Special Topics:

Self-Driving Database Management Systems

Knob/Parameter Tuning IV

@Andy_Pavlo // 15-799 // Spring 2022

ADMINISTRIVIA

DB Speaker Mon Feb 21 @ 4:30pm ET (Zoom)

→ Venky Raghavan (Greenplum Orca)

Andy will release the remaining P1 workload this weekend.

LAST CLASS

Last three lectures have been about different optimization methods for DBMS knobs

- → OtterTune Bayesian Optimization
- → CDBTune DDPG
- → ResTune Meta-Learning + Bayesian Optimization

Beyond the core search algorithm, there are additional design choices that are tacked on to each approach...

KNOB TUNING DESIGN CHOICES

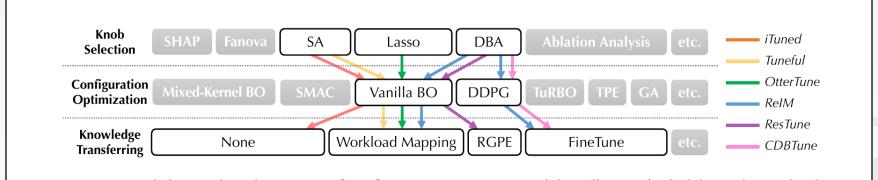


Figure S1: Detailed Intra-algorithm Designs of Configuration Tuning Systems (The Full Picture): Black boxes denote the algorithms adopted by existing database tuning systems (indicated by colored paths), and grey boxes denote the algorithms in the HPO field. SA denotes sensitivity analysis based on Gini score and GA denotes Genetic algorithm.

TODAY'S AGENDA

Taxonomy

Knob Selection

Optimization Algorithm

Knowledge Transfer

KNOB SELECTION

Automatically identify which knobs to tune.

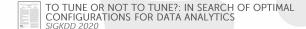
- → Varies per DBMS / version
- → Varies per workload / database

Increasing the number of knobs to optimize affects how long the optimization will take to converge.

KNOB SELECTION

Table 2: Importance Measurements in Knob Selection.

Measure	Category	Brief Description	
Lagga [70]	Variance	Based on coefficient of linear regression,	
Lasso [79]	based	effective for when existing irrelevant features.	
Gini Variance Based on the times a feature is used in		Based on the times a feature is used in tree splits,	
score [63]	based	successful in high-dimensional feature selection.	
fANOVA [35]	Variance	Decomposing the variance of target function,	
IANOVA [55]	based	commonly used in the HPO field.	
Ablation Tunability Comparing feature difference between		Comparing feature difference between configurations,	
analysis[12] based		straightforward and intuitive.	
SHAP [53]	Tunability	Decomposing the performance change additively,	
311/1 [33]	based	solid theoretical foundation derived from game theory.	


GINI INDEX

Measures the degree or probability of a variable being wrongly classified in decision tree when it is randomly chosen.

- → Input: Knob Values
- → Output: Target Objective

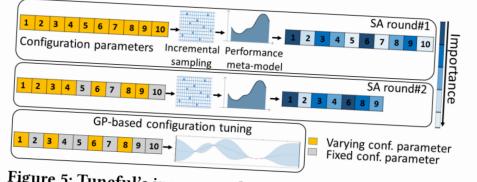
Knobs that have a greater impact on the objective will be higher up in a decision tree, therefore the algo should tune them first.

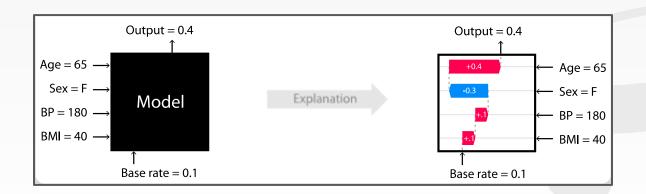
GINI INDEX

Measures the degree of being wrongly classifi randomly chosen.

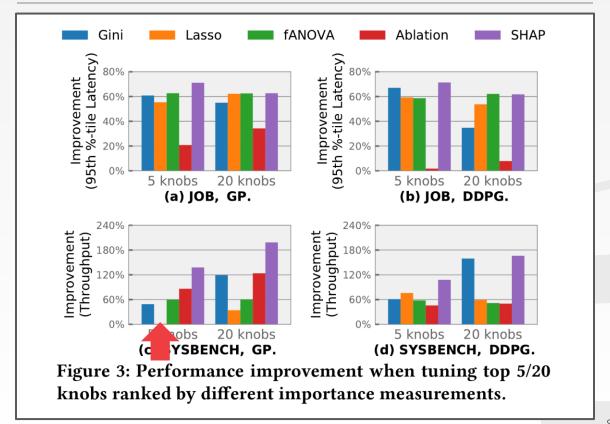
- → Input: Knob Values
- → Output: Target Object

Knobs that have a gre will be higher up in a ability of a variable



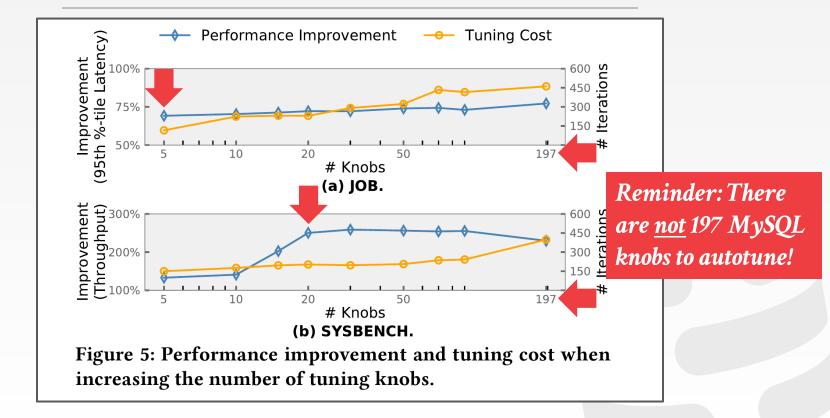

Figure 5: Tuneful's incremental algorithm for detecting the significant parameters and tuning them.

algo should tune them first.



SHAP

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.



KNOB SELECTION COMPARISON

KNOB SELECTION COMPARISON

MYSQL V5.7 KNOBS

Table S3: The	Top-10 impacting	knobs with high	tunability for	OLTP workloads

-	Knob	Type	Dynamic	Module	Description
	innodb_thread_concurrency	Integer	Yes	Concurrency	The maximum number of threads permitted inside of InnoDB.
	innodb_log_file_size	Integer	No	Logging	The size in bytes of each log file in a log group.
	max_allowed_packet	Integer	Yes	Replication	The upper limit on the size of any single message between the MySQL server and clients.
	innodb_io_capacity_max	Integer	Yes	IO	The maximum number of IOPS performed by InnoDB background tasks
	tmp_table_size	Integer	Yes	Memory	The maximum size of internal in-memory temporary tables.
	query_prealloc_size	Integer	Yes	Memory	The size in bytes of the persistent buffer used for statement parsing and execution.
	max_heap_table_size	Integer	Yes	Memory	The maximum size to which user-created memory tables are permitted to grow.
	innodb_doublewrite	Categorical	No	Memory	Whether the doublwrite buffer is enabled.
	transaction_alloc_block_size	Interger	Yes	Memory	The amount in bytes by which to increase a per-transaction memory pool which needs memory.
_	join_buffer_size	Interger	Yes	Memory	The minimum size of the buffer that is used for joins.

× DBMS can reject queries from application.

MYSQL V5.7 KNOBS

Knob	Type	Dynamic	Module	Description
innodb_thread_concurrency	Integer	Yes	Concurrency	The maximum number of threads permitted inside of InnoDB.
innodb_log_file_size	Integer	No	Logging	The size in bytes of each log file in a log group.
max_allowed_packet	Integer	Yes	Replication	The upper limit on the size of any single message between the MySQL server and clients.
innodb_io_capacity_max	Integer	Yes	IO	The maximum number of IOPS performed by InnoDB background tasks
tmp_table_size	Integer	Yes	Memory	The maximum size of internal in-memory temporary tables.
query_prealloc_size	Integer	Yes	Memory	The size in bytes of the persistent buffer used for statement parsing and execution.
max_heap_table_size	Integer	Yes	Memory	The maximum size to which user-created memory tables are permitted to grow.
innodb_doublewrite	Categorical	No	Memory	Whether the doublwrite buffer is enabled.
transaction_alloc_block_size	Interger	Yes	Memory	The amount in bytes by which to increase a per-transaction memory pool which needs memory
join_buffer_size	Interger	Yes	Memory	The minimum size of the buffer that is used for joins.

× DBMS can abort queries due to memory limitation.

MYSQL V5.7 KNOBS

Table S3: The Top-10 impacting

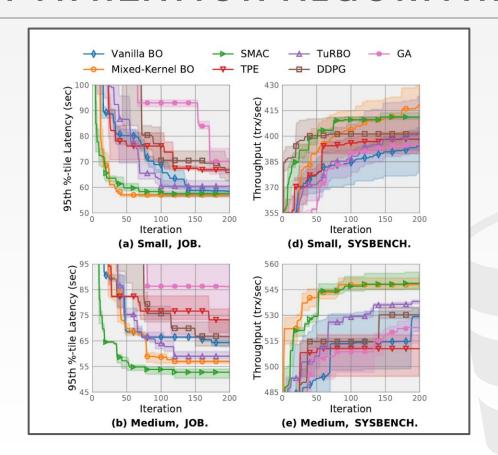
	Knob	Type	Dynamic	Module
innod	b_thread_concurrency	Integer	Yes	Concurrency
in	nodb_log_file_size	Integer	No	Logging
ma	ax_allowed_packet	Integer	Yes	Replication
inno	db_io_capacity_max	Integer	Yes	IO
	tmp_table_size	Integer	Yes	Memory
qı	iery_prealloc_size	Integer	Yes	Memory
ma	x_heap_table_size	Integer	Yes	Memory
in	nodb_doublewrite	Categorical	No	Memory
ransa	ction_alloc_block_size	Interger	Yes	Memory
	join_buffer_size	Interger	Yes	Memory
	join_builer_size	ınıerger	ies	Memory

innodb_doublewrite

Command-Line Format	innodb-doublewrite[={OFF ON}]
System Variable	innodb_doublewrite
Scope	Global
Dynamic	No
SET_VAR Hint Applies	No
Гуре	Boolean
Default Value	ON

The innodb_doublewrite variable controls whether the doublwrite buffer is enabled. It is enabled by default in most cases. To disable the doublewrite buffer, set innodb_doublewrite to 0 or start the server with --skip-innodb-doublewrite. You might consider disabling the doublewrite buffer if you are more concerned with poster.

puffer if you are more concerned with performance than data integrity, as may be the case when performing benchmarks, for example.


× Improves performance but can potentially cause lost data.

OPTIMIZATION ALGORITHM

Table 3: Algorithms for Optimizers. ✓ means the optimizer has specific design for the case in the column and – means the optimizer does not have such design.

Algorithm	High-dimensionality	Heterogeneity
Vanilla BO	_	_
Mixed-Kernel BO [41]	_	✓
SMAC [34]	✓	✓
TPE [9]	_	✓
TurBO [22]	✓	_
DDPG [52]	✓	_
GA [46]	_	1

OPTIMIZATION ALGORITHM

KNOWLEDGE TRANSFER

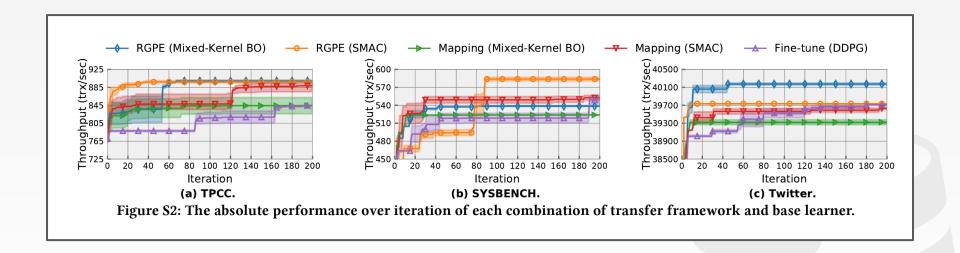
Reduce the optimization time by reusing data collected from previous tuning sessions.

Need to account for both **workload** and **hardware** variations in training data.

KNOWLEDGE TRANSFER

Workload Mapping:

→ Match target workload to previous one using Euclidean distance of DBMS metrics.


Ranking-Weight GP Ensemble:

→ Maintain multiple GP models that are weighted by their similarity to target workload.

Fine-Tune:

→ Start with a global model and then adjust its weights based on the target workload.

KNOWLEDGE TRANSFER

OPEN QUESTIONS

Under what conditions should the DBMS reoptimize its current knobs configuration?

How to optimize knobs when it is not possible to create a snapshot / workload trace?

How to automatically determine which knobs could cause correctness problems?

OPEN QUESTIONS

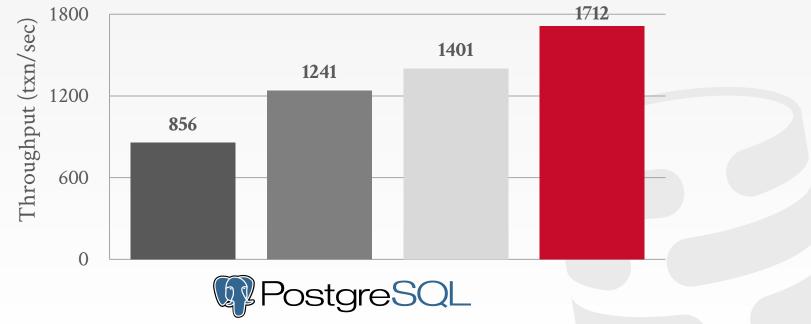
Can the tuning algorithm reuse training data across different versions of the DBMS?

- → Major Versions: MySQL v5.7 → MySQL v8.0
- → Minor Versions: PostgreSQL v10.1 → PostgreSQL v10.2

What about tuning other knobs that matter for the DBMS?

OS KERNEL TUNING

We extended OtterTune to support tuning OS kernel parameters together with DBMS.


Linux kernel parameters:

- \rightarrow vm.swappiness
- → kernel.sched_migration_cost_ns
- → kernel.sched_autogroup_enabled
- → vm.dirty_background_bytes
- \rightarrow vm.dirty_bytes

OS KERNEL TUNING: TPC-C

PARTING THOUGHTS

Andy thinks that ResTune is probably the best approach for knob tuning right now.

The approaches that we have discussed tune knobs without considering other design issues.

They also assume that tuning is a one-time activity. There may be better approaches if tuning occurs over weeks / months / years.

NEXT CLASS

One last paper on automatically selecting partitioning schemes for tables.

We will then switch to the auxiliary problems for a holistic autonomous DBMS.

- → Workload Forecasting
- → Behavior Modeling

