusters
 → 128GB RAM, 2*10-core Intel Xeon CPUs
BASELINE

• Compared to:
 • Heuristic A
 • Heuristic B
 • Minimum Optimizer

• Heuristic A: Most frequently joined dim. table
• Heuristic B: Largest table
• Minimum optimizer: Non ML opt. algorithm
OFFLINE TRAINING RESULTS

- For TPC-DS, DRL Agent suggests superior partitions
- For TPC-CH, DRL Agent optimizes for network costs, leading to the difference in runtimes

Figure 3: Offline RL vs. Baselines.
Online training has better results because of a difference in cost model.

Table 2: Training Time Reduction of Optimizations.

<table>
<thead>
<tr>
<th>Optimizations</th>
<th>Training Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>462.1h</td>
<td>-</td>
</tr>
<tr>
<td>+ Runtime Cache</td>
<td>1160.4h</td>
<td>4.0</td>
</tr>
<tr>
<td>+ Lazy Repartitioning</td>
<td>60h</td>
<td>19.3</td>
</tr>
<tr>
<td>+ Timeouts</td>
<td>33.4h</td>
<td>1.8</td>
</tr>
<tr>
<td>+ Offline Phase</td>
<td>13.3h</td>
<td>2.5</td>
</tr>
</tbody>
</table>
ADAPTIVITY TO CHANGE

• New data – Advisor performs fine for “non-significant” changes to data. Requires re-training otherwise.
• Changing Workload Mix – Committee of experts performs well.
• New queries – Requires incremental training; bootstrapped agent with low exploration.
OTHER ML APPROACHES: COMPARISON

• Compared with NEO, a learned query optimizer
• Exp 1: Static Workload
• Exp 2: Workload Adaptivity

(a) TPC-CH Schema
(b) Workload Adaptivity
Figure 7: RL vs. Neural Baselines.
ADAPTIVITY TO DEPLOYMENT

- Run on System X, to avoid disk access costs
- Compares trade-off between Compute (co-location) and Network (parallelism)

(a) Standard HW
(b) Slower Compute

Figure 8: Adaptivity to Deployment.
PARTING THOUGHTS

• Subset of the Partitioning Problem
 → Only Horizontal, Hash Partitions
 → Only evaluated on OLAP workloads

• Choice of Network Model

• Susceptible to Schema Changes?

• Accuracy as a Heuristic in Experiments

• Heterogenous Architecture/Hardware
NEXT CLASS

• Lin Ma’s paper on Workload Modeling