Carnegie Mellon University

Special Topics: Self-Driving Database Management Systems

Knob/Parameter Tuning II

Neville Chima // 15-799 // Spring 2022

D

Б

LAST CLASS - OTTERTUNE

- Select most impactful knobs
- Map new workloads to previous workloads
- Recommend knob settings

VI DB 2021

MAKE YOUR DATABASE SYSTEM DREAM OF ELECTRIC SHEEP: TOWARDS SELF-DRIVING OPERATION

- Overview
- System Architecture
- Methods
- Evaluation
- Thoughts

MOTIVATION

Problem: DBAs expertise do not suffice in tuning knob configuration for DBMSs

Goal: Develop efficient system for automatic optimization of knob configuration (in CDBs)

- Class of system ?
- Capabilities of system ?

EXISTING FRAMEWORK

Search Based Methods e.g Bestconfig

Learning Based Methods e.g Ottertune

• Heuristic search

ML on historical data

CHALLENGES

- 1. Time Consuming SB
- 2. Inability to optimize overall performance SB, LB
- 3. Performance in a cloud environment LB
- 4. High dimensional knob space LB

- Overview
- System Architecture
- Methods
- Evaluation
- Thoughts

- Overview
- System Architecture
 - Components
 - System Mechanism
- Methods
- Evaluation
- Thoughts

SYS ARCH - COMPONENTS

CMU-DB 15-799 Special Topics (Spring

Figure 2: System Architecture.

System Mechanism

- Offline training
 - Bootstrapped cold start
 - Reinforcement Learning (RL) exploration
- Online tuning
 - Incremental training on user data
 - Updates to RL model & Memory pool

- Overview
- System Architecture
- Methods
- Evaluation
- Thoughts

Source: Lin Ma

- Overview
- System Architecture
- Methods
 - Deep RL
 - Reward Selection
- Evaluation
- Thoughts

RL - INSPIRATION

"Abstract tuning problem into a scoring game" **Rule:** Tune knobs at regular intervals and obtain each performance

Reward: Based off a reward function

Performance enhancement - +ve reward value Performance degradation - -ve reward value

Goal: Ultimately achieve a higher expected reward within a few tries (exploration vs exploitation) as possible

RL IN CDBTUNE

Figure 3: The correspondence between RL elements and CDB configuration tuning.

-	
Agent	<u>CDBTune</u> receives reward updates policy for exp reward
Environment	tuning target - CDB instance
State s _t	Internal metrics Track state of the env
Reward r _t	Change in performance after applying recs
Action a _t	Knob Tuning operation Given policy and state of CDB
Policy $\mu(s_t)$	Behaviour of CDBTune given time & env - RL network

RL - CONSIDERATIONS

• Q-learning

- Calculation of Q-state tables
- $\bigcirc \qquad Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$ (1)
- Deep Q Networks
 - Neural networks to calculate Q-values (benefit of action)

0	$Q(s, a, \omega) \to Q(s, a)$
---	-------------------------------

RL - CONSIDERATIONS

• Q-learning

Topics (Spring

- Calculation of Q-state tables
- $\bigcirc \qquad Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$ (1)
- Deep Q Networks
 - Neural networks to calculate Q-values (benefit of action)
 - $\bigcirc \qquad Q(s,a,\omega) \to Q(s,a)$

Q-Learning Action Action ... Action QIM State QII Q ... Q21 Q22 Q24 State₂ ... ٠. : States 0. O.

Continuous high dimensionality space ?!

RL - CONSIDERATIONS

• Q-learning

Topics (Spring

- Calculation of Q-state tables
- $\bigcirc \qquad Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$ (1)
- Deep Q Networks

Unfeasible for large state spaces

Discrete-controlled outputs

• Neural networks to calculate Q-values (benefit of action)

RL - DDPG

- Deep Deterministic Policy Gradient
 OQN
 - Actor-Critic Algorithm
 - Actor: produces probability value for each action in the knob space
 - Critic: estimates sum of future rewards
 - Acquire single Q-value for current action & state

DDPG ALGORITHM

Algorithm 1 Deep deterministic policy gradient (DDPG)

- 1: Sample a transition (s_t, r_t, a_t, s_{t+1}) from Experience Replay Memory.
- 2: Calculate the action for state s_{t+1} : $a'_{t+1} = \mu(s_{t+1})$.
- 3: Calculate the value for state s_{t+1} and a'_{t+1} : $V_{t+1} = Q(s_{t+1}, a'_{t+1} | \theta^Q)$.
- 4: Apply Q-learning and obtain the estimated value for state $s_t: V'_t = \gamma V_{t+1} + r_t$.
- 5: Calculate the value for state s_t directly: $V_t = Q(s_t, a_t | \theta^Q)$.
- 6: Update the critic network by gradient descent and define the loss as:

$$L_t = (V_t - V_t')^2$$

7: Update the actor network by policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \mathbb{E}[\nabla_{\theta^{\mu}} Q(s, a | \theta^{\mathcal{L}})|_{s=s_t, a=\mu(s_t)}]$$

= $\mathbb{E}[\nabla_a Q(s, a | \theta^Q)|_{s=s_t, a=\mu(s_t)} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s=s_t}]$

CMU·DB 15-799 Special Topics (Spring

REWARD SELECTION - IDEA

- Initial performance before tuning is D₀
- After the i-th tuning operation D_i, DBA compares performance btw i) D_i and D_{i-1} ii) D_i and D_{0.}
- If D_i is better than D₀, tuning trend is correct & reward is positive, else negative.
- Thus, reward is modeled considering $\Delta(D_i, D_0) \& \Delta(D_i, D_{i-1})$

REWARD SELECTION - DETAILS

$$r = \begin{cases} ((1 + \Delta_{t \to 0})^{2} - 1)|1 + \Delta_{t \to t-1}|, \Delta_{t \to 0} > 0\\ -((1 - \Delta_{t \to 0})^{2} - 1)|1 - \Delta_{t \to t-1}|, \Delta_{t \to 0} \leqslant 0 \end{cases} \qquad r = C_{T} * r_{T} + C_{L} * r_{L}$$

$$C_{L} + C_{T} = 1.$$

$$C_{L} + C_{T} = 1.$$

$$T_{t} : Throughput (txn/sec)at time t$$

$$L_{t}: Latency (ms) at time t$$

$$r: Reward$$

$$\Delta L = \begin{cases} \Delta L_{t \to 0} = \frac{-L_{t} + L_{0}}{L_{0}} \\ \Delta L_{t \to t-1} = \frac{-L_{t} + L_{t-1}}{L_{t-1}} \end{cases} \qquad C_{t}: Coefficient of latency$$

$$C_{t}: Coefficient of throughput$$

C_l: Coefficient of latency C_t: Coefficient of throughput

- Overview
- System Architecture
- Methods

- Evaluation
- Thoughts

Source: Lin Ma

- Overview
- System Architecture
- Methods
- Evaluation
 - Execution time
 - Baseline comparisons
- Thoughts

EXECUTION TIME

- Offline Training: 4.7 hrs for 266 knobs, 2.3 hours for 65
- Online Tuning: 5 steps in 25 min
- Step time division:

Step	Time Taken	
Stress Testing	153s	
Metrics collection	0.86 ms	
Model update	28.76 ms	
Recommendation calculation	2.16 ms	
Deployment time	17 s	

EFFICIENCY COMPARISON

• Experiments on CDB-A instance

Topics (Spring

- CDBTune takes shorter tuning time
- CDBTune gradually adapts to workload as tuning steps increase
 - Initially already achieves better results than other DBA, Ottertune, & BestConfig

Table 2: Detailed online tuning steps and time of CDBTune	•
and other tools.	

Funing Tools Total Ste		os Time of One Step (mins)			Total	Time	(mins	
CDBTune	5		5		25			
OtterTune	5		11			55		
BestConfig	50		5			250		
DBA	1		516			516		
CDBTu	ne (RW)	+	CDBTune (RO)		CDB	Tune (WO)	
DBA (R	.W) ·		DBA (RO)	-	DBA	(WO)		
OtterTu	une (RW)	*	OtterTune (RO)		Otte	rTune	(WO)	
6000					12		-1	
0 5000		+		-	-	•	-	
()5000 4000 4000 3000 2000								
<u>Å</u> 4000								
the sound	····							
5000				-	-	===		
Ê 2000	*	- +-		-*	-*	-*-	,	
				-	=	=1=	:=	
1000 5	10 15	20	25 30	35	40	45	50	
			Steps					
1800		-		¥			-1	
1600								
ĝ 1400-								
≥ 1200		+		*				
1000		-					-	
(i) 1400 1200 1200 1000 5 800								
		-		****	*	-*	-1	
600		-						
400 5 1	0 15	20	25 30 Steps	35	40	45	50	

Figure 5: Performance by increasing number of steps

EFFECTIVENESS COMPARISON

- Experiments on CDB-B instance
- DBA & Ottertune's knob ordering
- CDBTune maintains better performance as knob space increases
 - Dependencies in larger knob spaces
- Stability as knob space increases

pecial Topics (Spring

• Abstracted knob ranking via features in NN

Figure 6: Performance by increasing number of knobs (knobs sorted by DBA).

lumber of Knobs

Figure 7: Performance by increasing number of knobs (knobs sorted by OtterTune).

ADAPTABILITY COMPARISONS

Identical performance btw normal & cross-testing

Training on Model

Figure 10: Performance comparison for Sysbench WO workload when applying the model trained on 8G memory to (X)G memory hardware environment.

Figure 11: Performance comparison for Sysbench RO workload when applying the model trained on 200G disk to (X)G disk hardware environment.

Figure 12: Performance comparison when applying the model trained on Sysbench RW workloads to TPC-C.

PARTING THOUGHTS

- Limited samples
- Reduces possibility of local optimum
- Good adaptability
- Applies to high-dimensional continuous knob space
- End to end approach ?
 - Connectivity of HL
 - Multi-Model Approach

NEXT CLASS

Knob/Parameter Tuning III

CMU-DB 15-799 Special Topics (Spring 2022)