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Background on Automated Indexing
Architecture of Automated Indexing
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Automated Indexing

ldea

- Create/Use a set of iIndexes to reduce execution costs
of queries:

Goals

- Ensure that creating and dropping indexes don’t result
IN a query performance regression

- Make sure that query plans approached by the
automatic indexing are in line with the optimizer
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Automated Indexing

Insights

- Classification between two queries Is better than
regression since the indexer cares about the better
plan

- For an “in-sync” with an optimizer, the only
requirement is the indexes needs to utilize the same
plan
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Algorithm’s Architecture

Convert query plans into fixed size feature
vectors

Construct pairs of final feature vectors and
obtain corresponding labels

Train an offline classifier with these features
from aggregated databases
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Architecture: Generate Unigue Vector

Goal: Vector has to be schema agnostic and fixed-
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Architecture: Construct Pairs

Label:
=  Context: A pair is labeled as regression if:
(ExecCost(P2) — ExecCost(P1)) / ExecCost(P1) > a (where a = 0.2)
=  The pairs were combined using the same math:
- Pair Diff: P2 - P1
- Pair Diff Ratio: Pair Diff / P1
- Since values sometimes became two large or small, they were either:
- Gradient Clipped to (10™4) even if divided by O
- Normalized by the sum of attributes
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Architecture: Classifier
Linear Models:
- Logistic Regression (LR)

Trees Models:
- Random Forest (RF) (bagging ensemble)

- Gradient Boosting Trees (GBT) (boosting ensemble)

- Gradient-Boosted Decision Trees (DGBM)

= Al Meets Al: Leveraging Query Executions to
&=CMUDB _ Improve Index Recommendations

15-799 Special Topics (Spring Sigmoid 2019

Dlat )Y



https://db.cs.cmu.edu/
https://15799.courses.cs.cmu.edu/spring2022
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf

Architecture: Localization

- The local data was split into two subsets
- The first subset was used to train a local model that used a Random Forest

- The second subset was used to train a meta model which:
- Tried to determine whether to use the local model or offline model
-  Features:
- The local model and offline model’s predictions
- Uncertainty scores from the local and offline model
- Nearest neighbor of both model to determine distance of feature vector of query
plans from old data used in the models
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Alternative Models

Operator Level-Regression model: Proposed by Li et al. computed
execution cost of each operators and combined them for the plan’s
execution cost

Plan-Level Regressor: Similar to Akdere et al. and predicted the
execution cost of a plan

Deep-Neural Network:
- Partially-connected networks were used with similar
operators
- Skip Connections that connected nodes from different
layers
- Random-Forests: The network’s last layer into a random
forest
- Used Transfer Learning:
- Initialize and freeze the weights of the DNN (offline)
- Than train the model with new data by changing
either the random forest or the final layer

Input Partially-connected layers Fully-connected layers Output
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Overall Testing

Workloads:
- Industry standard benchmarks: TPC-H (Skewed Data Generator) and TPC-DS
- Eleven workloads from customers: SQL Server
- Two different scale factors: 10 and 100 that had same queries but different knobs
Metrics:
- Precision: Model’s accuracy of positive prediction
- Recall: Model's coverage in correctly predicting the positives
- F1-Score: Harmonic mean of precision (P) and recall (R
Data Splits for Train/Test:
- Pairs: Split the union of all plan pairs into disjoint sets
- Plans: Split the set of plans into two disjoint sets of plans from which the pairs are constructed.
- Query: Split the set of queries into two disjoint sets
- Database: Test Set is just a new database with unknown results
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Testing: Regression versus Classification

Models:
- Plan-Pair Model: GBT-Based Model with 250 Trees Lr 0.56
- Plan_Level Model: RF-Based Model with 250 Trees LT 0.1 -85 0.85
. . g : 0.78
- Classifier: RF-Based Classifier g08 r 075 0.75 0.75
07 ¢
. . 0.59
Diff Ratio: 06 0.56
- Cost difference in plans: max(cost1,cost2)/min(cost1,cost1) - 0.5 : '
1 Plan Query
) . .
Train/Test Split Mode
- Plan-Model Used was Plan-Level Model M Optimizer B Operator Model ® Plan Model & Pair Model B Classifier
Results:
- bx redl.Jct.lon in fraction of errors of Classifier over State-of-the- . cp . ™ 05 4 5 0.5—1 1—2 > 2
art Optimizer Plan Cost O P C 0 P C 0] P C 0] P C
- 2x Reduction in Errors of Classifier Over Plan Model 0-25% 070 0.84 0.84 074 092 0.93 085 096 0.97
25-50% 0.53 0.71 0.75 0.63 0.87 0.89 0.73 0.92 0.94 0.92 097 0.99
50-75% 053 0.77 0.84 0.62 0.90 0.93 0.71 0.95 0.97 0.92 098 0.99
75-100% 0.50 0.70 0.81 0.57 0.86 0.89 0.67 0.93 0.94 0.92 0.96 0.99
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Testing: Offline Model

Models:
- LR: Logistic Regression
- RF: Random Forest
- LGBM: Light Gradient-Boosted Decision Trees
- DNN: Deep Neural Network Without Random Forest
- Hybrid DNN: Deep Neural With Random Forest

Training Time:

- Random Forest trains in Tens of Minutes and infers Less than Pair Plan Query
i i Train/Test Split Mod
10 MICI’OSGCOHdS Per Dat?' P(_)mt . W Optimizer OLR R;am féﬂh:l E%NEN B Hybrid DNN
- Deep Neural Network Trains in Couple of hours and Infer in
10s of Microsecond Per Data Point Figure 7: Comparison of different modeling tech-
niques for the classification task.
Results:

- The Random Forest based models outperform others in
accuracy and training efficiency
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Testing: Adaptation

Graphs: 1 -
- The top graph displayed the offline models used with a
database test-train split
- The bottom graph displayed the offline models incorporated
with online learning techniques
- All models (other than hybrid DNN) utilized random
forests

- Leaked plans represent the number of additional data Average Median
the offline model had B Optimizer LR WRF ELGBM BEDNN EHybrid DNN
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Results: 10
- The models with offline learning with random forest and meta- 09
learning outperformed everything else including hybrid-DNN o8

with transfer learning T 07
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Testing: Index Recommendation
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Figure 11: Number of queries improved at its final configuration (with regressed configuration reverted) and re-
gressed at the last iteration for query-level tuning with ten iterations.

Data:
a. Improve (cumulative): # of queries Improved at least by 20% in final configuration
b. Regress (final): The number of queries that regress when the tuning stops.

Not Exclusive (It can improve and then regress)

Workloads: TPC-DS 10g with no index as initial configuration, TPC-DS 100g with existing columnstore as initial configuration, Customer 6
with no index as initial configuration

Baselines: Opt: Original index tuner with optimizer, OptTr: The index tuner with optimizer that uses a threshold to suggest plans
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PARTING THOUGHTS

Variants:
- Different search strategies

- Integrating index tuning with other physical design
structures such as partitioning, materialized views, or
column stores

- Formulating it as a continuous tuning problem

- Modeling robustness of physical design tuning
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