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ABSTRACT
Although learning-based database optimization techniques have
been studied from academia in recent years, they have not been
widely deployed in commercial database systems. In this work,
we build an autonomous database framework and integrate our
proposed learning-based database techniques into an open-source
database system openGauss. We propose effective learning-based
models to build learned optimizers (including learned query rewrite,
learned cost/cardinality estimation, learned join order selection
and physical operator selection) and learned database advisors (in-
cluding self-monitoring, self-diagnosis, self-configuration, and self-
optimization). We devise an effective validation model to validate
the effectiveness of learned models. We build effective training data
management and model management platforms to easily deploy
learned models. We have evaluated our techniques on real-world
datasets and the experimental results validated the effectiveness
of our techniques. We also provide our learnings of deploying
learning-based techniques.
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1 INTRODUCTION
Learning-based database optimization techniques have been widely
studied [4, 19, 20, 33–36, 38, 48, 55, 59, 69, 73, 75]. Recently, commer-
cial database systems try to deploy learning-based techniques to op-
timize database systems. For example, Oracle utilizes learning-based
methods to automatically recommend the materialized views [3, 11].
DB2 is integrating learned cost estimation into optimizers [30, 63].
However, most of learning-based techniques have not been widely
deployed in commercial database systems. In this work, we build
an autonomous database framework and integrate our proposed
learning-based techniques [20, 36, 37, 55, 69, 70, 74, 75] into an
open-source database system, openGauss [1].
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Challenges to Integrate Learning-based Techniques into
openGauss. It is challenging to build an end-to-end learning-based
database system. (1) Model Selection. If we want to replace a data-
base component (e.g., cost estimation) with a learning-based model,
we should select an appropriate machine learning (ML) model. For
example, deep learning models are effective for cost estimation as
they can capture the correlation between columns; deep reinforce-
ment learning models are effective for knob tuning as they can learn
knob configurations in high-dimensional continuous space. Thus
we need to design effectivemodels for learned database components.
(2) Model Validation. It is hard to evaluate whether a learned model
is effective and outperforms non-learning methods. For example,
whether a knob tuning strategy really works for a workload? It
requires to design a validation model to evaluate a learned model.
(3) Model Management. Different database components may use
different ML models and it is important to provide a unified ML
platform to achieve a unified resource scheduling and a unified
model management. (4) Training Data Management. Effective mod-
els require high-quality training data and it requires to effectively
collect training data andmanage the data to trainmodels. To address
these challenges, we build an autonomous database framework and
integrate it into openGauss, with five main components.
(1) Learned Optimizers in openGauss.We propose learned query
rewrite, learned cost/cardinality estimation [55], learned plan gen-
erator [69] (including join order selection and physical operator
selection). Learned query rewrite uses a Monte Carlo tree search
based method to judiciously rewrite a SQL query to an equiva-
lent yet more efficient query by considering rewrite benefits and
rewrite orders. Learned cost/cardinality estimation uses tree-LSTM
to simultaneously estimate the cost and cardinality. Learned plan
generator utilizes deep reinforcement learning to select a good join
order and appropriate physical operators.
(2) Learned Database Advisors in openGauss. We develop
learning-based self-monitoring, self-diagnosis, self-configuration,
and self-optimization techniques to monitor, diagnose, configure,
and optimize databases [37, 74]. Self-monitoringmonitors databases
metrics and uses the metrics to facilitate other components. Self-
diagnosis uses tree-LSTM to detect the anomalies and identify the
root causes of the anomalies. Self-configuration uses a deep rein-
forcement learningmethod to tune the knobs [36]. Self-optimization
uses an encoder-reducer model to recommend views and uses a
deep reinforcement model to recommend indexes [20, 70].

(3) Model Validation. To validate whether a model is effective
for a workload, we propose a graph embedding based performance
prediction model in openGauss [75] to validate the effectiveness
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of a learned model. For a model in learned optimizers or advisors,
we predict the performance before deploying the model. If the
performance gets better, we deploy the model; drop it otherwise.
(4) Model Management in openGauss. As most modes in learned
optimizers and advisors are realized by combining multiple re-
inforcement learning or deep learning algorithms, we provide an
machine-learning (ML) platform to achieve a unified resource sched-
uling, model management, and facilitate the provision of a unified
computing platform. It encapsulates the complexity of ML and pro-
vides the capabilities of training, prediction, model management.
(5) Training Data Management in openGauss. We collect the
runtime database metrics (e.g., resource consumption, lock/latch
information), historical SQL queries (e.g., query latency) and system
logs (e.g., anomalies) as training data. Since different training mod-
ules may require different training data, we judiciously organize the
data, including (1) judiciously organizing the correlated columns
into the same table to reduce the join overhead; (2) judiciously
selecting the training data to train a learned model.
Contributions.We make the following contributions.
(1) We develop an autonomous database framework and integrate
our learning-based techniques into an open-source database system.
(2) We propose effective learning-based models for learned optimiz-
ers and learned database advisors.
(3) We devise effective training data management and model man-
agement platforms to deploy learning-based modules.
(4) We propose an effective validation model to validate the effec-
tiveness of a learned model.
(5) We evaluated our techniques and the experimental results vali-
dated the effectiveness of our techniques.
(6) All of the codes have been open-sourced1. Our proposed tech-
niques have been used by real customers, e.g., the sixth biggest
bank of China, Postal Savings Bank of China, and the biggest mobile
company of China, China Mobile.

2 SYSTEM OVERVIEW
In this section, we present the overview of our autonomous
framework. Besides the core components of traditional databases
(e.g., SQL parser, optimizer, execution engine, storage en-
gine), openGauss has five learning-based components, learned
optimizer, learned advisor, model validation, training
data management, and model data management.
(1) Learned Optimizer.Most of problems in optimizer (e.g., query
rewrite, cost estimation, and plan generation) are NP-hard, and
existing optimization techniques adopt heuristics, which may fall in
local optimum. To address these problems, our learned optimizer
uses learning-based techniques to improve the performance.

(i) Learned Rewriter uses a Monte Carlo tree search based
method to rewrite a SQL query to an equivalent yet more efficient
query. The basic idea is that we first build a policy tree, where
the root is the original query, and a tree node is a rewritten query
from its parent by applying a rewrite rule. A brute-force method
enumerates all possible rewrite strategies to get a full policy tree
and chooses the optimal one with the lowest cost. However it is pro-
hibitively expensive to enumerate every possible rewritten queries.

1https://gitee.com/opengauss/openGauss-AI

Learned Optimizer

Logs System Metrics

Training Data Platform

Self-Monitoring Self-Configuration

Self-Diagnosis Self-Optimization

Model  Management Platform

Model
Training

Model
Prediction

Model
Manager

Traditional Module Learned Module

Training 
Data

Model Update

Database 
Metrics

SQL 
Queries

System 
Logs

Learned Advisor

Logic Query Rewriter

Rule-based

Cardinality/Cost Estimator
Histogram-based

MCTS

Tree-LSTM

Plan Enumerator
Greedy/Genetic DeepRL

SQL Dashboard

SQL Parser

Storage Engine

(Extreme Value Theory)
Anomaly Detection

(LSTM+KNN)
System�'LDJQRVLV

(DeepRL)
Knob Tuner

(RNN+RL)

MV Recommender

(Tree-LSTM)

SQL�'LDJQRVLV
(DeepRL)

Index Recommender

Model Validation Performance Prediction �*11�

Figure 1: The openGauss Architecture

Thus we propose a Monte Carlo tree method, which judiciously
selects a search strategy to get the best rewritten strategy.

(ii) Learned Cost Estimator [55] uses a deep learning based
method to estimate the cost and cardinality of a query, which can
capture the correlation between different columns. Note that the
query plan is a tree structure, and the plan is executed in a bottom-
up manner. Intuitively, the cost/cardinality of a plan should be
estimated based on its sub-plans. To this end, we design a tree-
structured model that matches the plan naturally, where each model
can be composed of several sub-models in the same way as a plan is
made up of sub-plans. We use the tree-structured model to estimate
the cost/cardinality of a plan.

(iii) Learned Plan Generator [69] uses a deep reinforcement
learning based method to generate an optimized query plan. The
basic idea is to model the plan enumerator process as a Markov
decision process in order to select an optimized join order and
physical operator (e.g, nested-loop join, hash join or index join). We
present a novel learned optimizer that uses reinforcement learning
with tree-structured long short-term memory (LSTM) for join order
selection. We adopt graph neural networks to capture the structures
of join trees which support the updates of database schema and
multi-alias of table names. The model can automatically select
appropriate physical operators.
(2) Learned Advisor. Existing database monitor, configuration,
diagnosis, optimization methods (e.g., knob tuning, slow SQL diag-
nosis, index/view advisor) rely on database administrators (DBAs),
which is expensive and cannot adapt to large-scale instances (e.g.,
cloud database). Thus we propose learning-based methods for self-
monitoring, self-configuration, self-diagnosis, self-optimization, in
order to automatically and judiciously optimize the database.

(i) Self-Monitoring [37]. It monitors the database status and
provides database runtime metrics (e.g., CPU usage, response time,
running log). For anomaly detection, we propose a LSTM-based
auto-encoder model to automatically detect the anomalies based
on data distributions and metrics correlations. We use the encoder
to turn database metrics into a low-dimensional representation
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Figure 2: Monte Carlo Tree Search Based Query Rewrite

and uses the decoder to restore the original data. The data that the
model cannot reconstruct well is taken as an anomaly.

(ii) Self-Diagnosis. It aims to automatically diagnose the
anomalies. System Diagnosis diagnoses the root cause of sys-
tem anomalies (e.g., lock conflicts) and SQL Diagnosis diagnoses
the root cause of SQL anomalies (e.g., slow SQL). We adopt a tree-
LSTM model for self-diagnosis, which identifies the root causes by
using a softmax function.

(iii) Self-Configuration [36]. It aims to automatically con-
figure the database systems, e.g., knob tuning. Learned Knob Tuner
adopts a deep reinforcement learning technique to tune the knobs.
We use an actor-critic model to automatically select the appropriate
knob values. Our model can support SQL-level, session-level and
system-level knob tuning.

(iv) Self-Optimization [20, 70]. It automatically opti-
mizes the databases, e.g., index/view advisor, for a query workload.
Learned Index Advisor uses deep reinforcement learning to auto-
matically recommends indexes. Learned View Advisor proposes
an encoder-decoder model to automatically recommends views.
(3) Model Validation. To validate whether a model is effective
for a workload, we propose a graph embedding based performance
prediction model in openGauss [75], which can predict the per-
formance if we employ a learned model. For a model in learned
optimizers or advisor, we can predict the performance if we deploy
the learned model. If the performance becomes better, we deploy
the model; drop it otherwise. For example, if we use a deep re-
inforcement learning model to recommend the knob values, we
predict the performance if we set these recommended values. If the
performance becomes better, we deploy the recommended values.

(4) Training Data Platform. It collects training data from
databases from several aspects. (i) Database metrics: database run-
ning status, e.g., queries per second (QPS), CPU usage rate, cache
hit rate. These are usually represented by time-series data. (ii) SQL
Query. It collects SQL queries and their statistics like physical plan,
response time, and duration time. (iii) Database Log. It collects run-
ning logs. As different training modules require different training
data, we judiciously organize the data, including (1) organizing the
correlated columns into the same table to reduce the join overhead;
(2) selecting the training data for a model.

(5) Model Data Management. It integrates the frequently-used ML
capabilities, provides a unified application access interface, and
supports the management and scheduling of ML tasks.

3 LEARNED DATABASE OPTIMIZER
We present the learned database optimizer, including learned query
rewrite, cost estimation, and plan generation.

3.1 Query Rewriter
Query rewrite aims to transform a slow SQL query into an equiva-
lent one with higher performance, which is a fundamental problem
in query optimization [33, 73]. The performance of a slow SQL
query (due to redundant or inefficient operations) can be improved
by orders of magnitude if it is rewritten in an appropriate way (e.g.,
removing redundant operators, swapping two operators). For exam-
ple, in Figure 2, if the queryQ is rewritten into an equivalent query
Q ′ by eliminating the redundant aggregation MAX(c_custkey) and
pulling up the subquery, it achieves over 600x speedup.

To address this problem, in openGauss, we adopt Monte Carlo
Tree Search (MCTS) in the query rewrite module. The module is
composed of three parts as shown in Figure 12. Firstly, we build
a policy tree where the root node is the input SQL query and a
non-root node is a rewritten query from its parent by applying
some rewrite rules. And then we utilize Monte Carlo Tree Search
(MCTS) [9, 26] to efficiently explore and find rewrite orders that
gain the most time reduction. We design the Upper Confidence
bounds (UCB) to select promising or uncovered tree branches to
expand the policy tree in order to find optimized rewrite queries.
Secondly, we need to estimate the potential benefit of a tree node
(an intermediate rewritten query) that may be rewritten further
by other rewrite rules, and we design a deep estimation model
that estimates the potential benefit of an intermediate rewritten
query based on the query features, rewrite rules and table schema
(e.g., index, column cardinality). Thirdly, to enhance the search
efficiency, especially when the query has numerous logic operators,
we propose a multi-agent MCTS algorithm that explores different
rewrite orders on the policy tree in parallel.
Workflow. Figure 12 shows an example of finding the rewrite or-
ders of query Q . We first initiate the policy tree with a root node,
which denotes the input query Q . And then, with MCTS, we itera-
tively explore new tree nodes (new rewrite orders) on the policy
tree. For the policy tree in Figure 12, we first compute UCB values

for all the candidate branches, i.e., UCBi = xi + α

√
ln(f )
fi

, where

xi is the estimated cost reduction when rewriting from node i , fi is
the frequency (the number of iterations) that the node i is selected,
f is the total iteration number, and α is a hyper-parameter that
adjusts the exploration times. As the branch (o3,o2) has the highest
UCB score, we expand the branch (o3) into (o3,o2), i.e., the new
node denotes the query rewritten by o3 and o2 in order (selection).
Next, we input the rewritten query Q ′ into the deep estimation
model, which computes the reward of Q ′, denoting the potential
cost reduction when further rewriting Q ′ with a transformer net-
work (estimation). Finally, we update the existing nodes in (o3,o2),
where the cost reduction is added by the reward and the selection
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frequency is added by one. After reaching the maximal iteration
number or no new leaf nodes, we output the rewritten query with
the maximal cost reduction in the leaf nodes of the policy tree.

3.2 Learned Cost Estimator
Traditional cardinality estimation in modern DBMS (e.g.,
PostgreSQL) still brings large errors, especially when the number
of involved columns are large, because they can hardly capture
the correlations of different columns. For example, histogram-
based methods only capture distribution on a single column;
sampling-based methods suffer from 0-tuple problem for high
dimensional data. Recently, neural network is utilized for solving
cost estimation problems [21, 25, 46, 49, 66, 67]. In openGauss, we
adopt a tree-structured LSTM model to estimate both cardinality
and cost for arbitrary execution plan and outperforms traditional
methods [55]. Figure 3 shows the workflow and design of
tree-LSTM based cost estimator.

3.2.1 Workflow. For offline training, the training data are collected
from historical queries, which are encoded into tensors by Feature
Extractor. Then the training data is fed into the Training Model and
the model updates weights by back-propagating based on current
training loss. For online cost estimation, when the query optimizer
asks the cost of a plan, Feature Extractor encodes it in a up-down
manner recursively. If the sub-plan rooted at the current node has
been evaluated before, it extracts representation from Representa-
tion Memory Pool, which stores a mapping from a query plan to its
estimated cost. If the current sub-plan is new, Feature Extractor en-
codes the root and goes to its children nodes. We input the encoded
plan vector into Tree-structured Model, and then the model evalu-
ates the cost and cardinality of the plan and returns them to the
query optimizer. Finally, the estimator puts all the representations
of ‘new’ sub-plans into Representation Memory Pool.

3.2.2 Model Design. Cost estimation model has three components,
embedding layer, representation layer and estimation layer.
Embedding layer. The embedding layer embeds a sparse vector
to a dense vector. For operations, meta data, predicates, openGauss
uses a one-hot vector. We also use a fix-sized 0-1 vector to capture
some samples, where each bit denotes whether the correspond-
ing tuple satisfies the predicate of the query node. If the data tu-
ple matches the predicate, the corresponding bit is 1; 0 otherwise.
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openGauss uses a one-layer fully connected neural network with
ReLU activator to embed these vectors. However, the structure of
the Predicate vector is complicated, because it contains multiple
AND/OR semantics. openGauss uses a MIN pooling layer to rep-
resent OR operator and a MAX pooling layer to represent AND
operator. For string data, openGauss uses a Skip-gram model to
learn representations of substrings to appear in queries.
Representation Layer. The representation layer aims to capture
the global cost from leaf nodes to the root and avoid informa-
tion loss (e.g., correlation between columns). Each representation
model has three inputs, the embedding vector E, the representation
vector [Gl

t−1,R
l
t−1] of its left child, and the representation vector

[Gr
t−1,R

r
t−1] of its right child.

Estimation Layer. The estimation layer is the final layer which
outputs the cost/cardinality results according to the representation
of the plan structure. openGauss takes two-layer fully connected
neural network as an estimation layer.

3.3 Learned Plan Enumerator
The plan enumeration usually consists of join order selection and
physical operation selection. Traditional methods search the solu-
tion space to find a good plan based on the cost estimation model.
The dynamic programming based algorithms [22] enumerate the
solution space to find the best plan but takes exponential time
complexity. Heuristic methods [62] prune the solution space to
speed up the search operation, but often generate poor results. Re-
cently, some studies [29, 43] apply deep reinforcement learning
(DRL) [5] on plan enumeration. Similar to dynamic programming,
these works model the plan generation process as a Markov deci-
sion process (MDP) and reduce the search space from exponential
level to polynomial level. However they adopt a fixed-length rep-
resentation of the join tree, which makes them hard to handle the
schema updates and the multi-aliases in a query. To address these
problems, we propose a learned plan enumerator [69] to make the
optimizer generate the plan with low execution time and easy to
handle the changes in the schema. We apply the Deep Q-Network
(DQN) [47] with Tree-LSTM to find the plan of a SQL query.
Workflow. Figure 4 shows the framework and workflow of the
openGauss’s plan enumerator. Given a query q, the plan enumera-
tor first initializes an empty state s0 which contains only the basic
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information of the query. The intermediate state si is a plan for-
est that contains many partial plan tree. Each time, RL policy will
choose the next two tables ti1, ti2 to join and which operation
oi (hashjoin, nestloop, etc) to be used. An action ai is the combi-
nation of the join and the operation ai = (ti1, ti2,oi ). The action
is retrieved according to the q-value from our tree-LSTM neural
network Q(si , ti1, ti2,oi ). ai = argmint1,t2 Q(si , t1, t2,oi ). RL con-
tinuously chooses the next action until the whole plan tree is built.
We divide the training process into two steps, cost training and
latency tuning. In cost training, the cost of the plans will be used to
train the TreeLSTM, which can be efficiently trained to get initial
results. In latency tuning, only a few plans’ latency will be used as
training data to fine-tune the neural network.
Tree-LSTM Based Q-network. DQN uses the Q-network to esti-
mate and find the next action. In the plan enumerator, Q-network
will choose which plan tree is better. To capture the tree struc-
ture of the plan tree, we design a Tree-LSTM based Q-network
Q to estimate each plan tree. We have three kinds of leaf nodes
in a plan tree: column, table, operation. First, we use the predi-
cate (e.g., selectivity) to represent each column c as R(c). Then a
pooling layer is to collect information of all columns in each ta-
ble to give the table’s representation R(t) = Pool(R(ct1),R(ct2), ...).
The representation of the operator c is a one-hot vector. For ex-
ample, if we have three join operations (Hash Join, Nested Loop,
Merge Join) and o = Hash Join, we can set R(o) = (1, 0, 0). The
column representations R(c), table representations R(t) and op-
eration representations R(o) are the leaves of the plan tree. The
Depth-First-Search is used to traverse the plan trees to give the
final representations. The tree-LSTM layerT will be applied to each
node to get the representation of the plan tree. For an intermediate
state si that not all tables are joined together, the plan state is a plan
forest F which contains several plan trees F = {tree1, tree2, ...}. A
child-sum (CS) layer is used as a root layer to capture the forest
information R(si ) = R(F ) = CS(R(tree1),R(tree2)). After we get the
representation of the plan state R(si ) of query q, a dense layer is
used to construct the final Q-network Q = Dense(R(si ),q)

4 LEARNED DATABASE ADVISOR
4.1 Self-Monitoring
Detecting database anomalies at runtime is very important. How-
ever this is rather hard to manually handle in time. Hence, we
develop a self-monitoring module to proactively discover the anom-
alies. We monitor 500+ database metrics (e.g., response time, CPU
usage, memory usage, disk used space, cache hit rate) and then
detect the anomalies based on the metrics. For example, when the
metric is far from the prediction result, there may be an anomaly
with high probability. Then the self-diagnosis module diagnoses
the root cause, and calls the corresponding optimization functions
to repair this anomaly. Thus, the database monitor can drive the
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subsequent operations (e.g., driving the database diagnosis module
for root cause analysis, driving the optimizations for knob tuning).
Anomaly Detection. When an anomaly happens inside or out-
side the database, it can be reflected by corresponding metrics and
system logs [14]. Thus, openGauss diagnoses in real-time by ana-
lyzing database and operating system metrics. A unified training
data platform continuously collects metrics and logs from the data-
base and operating system such as QPS, running log. Putting these
data together forms time-series data. Traditional statistics-based
anomaly detection algorithms are designed for one-dimensional
data. These methods neglect correlation between time series data
thus cannot achieve high accuracy. Deep learning based algorithms
take correlation into account but require labeled data. To address
these problems, we propose to employ a reconstruction-based algo-
rithm to discover anomalies. The normal time-series data always
have a regular pattern and abnormal patterns will have large pos-
sibilities to be anomalies. We employ a LSTM-based auto-encoder
with an attention layer. The original time-series data are encoded
into a low-dimensional representation. The decoder parses the
representation and tries to restore the original data. The training
loss is reconstruction quality. The model learns the distribution
of these multi-dimensional data and obtains reconstruction ability.
The data that cannot be reconstructed (error exceeds the threshold)
are reported as an anomaly. Our system applies a statistical method
“Extreme Value Theory" to determine the dynamic threshold. Hence,
users need to set system sensitivity like 1% or 5%, and it will cal-
culate the corresponding threshold by historical data. In Figure 5,
openGauss first conducts standardization on training data. Then
the processed data are fed into time series auto-encoder for updat-
ing model’s parameters. After model has the ability to reconstruct
normal database metrics. openGauss collects reconstruction errors
and calculate threshold.

4.2 Self-Diagnosis
Root-cause diagnosis is vital to autonomous databases. We consider
system diagnosis and SQL diagnosis. The former analyzes the root
cause of system anomalies, e.g., IO contention, network congestion,
insufficient disk space; the latter analyzes the root cause of slow
SQLs, e.g., lock conflicts and no indexes.
4.2.1 System-Level Diagnosis. The database performance may de-
grade due to some inside or outside factors like adding index on fre-
quently updating tables or network congestion. Existing databases
usually employ experienced DBA to diagnose the root causes man-
ually, which is a difficult task since the state metrics for a database
are complex and lack of domain knowledge. Previous automatic di-
agnosis methods rely on expert knowledge heavily [7] or introduce
non-negligible extra cost [13].
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To address this problem, we propose a system-level diagnosis

framework. It regards diagnosis as a classification problem and finds
root cause by making use of features in metrics data. In other words,
it is lightweight and will not affect the performance. In addition,
it optimizes the diagnosis model by analyzing historical data so
experts just need to label a few anomaly cases. The framework
consists of the offline and online stages as shown in Figure 6. In
the offline stage, it collects two types of metrics: normal data and
abnormal data. It utilizes normal data to train an LSTM-based auto-
encoder model. Abnormal data consist of anomaly cases and each
case contains database metrics data and the root cause label. For
abnormal data, it extracts representative metrics and stores them as
a knowledge base. We apply Kolmogorov-Smirnov test to measure
the state of every dimension metrics data quantitatively to unify
these information in one model. Thus it encodes each anomaly case
into an vector. Each dimension represents the state of a database
metrics. In the online stage, once openGauss detects an anomaly, it
calls the root causemodule, which first adopts Kolmogorov-Smirnov
test on each database metrics to generate the anomaly vector, and
then finds similar anomaly cases and locates the root cause.
4.2.2 SQL-level Diagnosis. SQL diagnosis module aims to find the
time-consuming operator of a SQL without actually running it.
Challenges (1) The execution plan does not exist. It’s time-
consuming to record execution plans in log files, and thus the
execution plan of a SQL query is not kept in our metrics. (2) A
one-model-fits-all approach is necessary. As the estimated cost by
statistic-based optimizer may not be accurate and not all databases
have learning-based cost estimators, we need another model to
decide the root cause of slow queries. Moreover, the SQL diagnosis
module in openGauss should support different datasets and work-
loads with complex grammar features. (3) SQL-level root cause
diagnosis should also consider system metrics. System status have
effects on operator performance. For example, IO contention makes
sequence scan operator slower.
Workflow. Figure 7 shows the architecture of SQL-level diagnosis
module. For offline model training, openGauss first collects training
queries labeled by running logs or experts, a root cause label of each
query is the slowest operator. Then the SQL query is transformed
into an execution plan by Plan Generator using database statistics
(e.g., index columns histogram, table cardinality, number of distinct

values). Next, each plan is encoded into a vector by depth-first
searching the nodes of the plan tree and concatenate with real-
time system metrics (e.g., CPU/IO load). Next the vectors are fed
into training models, and a gradient-based optimizer compares
output with label and conducts parameters optimization. For online
diagnosing, the input query is also transformed into an execution
plan by Plan Generator, and the plan is encoded into plan-structured
vectors and concatenated with real-time system metrics in Feature
Encoder. At last, the model outputs root cause for the query.
Schema-free Encoding. Data statistics have been used for gen-
erating execution plans, and our query encoding is based on plan
trees, we depth-first search the whole plan structure and encode
the plan into a preorder vector. To generalize model to different
databases, we encode each column or table with statistics (instead
of one-hot). Specifically, for a scan operator, we encode the scan
types (e.g., sequential scan, index scan) as a one-hot vector, and
encode normalized table cardinality and estimated cost/cardinality
as float values. For join operator, we encode the join types as a one-
hot vector, and encode estimated cost/cardinality as float values.
For aggregation and sort operators, we encode the number of rows
and distinct values on group-by keys as float values, and encode
estimated cost/cardinality as float values. For nested sub-plan, we
encode it as a new execution plan and insert into an array. System
metrics for each query is also encoded as a vector.
Model Design. We adopt a light-weight model for SQL diagnosis.
As systemmetric vector is shorter than plan vector, we use two fully-
connected modules to learn representations of plan and system
metrics separately and transform them into two vectors with the
same length, and then concatenate them as a vector and input it
into output layer. When sub-plans exist, representations of different
sub-plans are combined into a single vector with an average pooling
layer. In the output layer, the model outputs probabilities for all
possible root causes by using a softmax function, and select the one
with the largest possibility as the root cause.

4.3 Self-Configuration
Databases have hundreds of tunable knobs (e.g., over 400 knobs
in openGauss) and it is important to set appropriate values for
the knobs, such as memory management, logging, concurrency
control. However, manually tuning the knobs is time-consuming,
and other automatic tuning methods (e.g., heuristic sampling or
machine learning methods [4, 36, 71, 76]) cannot efficiently tune
the knobs. For example, ML methods [4, 36, 71] first train models
on small datasets and require retraining before migrating to large
datasets. Besides, in a practical scenario, it is important to initialize
the DRL model with a near-optimal state (i.e., pre-trained model)
for quick convergence.

To address those problems, we propose a hybrid tuning module,
which has four parts: (1) DB Side: the DB_Agent extracts the char-
acteristics of the database instance, including the internal status
and current knob settings. (2) Algorithm Side contains the tun-
ing algorithms, including search-based algorithms (e.g., Bayesian
optimization, particle swarm algorithm) and deep reinforcement
learning (e.g., Q-learning, DDPG [40]). (3) Tuning Side iteratively
conducts knob tuning. At each step, it inputs the database status
and query features (the state vector) and outputs recommended
knob values using the tuning algorithm in Algorithm Side. (4)
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Workload Side conducts stress tests by the clients, which runs
benchmark tasks and feeds back the execution performance (e.g.,
average throughput). To achieve practical online tuning, we provide
three tuning modes:
1) Rule Mode logs in the database, obtains the state of the currently
running workload, and generates a knob recommendation based
on expert experience. The report includes the warnings of unrea-
sonable knob values (e.g., “too highmax_connections with small
number of CPU cores”), potential risks, and recommended knob
value ranges. Since there are hundreds of knobs, the Rule Mode can
first reduce the tuning space, based on which the Learned Mode
further tunes the database for higher performance.
2) Training Mode: with the workload type provided by the clients,
we iteratively modify knob values and execute test workloads. And
we collect the execution information as training samples and use
the samples to train the RL model so that the user can load the
model through the Tune Mode for finer-granularity tuning later;
3) DRL Mode uses optimization algorithms for knob tuning. Cur-
rently, two types of algorithms are supported: one is global search
(e.g., particle swarm algorithm), and the other is deep reinforcement
learning. DRL can achieve the highest performance, but needs to
generate a well-trained model; on the other hand, the global search
algorithm does not need to be trained in advance and can directly
search knob configurations and tune the database.

4.4 Self-Optimization
4.4.1 MV Recommender. Materialized views (MV) are rather im-
portant in DBMS that can significantly improve the query per-
formance based on the space-for-time trade-off principle. How-
ever, it is hard to automatically recommend and maintain MVs
without DBAs. Furthermore, even DBAs cannot handle large-scale
databases, especially cloud databases that have millions of instances
and millions of users. Recently, there are some studies on MV rec-
ommendation [20, 23, 70]. There are two challenges: (1) There are
many potential MVs and finding an optional set of MVs is time-
consuming; (2) Estimating the cost of MV-aware optimized query
is essential while the traditional estimation method is not accurate
enough. To address these challenges, we adopt an learning-based
MV recommendation method as shown in Figure 9.
MVCandidateGeneration.We analyze the workload to find com-
mon subqueries for MV candidate generation, where a subquery
is a subtree of the syntax tree for relational algebra. Common sub-
queries are the equivalent or similar rewritten subqueries among
different queries. Common subqueries with a high frequency and
computation cost will be selected as MV candidates.
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Figure 10: DRL-Based Index Recommender

MV Estimation.We regard benefit as the saved execution time
from executing a query by making use of a set of views. We propose
an Encoder-Reducermodel to predict the benefit of using a view to
answer a query by using features of queries and MVs. Meanwhile,
we estimate the cost of a view including the space cost and the view
generation time cost using Encoder-Reducer model.
MV Selection. Given a space budget, we select a subset of MV
candidates tomaximize the total benefit of answering queries within
the space budget. We model this selection problem as an integer
programming problem and propose a reinforcement learning (RL)
model to address it.

4.4.2 Index Recommender. Indexes are essential for the database
system to achieve high performance. A proper set of indexes can
significantly speed up query execution. Nevertheless, index recom-
mendation is a complex and challenging problem. First, indexes
mutually affect performance, making it difficult to quantify the
gain of a new index accurately. Second, the number of index com-
binations is enormous. For example, the developers may just build
indexes on any accessed columns and cause great space waste. And
it is a laborious work to filter out useless indexes. To address these
problems, we propose a learning-based method with three steps.
Firstly, to reduce the computation cost, we extract representative
queries to represent the entire workload, and recommend indexes
for each query independently. We parse the query and extract the
potentially useful columns from different clauses. According to the
table and column statistics, these columns are selected and scored.
The indexes of each query together constitute the set of candidate
indexes for the given workload. Secondly, to estimate the benefit
of candidate indexes, we use the hypothetical index to simulate
the creation of actual indexes, which avoids the time and space
overhead required for creating a physical index. Based on the hypo-
thetical index, we can evaluate the index’s impact on the specified
query statement by invoking the database’s optimizer. We estimate
the accurate cost (e.g., disk space usage, creation time, and total
cost of using indexes) for hypothetical indexes. Thirdly, a subset of
index candidates is selected to maximize the benefit. We formulate
the problem as a deep reinforcement learning (DRL) problem and
apply Deep Q-Network (DQN) to pick indexes.
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5 MODEL VALIDATION
Model validation is a vital task in learning-based database systems.
We utilize it to validate learning-based models, which can serve
many database applications (e.g., knob tuning and monitoring) and
support them to meet the service level agreements (SLAs).

To validate a model, we predict the performance if we deploy the
learned model. If the performance becomes better, we deploy the
model; drop it otherwise. Traditional prediction methods are de-
signed for single queries [65, 72]. They cannot effectively predict the
performance for concurrent queries, because they cannot capture
the correlations between concurrent queries, e.g., resource compe-
tition and mutual effect, which can significantly affect concurrent
queries’ performance. To address this issue, we adopt a graph em-
bedding based performance prediction method , Workload2Graph,
in openGauss [75], which provides real-time query performance
prediction for concurrent and dynamic workloads. Firstly, we utilize
a graph model to capture the workload characteristics, in which
the vertices represent operator features extracted from query plans,
and edges between two operators denote the query correlations and
resource competitions between them. Secondly, we feed the work-
load graph into the prediction model, in which we propose a graph
embedding algorithm to embed graph features in operator level
(e.g., the operator features and K-hop neighbors) [18, 51, 57, 58],
and utilize a deep learning model to predict query performance.
Moreover, if a graph is too large, it may affect the prediction effi-
ciency. Hence, we propose a graph compaction algorithm, which
drops redundant vertices and combines similar vertices.
Workflow. As shown in Figure 11, given a query workload with
multiple concurrent queries, we aim to predict execution time for
each query. First, Workload2Graph extracts feature from the query
workload that may affect the performance of concurrent queries.
For instance, it extracts operators from the query plans and obtains
the correlations between different operators, e.g., data sharing be-
tween operators and lock conflicts between operators. Moreover,
it also obtains the statistics, configurations, and states from data-
base system views. Then Workload2Graph utilizes these features
to characterize the behaviors of concurrent queries in the form of a
graph. Lastly, PerformancePredictor adopts a graph-based learn-
ing model to embed the graph and predicts the query performance
using a deep learning model. For a large graph with high concur-
rency queries, we conduct semi-supervised training (i.e., with some
labeled vertices for prediction accuracy and other unlabeled ver-
tices for prediction stability) and utilize batch gradient descent to
enhance training efficiency.

6 EXPERIMENT
We compared with state-of-the-art learning-based techniques and
an open-source database PostgreSQL [2].

Table 1: Datasets.
Name Mode Table Size(GB) #Query
JOB RO 21 3.7 113
TPC-C RW 9 1.30 912,176
TPC-H RO 8 1.47 22
TPC-DS RO 25 1.35 99
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Figure 12: Query Rewrite Comparison (90th denotes the
queries that run slower than 90% queries).

System Setting. We used TensorFlow and Pytorch as backend
engines to train learned models and the trained model was used in-
side the database kernel. We implemented a data collection module
inside the database kernel, which collected statistical and system
metrics and called TensorFlow to train models via the RPC protocol.
Datasets. To facilitate re-producing the results, we used four
widely-used datasets as shown in Table 1.

6.1 Learned Optimizer
6.1.1 LearnedQuery Rewrite. We conducted experiments on TPC-H
and JOB to compare the query rewrite in openGausswith three base-
lines, i.e., top-down query rewrite in PostgreSQL, arbitrary query
rewrite that selected a random rewrite order (Arbitrary), and
heuristic query rewrite that greedily used rewrite rules (Heuristic).
openGauss and PostgreSQLwere implemented in database engines.
For Arbitrary and Heuristic, we extracted 82 rewrite rules in Cal-
cite [6] and rewrote queries with corresponding strategies. We used
a tool SQL-smith (https://github.com/anse1/sqlsmith) to generate
15,750 and 10,673 slow queries (>1s) for TPC-H and JOB respectively.

As shown in Figures 12(a)-12(b), openGauss outperformed the
other methods in all the cases, i.e., over 49.7% execution time reduc-
tion for TPC-H and over 36.8% for JOB. The reasons were two-fold.
Firstly, openGauss explored rewrite orders with lower execution
cost than the default top-down order in PostgreSQL. For example,
with an outer join, PostgreSQL cannot push down predicates to
the input table, while openGauss solved the problem by first con-
verting the outer-join into an inner-join and then pushing down
the predicate. Secondly, the estimation model in openGauss pre-
dicted the potential cost reduction, with which openGauss selected
promising rewrite orders. Besides, openGauss worked better on
TPC-H than JOB, because TPC-H queries contained many subqueries
that were removed by query rewrite, while the multi-joins in JOB
queries would be further optimized by plan enumerator.

6.1.2 Learned Cost Estimation. We conducted experiments on JOB
to compare cost estimator in openGauss with baselines, includ-
ing cost estimator in popular databases (PostgreSQL, MySQL and
Oracle). Our methods included tree-LSTM based estimator with
different string embeddings (hash TLSTM-Hash and embedding
TLSTM-Emb), and tree-LSTM model with MIN-MAX pooling for
complex predicate (TPool). Table 2 showed the results, and we
made the following observations.
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Table 2: Cost Estimation – Test errors on the JOB workload

Cardinality median 90th 95th 99th max mean Cost median 90th 95th 99th max mean
PostgreSQL 184 8303 34204 106000 670000 10416 PostgreSQL 4.90 80.8 104 3577 4920 105

MySQL 104 28157 213471 1630689 2487611 60229 MySQL 7.94 691 1014 1568 1943 173
Oracle 119 55446 179106 697790 927648 34493 Oracle 6.63 149 246 630 1274 55.3

openGauss (TLSTM-Hash) 11.1 207 359 824 1371 83.3 TLSTM-Hash 4.47 53.6 149 239 478 24.1
openGauss (TLSTM-Emb) 11.6 181 339 777 1142 70.2 TLSTM-Emb 4.12 18.1 44.1 105 166 10.3

openGauss (TPool) 10.1 74.7 193 679 798 47.5 TPool 4.07 11.6 17.5 63.1 67.3 7.06

Table 3: Plan Generation – GMRL to DP
JOB TPC-H

openGauss 0.67 0.92
ReJoin 1.14 0.96
QP100 NA 1.03
QP1000 1.90 1.00

Skinner-C 0.89 1.03
DQ 1.23 0.99
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Figure 13: Plan Generation–GMRL on TPC-H (DP is 1).

Summary. Traditional methods (PostgreSQL,MySQL,Oracle) had
large errors on cardinality estimation for harder queries in the JOB
workload. The reason was that the distribution passed to the root
of the plan was not accurate using statistical or sampling methods,
and traditional methods estimated cardinality of most of queries as
1 (the true value is from 0 to millions). The cost estimation error
was less than cardinality estimation, and the learned methods still
outperformed traditional methods by 1-2 orders of magnitude. The
difference between TLSTM-Emb and TPool was the structure of the
predicate embedding model, and TPool outperformed TLSTM-Emb
on all the cardinality errors and cost errors, because the tree model
with Min-Max Pooling represented the compound predicate better
and trained a more robust model for cardinality and cost estimation.
6.1.3 Learned Plan Enumerator. We conducted experiments on
JOB and TPC-H to compare the latency of the plans generated by
the learned plan enumerator in openGauss with the baselines. We
chose dynamic programming(DP) in PostgreSQL, two DQL meth-
ods DQ [29] and ReJoin [43], a heuristic method QP-1000(quick pick
1000 plans) [62], and the Monte-Carlo tree search-based methods
skinner-C [60] as our baselines. We used a geometric average based
on Geometric Mean Relevant Latency (GMRL) as the metric. The
DP was the baseline in GMRL.

GMRL = (Πn
i=1

Latency(qi )

LatencyDP (qi )
)
1
n

Table 3 showed the overall GMRL of different methods on JOB
and TPC-H datasets. openGauss outperformed all other methods on
two benchmarks. The GMRL lower than 1 indicated that openGauss
achieved a better plan than DP on latency. Specifically, the GMRL
of openGauss was 0.67 on JOB means that the plan of openGauss

Table 4: Knob Tuning Comparison – openGauss (R) denotes
rule based tuning, openGauss (D) denotes DRL based tuning.

TPC-H (s) JOB (s) TPC-C (tpmC)
PostgresQL 121.3 220.19 5552

DBA 95.1 193.37 7023
openGauss (R) 94.3 192.81 7574
openGauss (D) 82.7 163.88 12118.4

took 67% time of DP on average. The queries in TPC-H were typi-
cally short (< 8 relations) which limited the search space. It made
all methods get similar GMRL on TPC-H. The 0.92 of openGauss
showed that it saved the 8% time compared with DP. We grouped
queries by their templates to analyze which queries openGauss can
optimize well. Figure 13 showed the GMRL on TPC-H. All methods
generated similar plans on most queries. For T5 and T7, DRL based
methods found better plans, compared with other methods.

6.2 Learned Advisor
6.2.1 Learned Knob Tuning. We compared the performance of
knob tuning with DBA and PostgreSQL. Table 4 showed the results.
openGauss outperformed PostgreSQL and DBA in all the cases. The
reasons were two fold. First, the Rule Mode in openGauss reduced
the value ranges and recommends knob values based on rules of
thumb, and achieved better tuning performance than DBA. Second,
the DRL Mode in openGauss further explored the experience of
Rule Mode. As it utilized an exploitation-and-exploration policy to
efficiently search better knobs settings, openGauss achieved better
performance than DBA, e.g., over 15% latency reduction for JOB and
TPC-H. The Rule Mode had lower tuning performance than the
DRL Mode, but gained higher tuning efficiency (e.g., 4s for the Rule
Mode and 8min for the DRL Mode in TPC-H). The reasons were two
fold. Firstly, the DRL Mode adjusted the knob values based on the
reward values, the execution results and causes overhead. Secondly,
for a new scenario, the DRL Mode took time to fine-tune the rein-
forcement learning model, which learned new mapping from the
workload and database state to obtain ideal knob settings.
6.2.2 Learned View Advisor. To evaluate view advisor, we evalu-
ated the module on different budgets and compared our DQNmodel
with BIGSUB [23] and traditional algorithms on JOB.

(1) TopValue: A greedy algorithm, using the metric of sum bene-
fit for eachMV. The sum benefit of anMVwas the sum of the benefit
of using this MV answering each query. MVs with top sum benefit
was selected within the budget. (2) TopUValue: A greedy algorithm,
using the metric of unit benefit, sum benefit/size, for each MV. (3)
TopFreq: A greedy algorithm, using the metric of frequency for
each MV. (4) BIGSUB [23]: An iterative method. It optimized views
and queries separately in each iteration. It first flipped selection
state of views by a specified probability, and then selected views to
optimize queries using an integer linear programming solver. (5)
openGaussNS: Our DQNmodel without the semantic vector in state
representation from Encoder-Reducer model. (6) openGauss: Our
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Figure 15: View Advisor (JOB).
DQN model with the semantic vector from the Encoder-Reducer
model. All methods were based on our benefit/cost estimation. We
compared the effectiveness of these methods on optimizing the JOB
workload under different budget size from 5MB to 2000MB. The
result was shown in Figure 14.
openGauss vs Heuristics. openGauss outperformed TopValue,
TopUValue and TopFreq. The reasons were two-fold. Firstly,
openGauss estimated the benefit of utilizing multiple MVs while
the greedy methods cannot, because they were expensive to enu-
merate all combinations. Thus, greedy methods approximated the
benefit by summing up the individual benefit which were not ac-
curate. Secondly, the performances of greedy methods were not
stable during the increase of budget while openGauss grew stable.
The reason was that greedy methods were more likely to fall in
local optimum, and they selected MVs with higher benefit or unit
benefit, but higher benefit leaded to larger size that wasted the
budget. While openGauss adjusted the earlier selection in the sub-
sequent iterations. When an MV fell in local optimum, DQN model
preferred not to select this MV.
openGauss vs BIGSUB. openGauss outperformed BIGSUB by 12.5%.
The reasons were two-fold. Firstly, BIGSUB flipped a view by the
probability that relied on the benefit and cost of this view. Views
were considered independent with each other. openGauss captured
the correlation between views. Secondly, BIGSUB might fall in local
optimum. openGauss learned to select views and avoided local
optimum as low rewards made the model to change the action.
Efficiency on MV-aware query rewriting. We evaluated the la-
tency of our MV-aware query rewriting. We rewrote the queries
in the JOB workload and compared the latency of original queries
with the total latency of rewritten queries and rewriting. Figure 15
showed the result. The average query rewriting latency in JOB was
64.75ms which was small compared to the slow queries.
Summary. Our DQN model and semantic vector improved the
quality of MV selection.
6.2.3 Learned Index Advisor. To evaluate learned index advisor in
openGauss, we conducted the experiments on TPC-H and TPC-C
and compared our methods with default indexes and DBA designed

Table 5: Index Advisor
TPC-H (s) TPC-C (tpmC)

openGauss 122.9 10202
DBA 130.1 10001

Default 140.8 9700

Table 6: Anomaly Detection(TPC-C)
Precision Recall F1-score

openGauss 0.795 0.776 0.785
VAE 0.302 0.821 0.441
GAN 0.554 0.745 0.635

indexes. Table 5 showed the results. We observed that openGauss
outperformed DBA and default indexes on both workloads. This
indicated that openGauss identified important indexes for both
OLAP and OLTP systems, because we encoded system statistics
into state representation so that our index advisor could update
index configuration dynamically.
6.2.4 Anomaly Detection. We compared anomaly detection with
two state-of-the-art methods, VAE-based method(VAE)[41] and
GAN-based methods(GAN)[32]. The results were shown in Table 6.
We observed that openGauss outperformed VAE and GAN, because
database monitoring data were noisy and influenced by workload
and deep generative methods cannot model them properly. Our
method achieved higher performance, because our auto-decoder
model could effectively capture the data distributions and patterns.
6.2.5 SQL Diagnosis. We compared with query-embedding based
method, cost-based method and plan-embedding based method.
Query-embedding based method encoded SQL into vectors with
query features and real-time system metrics. Cost-based method
used cost estimated by using statistics-based cost estimator in
PostgreSQL to determine the root cause. Plan-embedding based
method was adopted in openGauss, and it considered both execu-
tion operators and system metrics. We reported the accuracy and
latency of these methods. Table 7 showed the results. For accu-
racy, openGauss outperformed PostgreSQL estimator by around
10%, and outperformed query-embedding method by around 20%.
That’s because feature and model designed by openGauss consid-
ered both SQL execution path and real-time system metrics, and it
supported different schemas. For latency, query-embedding based
method outperformed openGauss due to ignoring execution plan
when encoding, but this caused worse accuracy with limited train-
ing queries. openGauss was reasonable because it could achieve
near optimal accuracy with 4 orders of magnitude less time com-
paring with diagnosis by actually running the query.
6.2.6 System-Level Diagnosis. We compared system-level diagno-
sis with two baselines and state-of-the-art DBSherlock [68]. Two
baselines adopted decision tree and normal k-nearest neighbor as
classifiers. DBSherlock detectedmetrics predicates between normal
and abnormal data and built corresponding causal model for each
type of anomalies. The results were shown in Table 8. openGauss
outperformed the other three methods, because our method empha-
sized metrics with more importance and achieved higher accuracy.
DBSherlock cannot adapt to complex workload since the causal
models were sensitive to training data.

Our learning-based techniques have been used by the real cus-
tomers, e.g., the sixth biggest bank of China, Postal Savings Bank
of China. For example, learning-based knob tuning in openGauss
achieved 27% latency reduction for analytical queries and over
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Table 7: SQL-Level Diagnosis(4 Datasets)
Precision Recall Latency(ms)

openGauss 0.913 0.922 0.528
query-embedding 0.739 0.794 0.035

PostgreSQL 0.826 0.831 0.372
Actual running 1.0 1.0 3561

Table 8: System-Level Diagnosis(TPC-C)
Precision Recall F1-score

openGauss 0.885 0.871 0.869
kNN 0.815 0.771 0.765

Decision Tree 0.836 0.824 0.826
DBSherlock 0.826 0.553 0.549

120% throughput increase for high-concurrency transactions. The
index recommender in openGauss automatically selected beneficial
indexes and can improve the throughput by 100%.

6.3 Model Validation
We compared performance prediction in openGauss with two
state-of-the-art methods, BAL-based method (BAL) [15], DL-based
method [46] (DL). BAL estimated the average buffer access latency
and uses linear regression to predict query latency for concurrent
queries. DL adopted a plan-structured neural network to predict per-
formance for a single query. We compared prediction accuracy and
prediction time on JOB. And the results were shown in Figure 16.
Prediction Accuracy. As shown in Figure 16, openGauss had the
lowest error rate, around 29.9x lower than BAL, 22.5x lower than DL.
The reasons were two-fold. First, the workload graph in openGauss
encoded concurrency factors like resource contentions, which in-
creased query latency of JOB by over 20%, in comparison with serial
execution. Instead, BAL collected buffer access latency (BAL) and DL
relied on single query features. Second, openGauss utilized graph
embedding network to directly map the structural information into
performance factors and could improve the generality when the
workload changed. Instead, BAL utilized a linear regression method
that required many statistical samples for a single workload.
Prediction Latency. As shown in Figure 16, openGauss took the
least prediction latency than BAL and DL; and when the concur-
rency level increased, the prediction latency of openGauss was
relatively stable. For openGauss, the prediction model concurrently
predicted the execution time of all the vertices. It embedded the
localized graphs for all the vertices in the workload graph, and so
the total prediction time of a workload was close to predicting for
the vertex with the largest localized graph. For BAL, it required the
longest prediction time because it predicted the performance while
executing the workload. For DL, it propagated intermediate data
features across the query plan tree in a bottom-up fashion, which
took relatively long time than openGauss.
Summary. openGauss outperformed state-of-the-arts methods
in prediction accuracy and latency. For prediction accuracy,
openGauss outperformed existing methods by 11–30 times. For
latency, openGauss outperformed existing methods by 20%–1,227%.

We summarize our learnings from the practices of deploying
openGauss. (1) Feature selection is very important.We need to select
effective features based on different application scenarios. (2)Model
selection is vital.We need to design effective learning models by con-
sidering multiple factors (e.g., optimization targets, input features).
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Figure 16: Model Validation (JOB).

(3) The validation model is vital for deploying learning algorithms.
We need to build a validation model to decide whether a learned
model can be deployed. (4) The model management platform is vital
to reduce redundant training time and adapt to workload changes.
We need to provide a unified model data management platform. (5)
Training data management is important. We need to build a training
data management platform to judiciously collect training data.

7 RELATEDWORK
7.1 Autonomous Databases Systems
There were some autonomous database systems studied by
academia [28, 37, 50]. Peloton [50] predicted the workload ar-
rival rate with clustering and RNN, and deployed optimization
actions like knob tuning, index/mv selection. SageDB [28] pro-
vided a vision to specialize the database implementation by learn-
ing the data distribution (CDF models) and designing database
components based on the knowledge, e.g., learned index, learned
query scheduling. However, they did not implement real systems.
Moreover, there were some autonomous practices in commercial
databases [3, 10–12, 30, 33, 63]. Oracle’s autonomous data ware-
house [3, 11] optimized the OLAP services with tuning choices like
predicate indexing and materialized views. Alibaba’s SDDP [33]
detected database status based on history statistics and provided
automatic optimization like hot/cold separation and buffer tun-
ing. DB2 [30, 63] and Microsoft [10, 12] supported statistics-based
self-configuration (e.g., knob tuning) and self-maintenance (e.g.,
resource allocation, data partitioning). Amazon Redshift supported
automatic distribution-key selection with hybrid algorithms[48].
However, these autonomous techniques were mainly cost-based
heuristics; while openGauss is an autonomous database system that
validates, trains, and implements state-of-the-art learning-based
components [20, 20, 36, 55, 69, 75] on an open-source database [1].

7.2 Learned Database Optimizer
Query Rewrite. Related works [17, 52] defined heuristic rules to
automatically translate a set of linear algebra operators. They first
transformed SQL queries into a standardized form, and then applied
rewriting rules to these translated queries. However, they [17, 52]
heuristically matched rules from top down, but cannot estimate ben-
efits of different rewrite orders, and may give sub-optimal queries.
Cost/Cardinality Estimation. Existing studies proposed either
supervised learning [25, 49] or unsupervised learning [21, 66, 67]
to learn the joint dataset distributions and estimate cardinalities.
Marcus [46] proposed a tree-structured model to represent plan
structure with operator embeddings and estimated information(e.g.,
cost, cardinality) from databases.We [55] proposed a tree-structured
LSTM model to represent plan structure which did not rely on
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estimated information provided by databases. Comparing to exist-
ing studies, our system has several superiorities. Our tree-LSTM
learns the plan structure, and supports both cardinality and cost
estimations without external estimation. Our predicate embedding
techniques support non-trivial predicates (e.g., ‘Like’ predicates).
Plan Generation. Existing learning based plan enumerator [29,
44, 45, 61, 69] usually tried to apply reinforcement learning on
the decision making(join order selection, operator selection). Skin-
nerDB [61] used aMonte-Carlo tree search basedmethods to change
the join order on the fly. SkinnerDB required to measure the plan’s
performance and switched to another plan when query execution
which relied on its customized in-memory database. DQ and Re-
Join [29, 45] introduced the idea of DRL into the plan enumerator.
It proved that the DRL can handle query enumerator process. DRL
based methods can give the plans with low cost after enough train-
ing. The most similar work to ours was NEO [45]. Both NEO and
our work tried to catch the plans’ structure information during plan
generation. NEO used a value neural network to search the plan
with low latency. NEO first encoded each node in a join tree into
a feature vector and then uses Tree Convolution Network to get
the representation of join tree. Different from NEO, our work used
the Tree-LSTM to catch the plans’ structure. Our work supports
database updates efficiently that estimates both latency and cost.

7.3 Learned Database Advisor
Knob Tuning. ML-based knob tuning [4, 56, 71] was proposed to
automate knob tuning and achieved close or even better results than
DBAs. However, existing techniques were unaware of the incoming
workload characteristics and ML-based methods cannot efficiently
adapt to new scenarios. We [36] proposed a query-aware tuning sys-
tem. We first encoded query features into changes of state metrics,
and then recommended knob values based on the predicated state
metrics. Besides, our method supported query/workload/cluster-
level tuning for various performance requirements.
Index Selection. Most of index selection methods [27] used what-
if calls or hypothetical index to estimate index benefits and design
different heuristic algorithms to choose final index sets. Some stud-
ies [27, 31, 53, 54] applied reinforcement learning based methods
to index selection problem. They regarded the problem as a DRL
problem and used RL algorithms to select indexes. Existing methods
usually took long time to recommend indexes, especially for large
workloads. To improve the efficiency of index advisor, we extracted
representative queries from workload so that our methods can iden-
tify important indexes more quickly. Besides, we encoded system
statistics into state representation of our deep reinforcement learn-
ing model so that it can update index configuration dynamically.
Materialized View Selection. Learning-based MV selection was
proposed recently [23, 39, 70]. Jindal et al. [23] proposed an iteration
based heuristic method to select MVs. Liang et al. [39] proposed
an RL method to learn a policy of view creation and eviction from
the historical execution statistics. Yuan et al. [70] proposed an RL
method to select and create MVs for workloads. We [20] proposed
a DL+RL method to estimate the benefit of MVs and select MVs for
dynamic workloads. We used a deep learning model to estimate the
benefit of MVs instead of collecting latency directly from runtimes
so that we did not retrain model for different workloads. We split

the MVs selection state into small states instead of a fixed-length
(#MVs) state so that our RL model can fit dynamic workloads.
Model Validation. Duggan et al. [15] proposed Buffer Access La-
tency (BAL) to capture the joint effects of disk and memory con-
tention on query performance. Wu et al. [64] proposed an analytic
model to predict dynamic workloads. Marcus et al. proposed deep
learning [46]. For a single query, it builded tree-structured net-
work to predict query latency, which encoded interactions between
child/parent operators. However, existing methods cannot predict
the performance of concurrent queries. We [75] proposed a graph
embedding based performance prediction model that embedded
the query and data features with a workload graph and predicted
execution time with the embeddings.
Learned Database Diagnosis. Benoit et al [7] proposed a frame-
work for diagnosing and tuning OLTP DBMS performance, which
relied on expert knowledge heavily. Yoon et al [68] presented a prac-
tical tool for assisting DBAs diagnosing performance. The system
can highlight anomaly metrics by predicates but its diagnosis per-
formance degraded sharply when workload changes. openGauss
adopted distribution difference rather than predicate to describe
anomaly metrics and was more robust. Borisov et al [8] focused
on databases on network-attached server-storage infrastructure.
Kalmegh et al [24] focused on analyzing inter-query contention for
data analytics like Spark. Oracle[13] improved diagnosis accuracy
by introducing a common currency called “Database Time" by col-
lecting more trace data. Microsoft[16] built an automatic database
troubleshooting system on Azure SQL Databases. Alibaba[42] pro-
posed a framework to find root cause for intermittent slow queries.
These studies were devised on the cloud environment and consider
particular database metrics. Our method was more general and
could be used in either cloud databases or on-premise databases.

8 CONCLUSION
We proposed an autonomous database system openGauss that inte-
grated machine learning techniques into database systems includ-
ing learned optimizers and learned advisors. The former designed
learned query rewriter, learned cost estimator and learned plan gen-
erator to optimize database optimizer. The latter designed learned
knob tuning, learned database diagnosis, learned view/index advi-
sor to optimize database engine. We also proposed a model vali-
dation model to validate new learned model. Experimental results
showed that the learned methods outperformed traditional tech-
niques. There are still some future works. First, learning-based mod-
els rely on offline learning and it requires to address the cold-start
problem (e.g., adapting to new databases). Second, learning-based
models need to support database updates (e.g., schema update).
Third, it is expensive to use a machine learning platform, e.g., Ten-
sorFlow, which cannot provide instant feedback. Thus it requires
to design lightweight in-database machine learning algorithms.
Fourth, based on the “one size does not fit all” paradigm, it requires
to automatically select appropriate methods for different scenarios.
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