Carnegie Mellon University

Special Topics: Self-Driving Database Management Systems

Knob/Parameter Tuning III

@Ying_Jiang // 15-799 // Spring 2022

 \mathbf{O}

6

LAST CLASS

CDBTune from Tencent & HUST

End-to-end RL (offline training + online tuning)

63 input metrics, 266 (65) knobs of MySQL v5.6

TODAY'S AGENDA

Overview Solving Constrained Optimization Boosting Tuning Process with Meta-Learning Evaluation Parting Thoughts

TODAY'S AGENDA

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

TERMINOLOGY

SLA

 \rightarrow Service Level Agreement

TCO

 \rightarrow Total Cost of Ownership

Feasible configuration

 \rightarrow Configuration that satisfies the performance constraints

Meta-learning

- \rightarrow learning from meta-data to accomplish new tasks
- → Meta-data: the data describing previous learning tasks and learned models, including measurable properties of the task, also known as meta-features

MOTIVATION

Resource utilization is a necessity for cloud providers \rightarrow TCO

- \rightarrow Availability
- \rightarrow Request rates seldom reaches processing capacity

Figure 1: TPS and CPU Usage for Real Workload with 2 Knobs

Also important for users when choosing instances \rightarrow Cost!

FCMU·DB 15-799 Special Topics (Spring 2022) RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

CHALLENGES

Reduce resource utilization while guaranteeing SLA

Satisfy constraints imposed by real applications

- \rightarrow Tuning time is limited
- \rightarrow Replaying, which is done repeatedly, dominates the tuning time
- \rightarrow Real workloads even slower (> 5 mins/iteration)

Represent knowledge effectively from historical data \rightarrow To accelerate the tuning process, ResTune utilizes data from tuning other tasks and transfer the experience

RESOURCE ORIENTED TUNING BOOSTED

FOR CLOUD DATABASES

RELATED WORK

Mainly focus on optimizing performance

- \rightarrow Search-based: cannot utilize past experience for new requests
- \rightarrow BO based: adaptability (rely on a fixed hardware)
- \rightarrow RL based: training overload is high
 - QTune takes thousands of iterations to train SYSBENCH

ARCHITECTURE OVERVIEW

Figure 2: Overall Architecture of ResTune

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

APPROACH

- 1. Solving constrained optimization
- \rightarrow To find configurations to minimize the resource usage without violating the throughput and latency restriction
- \rightarrow Formulated as a constrained Bayesian Optimization problem
- 2. Boosting tuning process with meta-learning
- \rightarrow To accelerate and improve knob tuning
- \rightarrow Transfer experience from heterogeneous tasks with meta-learning
 - Relative rankings, static /dynamic weights

IE: RESOURCE ORIENTED TUNING BOOSTED BY

IG FOR CLOUD DATABASES

TODAY'S AGENDA

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-

LEARNING FOR CLOUD DATABASES

SIGMOD 2021

Overview

Solving Constrained Optimization Boosting Tuning Process with Meta-Learning Evaluation Parting Thoughts

PROBLEM STATEMENT

The resource-oriented tuning problem is formalized as an optimization problem with SLA constraints.

→ constraints are determined by the metrics under default configuration

$$\begin{aligned} \arg\min_{\theta} f_{res}(\theta), \\ \text{s.t.} \quad f_{tps}(\theta) \geq \lambda_{tps} \\ f_{lat}(\theta) \leq \lambda_{lat} \end{aligned}$$

SOLVING CONSTRAINED OPTIMIZATION

Current Expected Improvement function: $\alpha_{EI}(\theta) = \mathbb{E} [max(0, f_{res}(\theta_{best}) - f_{res}(\theta)]$

New acquisition function to guide searching with feasible information:

 \rightarrow Maintain three independent Gaussian Processing models for f_{res} , f_{tps} , f_{lat}

$$\begin{aligned} \alpha_{CEI}(\theta) &= \mathbb{E}\left[\tilde{I}_C(\theta) | \theta\right] = \mathbb{E}\left[\tilde{\Delta}(\theta)\tilde{I}(\theta) | \theta\right] = \mathbb{E}\left[\tilde{\Delta}(\theta) | \theta\right] \mathbb{E}\left[\tilde{I}(\theta) | \theta\right] \\ &= Pr[\tilde{f}_{tps}(\theta) \ge \lambda_{tps}] \cdot Pr[\tilde{f}_{lat}(\theta) \le \lambda_{lat}] \cdot \alpha_{EI}(\theta) \end{aligned}$$

TODAY'S AGENDA

Overview Solving Constrained Optimization Boosting Tuning Process with Meta-Learning Evaluation Parting Thoughts

BOOSTING: MOTIVATION

Intuitively, the same workloads running on different hardware share information for tuning knobs.

Even for different tasks, the relationship between hidden features can lead to knowledge sharing.

Cloud providers can collect abundant tuning data from numerous tasks and further accelerate the tuning process of new tasks.

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

BOOSTING TUNING: META-LEARNING

Human learns across tasks.

Why? Require less trial-and-error, less data

KNOWLEDGE EXTRACTION

Knowledge is extracted from historical tuning tasks by ensemble

- \rightarrow Weighted average of predictions (relative values)
- \rightarrow Using the target base-learner's uncertainty

SECMU-DB 15-799 Special Topics (Spring 2022)

HOW TO DETERMINE THE WEIGHTS?

- Static
- Good initialization

- Dynamic
- Avoid "over-fitting"

LEARNING FROM META-FEATURE

Meta-features: measurable properties of tasks ResTune learns meta-features by workload characterization, averaging predicted resource levels over all queries.

A Workload characterization pipeline

LEARNING FROM META-FEATURE

The static weight is calculated by the distance between metafeatures.

ECMU·DB 15-799 Special Topics (Spring 2022)

LEARNING FROM MODEL PREDICTIONS

A base-learner's similarity is defined as how accurate it can predict the performance of the target task.

Challenge: The performances can differ in scale significantly among various hardware environments in the cloud.

Instance A

15-799 Special Topics (Spring 2022)

Instance B

Source: Xinyi Zhang

41

LEARNING FROM MODEL PREDICTIONS

Observation: the actual values of the predictions do not matter, since we only need to identify the location of the optimum.

ResTune weight base learners by calculating the ranking loss against target observations

EXAMPLE DE 15-799 Special Topics (Spring 2022)

ADAPTIVE WEIGHT SCHEMA

- Static weight assignment:
 - Meta-features gives a coarse-grained abstraction about task properties
 - Suggest knobs that are promising according to similar historical tasks

- Dynamic weight assignment:
 - Use rankings to measure the similarity of tasks
 - Avoid over-fitting by shrinking historical base learners' weight

ARCHITECTURE OVERVIEW

Figure 2: Overall Architecture of ResTune

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

TODAY'S AGENDA

Overview Solving Constrained Optimization Boosting Tuning Process with Meta-Learning Evaluation

Parting Thoughts

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

EVALUATIONS

DBMS: version 5.7 of MySQL RDS

Pre-selected 40 knobs (14 CPU, 6 memory, 20 I/O) 😊

Table 1: Hardware Configurations for Database Instances

	A	В	С	D	E	F
CPU	48 cores	8 cores	4 cores	16 cores	32 cores	64 cores
RAM	12GB	12GB	8GB	32GB	64GB	128GB

Workloads

 \rightarrow SYSBENCH, TPC-C, Twitter, Hotel Booking, Sales

Data Repository

- \rightarrow 34 past tuning tasks \rightarrow base learners
- \rightarrow 17 different workloads and 2 HW environments (A, B)

E: RESOURCE ORIENTED TUNING BOOSTED BY

IG FOR CLOUD DATABASES

EVALUATIONS

Methods:

- → **Default**: The default knobs provided by experienced DBA
- → **iTuned**: Objective changed to minimizing resource utilization, w/o SLA
- → **OtterTune-w-Con**: Acquisition function replaced with CEI
- → **CDBTune-w-Con**: Replaced latency in reward function to resource utilization; max (r, 0) when SLA satisfied, min(r, 0) otherwise
- → **ResTune-w/o-ML**: ResTune w/o data repository, learned from scratch
- \rightarrow **ResTune**: Proposed approach

EFCMU·DB 15-799 Special Topics (Spring 2022)

EFFICIENCY

Original setting without hold-out 🥲

Observations

- \rightarrow ResTune-w/o-ML better than iTuned, CDBTune-w-Con
 - Both: no historical tuning data
 - iTuned: no SLA constraints
 - CDBTune: RL model, but optimal solution not related to action
- \rightarrow ResTune achieves 7.38x speedup over OtterTune-w-Con

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

GENERALIZATION: HW

Figure 4: Performance Adapting to Different Hardware Environments

Table 4: Workload Adaptation on More Instances

		_				
	Instance	С	D	E	F	
SYSBENCH	Improvement	Restune	5.02%	8.13%	17.16%	20.38%
	mprovement	Restune-w/o-ML	3.34%	7.58%	16.76%	19.96%
		Restune	37	64	100	35
	Iteration	Restune-w/o-ML	57	80	115	53
		Speed Up	35%	20%	14%	34%
	Improvement	Restune	4.96%	19.22%	33.26%	47.60%
	mprovement	Restune-w/o-ML	2.78%	18.28%	33.09%	42.62%
TPC-C		Restune	12	25	45	18
	Iteration	Restune-w/o-ML	99	47	79	25
		Speed Up	87.87%	46.80%	43.03%	28%

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

SECMU-DB

GENERALIZATION: WORKLOAD

- ResTune's ensemble + adaptive weights
 - Utilize more experience from multiple workloads than OtterTune
 - Getting a quick start
 - Stops matching when there is no similar workload
- Workload mapping: ranking loss (surface measurement) better than absolute similarity

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-

LEARNING FOR CLOUD DATABASES

SIGMOD 2021

TUNING OTHER RESOURCES

- I/O heavy scenario for both: buffer pool size $\sim \frac{1}{2}$ data size
- I/O objective: BPS (60%-80%), IOPS (84%-90%)
- Memory objective: buffer pool size (39%)

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-

LEARNING FOR CLOUD DATABASES

SIGMOD 2021

TODAY'S AGENDA

Overview Solving Constrained Optimization Boosting Tuning Process with Meta-Learning Evaluation

Parting Thoughts

RESTUNE: RESOURCE ORIENTED TUNING BOOSTED BY META-LEARNING FOR CLOUD DATABASES SIGMOD 2021

PARTING THOUGHTS

Industry's view of knob tuning

• Resource-oriented, SLA restrictions

Ensemble learning to transfer historical knowledge

SOTA: an **offline** automated pipeline with iterative replaying

- Assuming workload pattern has not changed
 - Should start again if changed
- Online tuning is harder
 - Online service availability; Faster & less iterations; Stable improvements ...

SECMU.DB 15-799 Special Topics (Spring 2022)

NEXT CLASS

Knob/Parameter Tuning IV

REFERENCES

[1] Zhang Xinyi, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying Zhang, and Bin Cui. "Restune: Resource oriented tuning boosted by metalearning for cloud databases." In *Proceedings of the 2021 International Conference on Management of Data*, pp. 2102-2114. 2021.

Credit and thanks to Xinyi Zhang's method demonstration in the SIGMOD talk!