Special Topics:

Self-Driving Database Management Systems

Index Recommendation II

@Poojan_Palwai // 15-799 // Spring 2022

TODAY'S AGENDA

Background on Automated Indexing Architecture of Automated Indexing Testing of Automated Indexing Reflection

Automated Indexing

Idea

- Create/Use a set of indexes to reduce execution costs of queries:

Goals

- Ensure that creating and dropping indexes don't result in a query performance regression
- Make sure that query plans approached by the automatic indexing are in line with the optimizer

Automated Indexing

Insights

- Classification between two queries is better than regression since the indexer cares about the better plan
- For an "in-sync" with an optimizer, the only requirement is the indexes needs to utilize the same plan

Algorithm's Architecture

- Convert query plans into fixed size feature vectors
- Construct pairs of final feature vectors and obtain corresponding labels
- Train an offline classifier with these features from aggregated databases
- Localize the offline model to specific databases

Figure 2: Overview of an architecture leveraging the classifier trained on aggregated execution data from multiple databases in a cloud database service.

Architecture: Generate Unique Vector

Goal: Vector has to be schema agnostic and fixed-size

Solution:

- Feature Vectors are # of unique operators, the parallelism of the operators, and execution mode by row or batch:
 - (Physical Operator)_(Execution Mode)_(Parallelism)
- If multiple operators have the same key, sum up all the values assigned by the key
- The value of a node is determined by the sum of weight multiplied by the height of all its children

Architecture: Construct Pairs

Label:

Context: A pair is labeled as regression if:

 $(ExecCost(P2) - ExecCost(P1)) / ExecCost(P1) > \alpha$ (where $\alpha = 0.2$)

- The pairs were combined using the same math:
 - Pair Diff: P2 P1
 - Pair Diff Ratio: Pair Diff / P1
 - Since values sometimes became two large or small, they were either:
 - Gradient Clipped to (10^4) even if divided by 0
 - Normalized by the sum of attributes

Architecture: Classifier

Linear Models:

- Logistic Regression (LR)

Trees Models:

- Random Forest (RF) (bagging ensemble)
- Gradient Boosting Trees (GBT) (boosting ensemble)
- Gradient-Boosted Decision Trees (DGBM)

Architecture: Localization

- The local data was split into two subsets
 - The first subset was used to train a local model that used a Random Forest
 - The second subset was used to train a meta model which:
 - Tried to determine whether to use the local model or offline model
 - Features:
 - The local model and offline model's predictions
 - Uncertainty scores from the local and offline model
 - Nearest neighbor of both model to determine distance of feature vector of query plans from old data used in the models

Alternative Models

Operator Level-Regression model: Proposed by Li et al. computed execution cost of each operators and combined them for the plan's execution cost

Plan-Level Regressor: Similar to Akdere et al. and predicted the execution cost of a plan

Deep-Neural Network:

- Partially-connected networks were used with similar operators
- Skip Connections that connected nodes from different layers
- Random-Forests: The network's last layer into a random forest
- Used Transfer Learning:
 - Initialize and freeze the weights of the DNN (offline)
 - Than train the model with new data by changing either the random forest or the final layer

Overall Testing

Workloads:

- Industry standard benchmarks: TPC-H (Skewed Data Generator) and TPC-DS
- Eleven workloads from customers: SQL Server
- Two different scale factors: 10 and 100 that had same queries but different knobs

Metrics:

- Precision: Model's accuracy of positive prediction
- Recall: Model's coverage in correctly predicting the positives
- F1-Score: Harmonic mean of precision (P) and recall (R

Data Splits for Train/Test:

- Pairs: Split the union of all plan pairs into disjoint sets
- Plans: Split the set of plans into two disjoint sets of plans from which the pairs are constructed.
- Query: Split the set of queries into two disjoint sets
- Database: Test Set is just a new database with unknown results

Testing: Regression versus Classification

Models:

- Plan-Pair Model: GBT-Based Model with 250 Trees
- Plan Level Model: RF-Based Model with 250 Trees
- Classifier: RF-Based Classifier

Diff Ratio:

- Cost difference in plans: max(cost1,cost2)/min(cost1,cost1) –
 1)
- Plan-Model Used was Plan-Level Model

Results:

- 5x reduction in fraction of errors of Classifier over State-of-theart Optimizer
- 2x Reduction in Errors of Classifier Over Plan Model

Diff Ratio	0	0.2 - 0.5			0.5 - 1			1 – 2			> 2		
Plan Cost	O	P	C	O	P	C	О	P	C	Ο	P	С	
0-25%				0.70	0.84	0.84	0.74	0.92	0.93	0.85	0.96	0.97	
25-50%	0.53	0.71	0.75	0.63	0.87	0.89	0.73	0.92	0.94	0.92	0.97	0.99	
50-75%	0.53	0.77	0.84	0.62	0.90	0.93	0.71	0.95	0.97	0.92	0.98	0.99	
75-100%	0.50	0.70	0.81	0.57	0.86	0.89	0.67	0.93	0.94	0.92	0.96	0.99	

Testing: Offline Model

Models:

- LR: Logistic Regression
- RF: Random Forest
- LGBM: Light Gradient-Boosted Decision Trees
- DNN: Deep Neural Network Without Random Forest
- Hybrid DNN: Deep Neural With Random Forest

Training Time:

- Random Forest trains in Tens of Minutes and infers Less than
 Microseconds Per Data Point
- Deep Neural Network Trains in Couple of hours and Infer in
 10s of Microsecond Per Data Point

Results:

The Random Forest based models outperform others in accuracy and training efficiency

Figure 7: Comparison of different modeling techniques for the classification task.

Testing: Adaptation

Graphs:

- The top graph displayed the offline models used with a database test-train split
- The bottom graph displayed the offline models incorporated with online learning techniques
 - All models (other than hybrid DNN) utilized random forests
 - Leaked plans represent the number of additional data the offline model had

Results:

 The models with offline learning with random forest and metalearning outperformed everything else including hybrid-DNN with transfer learning

Testing: Index Recommendation

Figure 11: Number of queries improved at its final configuration (with regressed configuration reverted) and regressed at the last iteration for query-level tuning with ten iterations.

Data:

- a. Improve (cumulative): # of queries Improved at least by 20% in final configuration
- b. Regress (final): The number of queries that regress when the tuning stops.

Not Exclusive (It can improve and then regress)

Workloads: TPC-DS 10g with no index as initial configuration, TPC-DS 100g with existing columnstore as initial configuration, Customer 6 with no index as initial configuration

Baselines: Opt: Original index tuner with optimizer, OptTr: The index tuner with optimizer that uses a threshold to suggest plans

PARTING THOUGHTS

Variants:

- Different search strategies
- Integrating index tuning with other physical design structures such as partitioning, materialized views, or column stores
- Formulating it as a continuous tuning problem
- Modeling robustness of physical design tuning

References

[0] B.Ding et al., Al Meets Al: Leveraging Query Executions to Improve Index Recommendations, in *SIGMOD*, 2019

