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ABSTRACT
Exhaustive enumeration of all possible join orders is o�en

avoided, and most optimizers leverage heuristics to prune the

search space. �e design and implementation of heuristics are

well-understood when the cost model is roughly linear, and

we �nd that these heuristics can be signi�cantly suboptimal

when there are non-linearities in cost. Ideally, instead of

a �xed heuristic, we would want a strategy to guide the

search space in a more data-driven way—tailoring the search

to a speci�c dataset and query workload. Recognizing the

link between classical Dynamic Programming enumeration

methods and recent results in Reinforcement Learning (RL),

we propose a new method for learning optimized join search

strategies. We present our RL-based DQ optimizer, which

currently optimizes select-project-join blocks. We implement

three versions of DQ to illustrate the ease of integration into

existing DBMSes: (1) A version built on top of Apache Calcite,

(2) a version integrated into PostgreSQL, and (3) a version

integrated into SparkSQL. Our extensive evaluation shows

that DQ achieves plans with optimization costs and query

execution times competitive with the native query optimizer

in each system, but can execute signi�cantly faster a�er

learning (o�en by orders of magnitude).
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1 INTRODUCTION
Join optimization has been studied for more than four

decades [44] and continues to be an active area of re-

search [33, 40, 49]. �e problem’s combinatorial complexity

leads to the ubiquitous use of heuristics. For example, clas-

sical System R-style dynamic programs o�en restrict their

search space to certain shapes (e.g., “le�-deep” plans). �ery

optimizers sometimes apply further heuristics to large join

queries using genetic [4] or randomized [40] algorithms. In

edge cases, these heuristics can break down (by de�nition),

which results in poor plans [29].

In light of recent advances in machine learning, a new

trend in database research explores replacing programmed

heuristics with learned ones [11, 25, 26, 32–34, 37, 41]. In-

spired by these results, this paper explores the natural ques-

tion of synthesizing dataset-speci�c join search strategies

using learning. Assuming a given cost model and plan space,

can we optimize the search over all possible join plans for a

particular dataset? �e hope is to learn tailored search strate-

gies from the outcomes of previous planning instances that

dramatically reduce search time for future planning.

Our key insight is that join ordering has a deep algorith-

mic connection with Reinforcement Learning (RL) [47]. Join

ordering’s sequential structure is the same problem structure

that underpins RL. We exploit this algorithmic connection

to embed RL deeply into a traditional query optimizer; any-

where an enumeration algorithm is used, a policy learned

from an RL algorithm can just as easily be applied. �is in-

sight enables us to achieve two key bene�ts. First, we can

seamlessly integrate our solution into many optimizers with

the classical System R architecture. Second, we exploit the

nested structure of the problem to dramatically reduce the

training cost, as compared to previous proposals for a “learn-

ing optimizer”.

To be�er understand the connection with RL, consider the

classical “bo�om-up” dynamic programming solution to join

ordering. �e principle of optimality leads to an algorithm

that incrementally builds a plan from optimal subplans of

size two, size three, and so on. Enumerated subplans are

memoized in a lookup table, which is consulted to construct

a sequence of 1-step optimal decisions. Unfortunately, the
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space and time complexities of exact memoization can be

prohibitive. Q-learning, an RL algorithm [47], relaxes the

requirement of exact memoization. Instead, it formulates

optimal planning as a prediction problem: given the costs

of previously enumerated subplans, which 1-step decision

is most likely optimal? RL views the classic dynamic pro-

gramming lookup table as a model—a data structure that

summarizes enumerated subplans and predicts the value of

the next decision. In concrete terms, Q-learning sets up a

regression from the decision to join a particular pair of re-

lations to the observed bene�t of making that join on past

data (i.e., impact on the �nal cost of the entire query plan).

To validate this insight, we built an RL-based optimizerDQ
that optimizes select-project-join blocks and performs join

ordering as well as physical operator selection. DQ observes

the planning results of previously executed queries and trains

an RL model to improve future search. We implement three

versions of DQ to illustrate the ease of integration into exist-

ing DBMSes: (1) A standalone version built on top of Apache

Calcite [2], (2) a version integrated with PostgreSQL [3], and

(3) a version integrated with SparkSQL [7]. Deploying DQ
into existing production-grade systems (2) and (3) each re-

quired changes of less than 300 lines of code and training

data could be collected through the normal operation of the

DBMS with minimal overhead.

One might imagine that training such a model is ex-

tremely data-intensive. While RL algorithms are indeed noto-

riously data-ine�cient (typical RL se�ings, such as the Atari

games [38], require hundreds of thousands of training exam-

ples), we can exploit the optimal subplan structure speci�c

to join optimization to collect an abundance of high-quality

training data. From a single query that passes through a na-

tive optimizer, not only are the �nal plan and its total cost

collected as a training example, so are all of its subplans and,

recursively, everything inside the exact memoization table. For

instance, planning an 18-relation join query in TPC-DS (Q64)

through a bushy optimizer can yield up to 600,000 training

data points thanks to DQ’s Q-learning formulation.

We thoroughly study this approach on two workloads:

Join Order Benchmark [29] and TPC-DS [5].DQ sees sig-

ni�cant speedups in planning times (up to > 200×) rela-

tive to dynamic programming enumeration while essentially

matching the execution times of optimal plans computed by

the native enumeration-based optimizers. �ese planning

speedups allow for broadening the plan space to include

bushy plans and Cartesian products. In many cases, they

lead to improved query execution times as well. DQ is partic-

ularly useful under non-linear cost models such as memory

limits or materialization. On two simulated cost models with

signi�cant non-linearities, DQ improves on the plan quality

of the next best heuristic over a set of 6 baselines by 1.7× and

3×. �us, we show DQ approaches the optimization time

Figure 1: We consider 3 cost models for the Join Order
Benchmark: (1) one with inexpensive index lookups, (2) one
where the only physical operator is a hybrid hash join with
limited memory, and (3) one that allows for the reuse of pre-
viously built hash tables. �e �gure plots the cost subopti-
mality w.r.t. optimal plans. �e classical le�-deep dynamic
program fails on the latter two scenarios. We propose a re-
inforcement learning based optimizer,DQ, which can adapt
to a speci�c cost model given appropriate training data.

e�ciency of programmed heuristics and the plan quality of

optimal enumeration.

We are enthusiastic about the general trend of integrating

learning techniques into database systems—not simply by

black-box application of AI models to improve heuristics,

but by the deep integration of algorithmic principles that

span the two �elds. Such an integration can facilitate new

DBMS architectures that take advantage of all of the bene�ts

of modern AI: learn from experience, adapt to new scenarios,

and hedge against uncertainty. Our empirical results with

DQ span across multiple systems, multiple cost models, and

workloads. We show the bene�ts (and current limitations)

of an RL approach to join ordering and physical operator

selection. Understanding the relationships between RL and

classical methods allowed us to achieve these results in a data-

e�cient way. We hope that DQ represents a step towards a

future learning query optimizer.

2 BACKGROUND
�e classic join ordering problem is, of course, NP-hard, and

practical algorithms leverage heuristics to make the search

for a good plan e�cient. �e design and implementation of

optimizer search heuristics are well-understood when the

cost model is roughly linear, i.e., the cost of a join is linear

in the size of its input relations. �is assumption underpins

many classical techniques as well as recent work [27, 40, 44,

49]. However, many practical systems have relevant non-

linearities in join costs. For example, an intermediate result

exceeding the available memory may trigger partitioning, or

a relation may cross a size threshold that leads to a change

in physical join implementation.
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It is not di�cult to construct reasonable scenarios where

classical heuristics dramatically fail (Figure 1). Consider

the query workload and dataset in the Join Order Bench-

mark [29]. A popular heuristic from the original Selinger

optimizer is to prune the search space to only include le�-

deep join orders. Prior work showed that le�-deep plans are

extremely e�ective on this benchmark for cost models that

prefer index joins [29]. Experimentally, we found this to be

true as well: the worst-case cost over the entire workload is

only 2x higher than the true optimum (for an exponentially

smaller search space). However, when we simply change the

cost model to be more non-linear, consisting of (1) hybrid

hash join operators that spill partitions to disk when data

size exceeds available memory, or (2) hash join operators

that can re-use previously built hash tables, suddenly the

le�-deep heuristic is no longer a good idea—it is almost 50x

more costly than the true optimum.

�ese results illustrate that in a practical sense, the search

problem is unforgiving: various heuristics have di�erent

weak spots where they fail by orders of magnitude relative

to optimal. For example, success on such atypical or non-

linear cost models may require searching over “bushy” plans,

not just le�-deep ones. With new hardware innovations [8]

and a move towards serverless RDBMS architectures [1],

it is not unreasonable to expect a multitude of new query

cost models that signi�cantly di�er from existing literature,

which might require a complete redesign of standard pruning

heuristics. Ideally, instead of a �xed heuristic, we would want

a strategy to guide the search space in a more data-driven

way—tailoring the search to a speci�c database instance,

query workload, and observed join costs. �is sets up the

main premise of the paper: would it be possible to use data-

driven machine learning methods to identify such a heuristic

from data?

2.1 Example
We focus on the classical problem of searching for a query

plan made up of binary join operators and unary selections,

projections, and access methods. We will use the following

database of three relations denoting employee salaries as a

running example throughout the paper:

Emp(id,name, rank) Pos(rank, title, code) Sal(code,amount)

Consider the following join query:

SELECT *
FROM Emp, Pos, Sal

WHERE Emp.rank = Pos.rank

AND Pos.code = Sal.code

�ere are many possible orderings to execute this query. For

example, one could execute the example query as Emp ./
(Sal ./ Pos), or as Sal ./ (Emp ./ Pos).

2.2 Reinforcement Learning
Bellman’s “Principle of Optimality” and the characterization

of dynamic programming is one of the most important re-

sults in computing [12]. In addition to forming the basis of

relational query optimization, it has a deep connection to

a class of stochastic processes called Markov Decision Pro-

cesses (MDPs), which formalize a wide range of problems

from path planning to scheduling. In an MDP model, an agent

makes a sequence of decisions with the goal of optimizing a

given objective (e.g., improve performance, accuracy). Each

decision is dependent on the current state, and typically leads

to a new state. �e process is “Markovian” in the sense that

the system’s current state completely determines its future

progression. Formally, an MDP consists of a �ve-tuple:

〈S,A, P(s,a),R(s,a), s0〉

where S describes a set of states that the system can be in, A
describes the set of actions the agent can take, s ′ ∼ P(s,a)
describes a probability distribution over new states given

a current state and action, and s0 de�nes a distribution of

initial states. R(s,a) is the reward of taking action a in state

s. �e reward measures the performance of the agent. �e

objective of an MDP is to �nd a decision policy π : S 7→ A,

a function that maps states to actions, with the maximum

expected reward:

arg max

π
E

[
T−1∑
t=0

R(st ,at )
]

subject to st+1 = P(st ,at ),at = π (st ).

As with dynamic programming in combinatorial problems,

most MDPs are di�cult to solve exactly. Note that the greedy

solution, eagerly maximizing the reward at each step, might

be suboptimal in the long run. Generally, analytical solutions

to such problems scale poorly in the time horizon.

Reinforcement learning (RL) is a class of stochastic opti-

mization techniques for MDPs [47]. An RL algorithm uses

sampling, taking randomized sequences of decisions, to build

a model that correlates decisions with improvements in the

optimization objective (cumulative reward). �e extent to

which the model is allowed to extrapolate depends on how

the model is parameterized. One can parameterize the model

with a table (i.e., exact parameterization) or one can use

any function approximator (e.g., linear functions, nearest

neighbors, or neural networks). Using a neural network in

conjunction with RL, or Deep RL, is the key technique behind

recent results like learning how to autonomously play Atari

games [39] and the game of Go [45].
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2.3 Markov Model of Enumeration
Now, we will review standard “bo�om-up” join enumeration,

and then, we will make the connection to a Markov Deci-

sion Process. Every join query can be described as a query

graph, where edges denote join conditions between tables

and vertices denote tables. Any dynamic programming join

optimizer implementation needs to keep track of its progress:

what has already been done in a particular subplan (which

relations were already joined up) and what options remain

(which relations–whether base or the result of joins–can still

be “joined in” with the subplan under consideration). �e

query graph formalism allows us to represent this state.

De�nition 2.1 (�ery Graph). A query graph G is an undi-

rected graph, where each relation R is a vertex and each join

predicate ρ de�nes an edge between vertices. Let κG denote

the number of connected components of G.

Making a decision to join two subplans corresponds to

picking two vertices that are connected by an edge and merg-

ing them into a single vertex. LetG = (V ,E) be a query graph.

Applying a join c = (vi ,vj ) to the graph G de�nes a new

graph with the following properties: (1) vi and vj are re-

moved from V , (2) a new vertex (vi +vj ) is added to V , and

(3) the edges of (vi +vj ) are the union of the edges incident

to vi and vj . Each join reduces the number of vertices by

1. Each plan can be described as a sequence of such joins

c1 ◦ c2... ◦ cT until |V | = κG . �e above description embraces

another System R heuristic: “avoiding Cartesian products”.

We can relax that heuristic by simply adding edges to G at

the start of the algorithm, to ensure it is fully connected.

Going back to our running example, suppose we start with

a query graph consisting of the vertices (Emp, Pos, Sal). Let

the �rst join be c1 = (Emp, Pos); this leads to a query graph

where the new vertices are (Emp + Pos, Sal). Applying the

only remaining possible join, we arrive at a single remaining

vertex Sal + (Emp + Pos) corresponding to the join plan

Sal ./ (Emp ./ Pos).
�e join optimization problem is to �nd the best possi-

ble join sequence—i.e., the best query plan. Also note that

this model can be simply extended to capture physical op-

erator selection as well. �e set of allowed joins can be

typed with an eligible join type, e.g., c = (vi ,vj ,HashJoin)
or c = (vi ,vj , IndexJoin). We assume access to a cost model

J (c) 7→ R+, i.e., a function that estimates the incremental

cost of a particular join.

Problem 1 (Join Optimization Problem). Let G de�ne
a query graph and J de�ne a cost model. Find a sequence
c1 ◦ c2... ◦ cT terminating in |V | = κG to minimize:

min

c1, ...,cT

T∑
i=1

J (ci )

subject to Gi+1 = c(Gi ).

Symbol De�nition

G A query graph. �is is a state in the MDP.

c A join. �is is an action.

G ′ �e resultant query graph a�er applying a join.

J (c) A cost model that scores joins.

Table 1: Notation used throughout the paper.

Note how this problem statement exactly de�nes an MDP

(albeit by convention a minimization problem rather than

maximization).G is a representation of the state, c is a repre-

sentation of the action, the vertex merging process de�nes

the state transition P(G, c), and the reward function is the

negative cost −J . �e output of an MDP is a function that

maps a given query graph to the best next join. Before pro-

ceeding, we summarize our notation in Table 1.

2.4 Long Term Reward of a Join
To introduce how RL gives us a new perspective on this clas-

sical database optimization problem, let us �rst examine the

greedy solution. A naive solution is to optimize each ci inde-

pendently (also called Greedy Operator Optimization [40]).

�e algorithm proceeds as follows: (1) start with the query

graph, (2) �nd the lowest cost join, (3) update the query

graph and repeat until only one vertex is le�.

�e greedy algorithm, of course, does not consider how

local decisions might a�ect future costs. For illustration, con-

sider our running example query with the following simple

costs (assume a single join method with symmetric cost):

J (EP) = 100, J (SP) = 90, J ((EP)S) = 10, J ((SP)E) = 50

�e greedy solution would result in a cost of 140 (because it

neglects the future e�ects of a decision), while the optimal

solution has a cost of 110. However, there is an upside: this

greedy algorithm has a computational complexity ofO(|V |3),
despite the super-exponential search space.

�e greedy solution is suboptimal because the decision

at each index fails to consider the long-term value of its

action. One might have to sacri�ce a short term bene�t for a

long term payo�. Consider the optimization problem for a

particular query graph G:

V (G) = min

c1, ...,cT

T∑
i=1

J (ci ) (1)

In classical treatments of dynamic programming, this func-

tion is termed the value function. It is noted that optimal

behavior over an entire decision horizon implies optimal

behavior from any starting index t > 1 as well, which is the

basis for the idea of dynamic programming. Conditioned on
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the current join, we can write in the following form:

V (G) = min

c
Q(G, c)

Q(G, c) = J (c) +V (G ′)
leading to the following recursive de�nition of theQ-function
(or cost-to-go function):

Q(G, c) = J (c) +min

c ′
Q(G ′, c ′) (2)

Intuitively, the Q-function describes the long-term value of

each join: the cumulative cost if we act optimally for all

subsequent joins a�er the current join decision. Knowing Q
is equivalent to solving the problem since local optimization

minc ′ Q(G ′, c ′) is su�cient to derive an optimal sequence of

join decisions.

If we revisit the greedy algorithm, and revise it hypotheti-

cally as follows: (1) start with the query graph, (2) �nd the

lowest Q-value join, (3) update the query graph and repeat,

then this algorithm has the same computational complexity

ofO(|V |3) but is provably optimal. To sketch out our solution,

we will use Deep RL to approximate a global Q-function (one

that holds for all query graphs in a workload), which gives

us a polynomial-time algorithm for join optimization.

2.5 Applying Reinforcement Learning
An important class of reinforcement learning algorithms,

called Q-learning algorithms, allows us to approximate the Q-

function from samples of data [47]. What if we could regress

from features of (G, c) to the future cumulative cost based on

a small number of observations? Practically, we can observe

samples of decision sequences containing (G, c, J (c),G ′) tu-

ples, where G is the query graph, c is a particular join, J (c)
is the cost of the join, and G ′ is the resultant graph. Such a

sequence can be extracted from any �nal join plan and by

evaluating the cost model on the subplans.

Let’s further assume we have a parameterized model for

the Q-function, Qθ :

Qθ (fG , fc ) ≈ Q(G, c)

where fG is a feature vector representing the query graph

and fc is a feature vector representing a particular join. θ
is the model parameters that represent this function and

is randomly initialized at the start. For each training tuple

i , one can calculate the following label, or the “estimated”

Q-value:

yi = J (c) +min

c ′
Qθ (G ′, c ′)

�e {yi } can then be used as labels in a regression problem.

If Q were the true Q-function, then the following recurrence

would hold:

Q(G, c) = J (c) +min

c ′
Qθ (G ′, c ′)

So, the learning process, or Q-learning, de�nes a loss at each

iteration:

L(Q) =
∑
i

‖yi −Qθ (G, c)‖22

�en parameters of the Q-function can be optimized with

gradient descent until convergence.

RL yields two key bene�ts: (1) the search cost for a sin-

gle query relative to traditional query optimization is radi-

cally reduced, since the algorithm has the time-complexity

of greedy search, and (2) the parameterized model can po-

tentially learn across queries that have “similar” but non-

identical subplans. �is is because the similarity between

subplans are determined by the query graph and join featur-

izations, fG and fc ; thus if they are designed in a su�ciently

expressive way, then the neural network can be trained to

extrapolate the Q-function estimates to an entire workload.

�e speci�c choice of Q-learning is important here (com-

pared to other RL algorithms). First, it allows us to take advan-

tage of optimal substructures during training and greatly re-

duce data needed. Second, compared to policy learning [33],

Q-learning outputs a score for each join that appears in any
subplan rather than simply selecting the best join. �is is

more amenable to deep integration with existing query opti-

mizers, which have additional state like interesting orders

and their own pruning of plans. �ird, the scoring model al-

lows for top-k planning rather than just ge�ing the best plan.

We note that the design of Q-learning variants is an active

area of research in AI [21, 50], so we opted for the simplicity

of a Deep Q-learning approach and defer incorporation of

advanced variants to future work.

2.6 Reinforcement Learning vs. Supervised
Learning

Reinforcement Learning and Supervised Learning can seem

very similar since the underlying inference methods in RL al-

gorithms are o�en similar to those used in supervised learn-

ing and statistical estimation. Here is how we justify our

terminology. In supervised learning, one has paired train-

ing examples with ground-truth labels (e.g., an image with

a labeled object). For join optimization, this would mean a

dataset where the example is the current join graph and the

label is the next best join decision from an oracle. In the

context of sequential planning, this problem se�ing is o�en

called Imitation Learning [42]; where one imitates an oracle

as best as possible.

As in [30], the term “Reinforcement Learning” refers to

a class of empirical solutions to Markov Decision Process

problems where we do not have the ground-truth, optimal

next steps; instead, learning is guided by numeric “rewards”

for next steps. In the context of join optimization, these

rewards are subplan costs. RL rewards may be provided by a

real-world experiment, a simulation model, or some other
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oracular process. In our work below, we explore di�erent

reward functions including both real-world feedback (§5)

and simulation via traditional plan cost estimation (§3.3).

RL purists may argue that access to any optimization or-

acle moves our formulation closer to supervised learning

than classical RL. We maintain this terminology because

we see the pre-training procedure as a useful prior. Rather

than expensive, ab initio learning from executions, we learn

a useful (albeit imperfect) join optimization policy o�ine.

�is process bootstraps a more classical “learning-by-doing”

RL process online that avoids executing grossly suboptimal

query plans.

�ere is additionally subtlety in the choice of algorithm.

Most modern RL algorithms collect data episodically (execute

an entire query plan and observe the �nal result). �is makes

sense in �elds like robotics or autonomous driving where

actions may not be reversible or decomposable. In query

optimization, every query consists of subplans (each of which

is its own “query”). Episodic data collection ignores this

compositional structure.

3 OPTIMIZER ARCHITECTURE
Selinger’s optimizer design separated the problem of plan

search from cost/selectivity estimation [44]. �is insight al-

lowed independent innovation on each topic over the years.

In our initial work, we follow this lead, and intentionally

focus on learning a search strategy only. Even within the

search problem, we focus narrowly on the classical select-

project-join kernel. �is too is traditional in the literature,

going back to Selinger [44] and continuing as recently as

Neumann et al.’s very recent experimental work [40]. It is

also particularly natural for illustrating the connection be-

tween dynamic programming and Deep RL and implications

for query optimization. We intend for our approach to plug

directly into a Selinger-based optimizer architecture like that

of PostgreSQL, DB2 and many other systems.

In terms of system architecture, DQ can be simply inte-

grated as a learning-based replacement for prior algorithms

for searching a plan space. Like any non-exhaustive query

optimization technique, our results are heuristic. �e new

concerns raised by our approach have to do with limitations

of training, including over��ing and avoiding high-variance

plans. We use this section to describe the extensibility of

our approach and what design choices the user has at her

disposal.

3.1 Overview
Now, we describe what kind of training data is necessary

to learn a Q-function. In supervised regression, we collect

data of the form (feature, values). �e learned func-

tion maps from feature to values. One can think of this

as a stateless prediction, where the underlying prediction

problem does not depend on some underlying process state.

On the other hand, in the Q-learning se�ing, there is state.

So we have to collect training data of the form (state,
decision, new state, cost). �erefore, a training

dataset has the following format (in Java notation):

List<Graph, Join, Graph', Cost> dataset

In many cases like robotics or game-playing, RL is used in

a live se�ing where the model is trained on-the-�y based on

concrete moves chosen by the policy and measured in prac-

tice. Q-learning is known as an “o�-policy” RL method. �is

means that its training is independent of the data collection

process and can be suboptimal—as long as the training data

su�ciently covers the decisions to be made.

3.2 Architecture and API
DQ collects training data sampled from a cost model and a

native optimizer. It builds a model which improves future

planning instances. DQ makes relatively minimal assump-

tions about the structure of the optimizer. Below are the API

hooks that it requires implemented.

Workload Generation. A function that returns a list of training

queries of interest. DQ requires a relevant workload for

training. In our experiments, we show that this workload

can be taken from query templates or sampled from the

database schema.

sample(): List<Queries>

Cost Sampling. A function that given a query returns a list of

join actions and their resultant costs. DQ requires the sys-

tem to have its own optimizer to generate training data. �is

means generating feasible join plans and their associated

costs. Our experiments evaluate integration with determin-

istic enumeration, randomized, and heuristic algorithms.

train(query): List<Graph,Join,Graph',Cost>

Predicate Selectivity Estimation. A function that returns the

selectivity of a particular single table predicate.DQ leverages

the optimizer’s own selectivity estimate for featurization

(§4.1).

selectivity(predicate): Double

In our evaluation (§6), we will vary these exposed hooks

to experiment with di�erent implementations for each (e.g.,

comparing training on highly relevant data from a desired

workload vs. randomly sampling join queries directly from

the schema).
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Figure 2: Training data collection is e�cient (§3.3). Here, by leveraging the principle of optimality, three training examples
are emitted from a single plan produced by a native optimizer. �ese examples share the same long-term cost and relations to
join (i.e., making these local decisions eventually leads to joining {T 1, · · · ,T 4} with optimal cumulative cost V ∗).

3.3 E�cient Training Data Generation
Training data generation may seem onerous, but in fact,

useful data is automatically generated as a consequence of

running classical planning algorithms. For each join deci-

sion that the optimizer makes, we can get the incremental

cost of the join. Suppose, we run a classical bushy dynamic

programming algorithm to optimize a k-way join, we not

only get a �nal plan but also an optimal plan for every single

subplan enumerated along the way. Each query generates

an optimal query plan for all of the subplans that compose

it, as well as observations of suboptimal plans that did not

make the cut. �is means that a single query generates a

large amount of training examples. Figure 2 shows how the

principle of optimality helps enhance a training dataset.

�is data collection scheme di�ers from that of several

popular RL algorithms such as PPO and Policy Gradients [43]

(and used in [33]). �ese algorithms train their models

“episodically”, where they apply an entire sequence of deci-

sions and observe the �nal cumulative reward. An analogy

would be a graph search algorithm that does not backtrack

but resets to the starting node and tries the whole search

again. While general, this scheme not suited for the structure

of join optimization, where an optimal plan is composed of

optimal substructures. Q-learning, an algorithm that does

not rely on episodic data and can learn from o�ine data

consisting of a hierarchy of optimal subplans, is a be�er �t

for join optimization.

In our experiments, we bootstrap planning with a bushy

dynamic program until the number of relations in the join

exceeds 10 relations. �en, the data generation algorithm

switches to a greedy scheme for e�ciency for the last K − 10

joins. Ironically, the data collected from such an optimizer

might be “too good” (or too conservative) because it does

not measure or learn from a diverse enough space of (costly,

hence risky) subplans. If the training data only consisted

of optimal sub-plans, then the learned Q-function may not

accurately learn the downside of poor subplans. Likewise,

if purely random plans are sampled, the model might not

see very many instances of good plans. To encourage more

“exploration”, during data collection noise can be injected into

the optimizer to force it to enumerate more diverse subplans.

We control this via a parameter ϵ , the probability of picking

a random join as opposed to a join with the lowest cost. As

the algorithm enumerates subplans, if rand() < ϵ then a

random (valid) join is chosen on the current query graph;

otherwise it proceeds with the lowest-cost join as usual. �is

is an established technique to address such “covariate shi�”,

a phenomenon extensively studied in prior work [28].

4 REALIZING THE Q-LEARNING MODEL
Next, we present the mechanics of actually training and

operating a Q-learning model.

4.1 Featurizing the Join Decision
Before we get into the details, we will give a brief motivation

of how we should think about featurization in a problem like

this. �e features should be su�ciently rich that they capture

all relevant information to predict the future cumulative cost

of a join decision. �is requires knowing what the overall

query is requesting, the tables on the le� side of the proposed

join, and the tables on the right side of the proposed join.

It also requires knowing how single table predicates a�ect

cardinalities on either side of the join.

Participating Relations: �e overall intuition is to

use each column name as a feature, because it identi-

�es the distribution of that column. �e �rst step is to

construct a set of features to represent which a�ributes

are participating in the query and in the particular join.

Let A be the set of all a�ributes in the database (e.g.,

{Emp.id, Pos .rank, ..., Sal .code, Sal .amount}). Each relation

rel (including intermediate join results) has a set of visible
a�ributes, Ar el ⊆ A, the a�ributes present in the output.

Similarly, every query graph G can be represented by its

visible a�ributes AG ⊆ A. Each join is a tuple of two rela-

tions (L,R) and we can get their visible a�ributes AL and AR .

Each of the a�ribute setsAG ,AL,AR can then be represented

with a binary 1-hot encoding: a value 1 in a slot indicates

that particular a�ribute is present, otherwise 0 represents

its absence. Using ⊕ to denote concatenation, we obtain the

query graph features, fG = AG , and the join decision fea-

tures, fc = AL ⊕AR , and, �nally, the overall featurization for
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SELECT *
FROM Emp, Pos, Sal

WHERE Emp.rank
= Pos.rank

AND Pos.code
= Sal.code

(a) Example query

AG = [E.id, E.name, E.rank,

P.rank, P.title, P.code,

S.code, S.amount]
= [1 1 1 1 1 1 1 1]

(b)�ery graph
featurization

AL = [E.id, E.name, E.rank]
= [1 1 1 0 0 0 0 0]

AR = [P.rank, P.title, P.code]
= [0 0 0 1 1 1 0 0]

(c) Features of E ./ P

AL = [E.id, E.name, E.rank,

P.rank, P.title, P.code]
= [1 1 1 1 1 1 0 0]

AR = [S.code, S.amount]
= [0 0 0 0 0 0 1 1]

(d) Features of (E ./ P) ./ S
Figure 3: A query and its corresponding featurizations (§4.1). One-hot vectors encode the visible attributes in the query
graph (AG ), the le� side of a join (AL), and the right side (AR ). Such encoding allows for featurizing both the query graph and
a particular join. A partial join and a full join are shown. �e example query covers all relations in the schema, so AG = A.

�ery:

<example query>
AND Emp.id > 200

Selectivity(Emp.id>200) = 0.2

fG = AG = [E.id, E.name, · · · ]
= [1 1 1 1 1 1 1 1]
→ [.2 1 1 1 1 1 1 1]

(a) Selectivity scaling in
query graph features

�ery:

<example query>

feat vec(IndexJoin(E ./ P))
= AL ⊕ AR ⊕ [1 0]

feat vec(HashJoin(E ./ P))
= AL ⊕ AR ⊕ [0 1]

(b) Concatenation of
physical operators in join

features

Figure 4: Accounting for selections and physical operators.
Simple changes to the basic formof featurization are needed
to support selections (le�) and physical operators (right).
For example, assuming a system that chooses between only
IndexJoin and HashJoin, a 2-dimensional one-hot vector is
concatenated to each join feature vector. Discussion in §4.1.

a particular (G, c) tuple is simply fG ⊕ fc . Figure 3 illustrates

the featurization of our example query.

Selections: Selections can change said distribution, i.e., (col,
sel-pred) is di�erent than (col, TRUE). To handle single table

predicates in the query, we have to tweak the feature repre-

sentation. As with most classical optimizers, we assume that

the optimizer eagerly applies selections and projections to

each relation. Next, we leverage the table statistics present

in most RDBMS. For each selection σ in a query we can ob-

tain the selectivity δσ , which estimates the fraction of tuples

present a�er applying the selection.
1

To account for selec-

tions in featurization, we simply scale the slot in fG that the

relation and a�ribute σ corresponds to, by δr . For instance,

if selection Emp.id > 200 is estimated to have a selectivity

of 0.2, then the Emp.id slot in fG would be changed to 0.2.

Figure 4a pictorially illustrates this scaling.

Physical Operators: �e next piece is to featurize the

choice of physical operator. �is is straightforward: we add

1
We consider selectivity estimation out of scope for this paper. See discus-

sion in §3 and §7.

another one-hot vector that indicates from a �xed set of

implementations the type of join used (Figure 4b).

Extensibility: In this paper, we focus only on the basic

form of featurization described above and study foreign key

equality joins.
2

An ablation study as part of our evaluation

(Table 9) shows that the pieces we se�led on all contribute

to good performance. �at said, there is no architectural

limitation inDQ that prevents it from utilizing other features.

Any property believed to be relevant to join cost prediction

can be added to our featurization scheme. For example, we

can add an additional binary vector find to indicate which

a�ributes have indexes built. Likewise, physical properties

like sort-orders can be handled by indicating which a�ributes

are sorted in an operator’s output. Hardware environment

variables (e.g., available memory) can be added as scalars if

deemed as important factors in determining the �nal best

plan. Lastly, more complex join conditions such as inequality

conditions can also be handled (§8).

4.2 Model Training
DQ uses a multi-layer perceptron (MLP) neural network to

represent the Q-function. It takes as input the �nal featur-

ization for a (G, c) pair, fG ⊕ fc . Empirically, we found that a

two-layer MLP o�ered the best performance under a modest

training time constraint (< 10 minutes). �e model is trained

with a standard stochastic gradient descent (SGD) algorithm.

4.3 Execution a�er Training
A�er training, we obtain a parameterized estimate of the

Q-function, Qθ (fG , fc ). For execution, we simply go back to

the standard algorithm as in the greedy method but instead

of using the local costs, we use the learned Q-function: (1)

start with the query graph, (2) featurize each join, (3) �nd

the join with the lowest estimated Q-value (i.e., output from

the neural net), (4) update the query graph and repeat.

2
�is is due to our evaluation workloads containing only such joins. §8

discusses how DQ could be applied to more general join types.
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�is algorithm has the time-complexity of greedy enumer-

ation except in greedy, the cost model is evaluated at each

iteration, and in our method, a neural network is evaluated.

One pleasant consequence is that DQ exploits the abundant

vectorization opportunities in numerical computation. In

each iteration, instead of invoking the neural net sequen-

tially on each join’s feature vector, DQ batches all candidate

joins (of this iteration) together, and invokes the neural net

once on the batch. Modern CPUs, GPUs, and specialized ac-

celerators (e.g., TPUs [24]) all o�er optimized instructions

for such single-instruction multiple-data (SIMD) workloads.

�e batching optimization amortizes each invocation’s �xed

overheads and has the most impact on large joins.

5 FEEDBACK FROM EXECUTION
We have described how DQ learns from sampling the cost

model native to a query optimizer. However, it is well-known

that a cost model (costs) may fail to correlate with reality

(runtimes), due to poor cardinality estimates or unrealistic

rules used in estimation. To correct these errors, the database

community has seen proposals of leveraging feedback from

execution [14, 35]. We can perform an analogous operation

on learned Q-functions. Readers might be familiar with the

concept of �ne-tuning in the deep learning literature [54],

where a network is trained on one dataset and “transferred”

to another with minimal re-training. DQ can optionally ap-

ply this technique to re-train itself on real execution runtimes

to correlate be�er with the operating environment.

5.1 Fine-tuning DQ
Fine-tuning DQ consists of two steps: pre-training as usual

and re-training. First, DQ is pre-trained to convergence on

samples from the optimizer’s cost model; these are inexpen-

sive to collect compared to real execution. Next, the weights

of the �rst two layers of the neural network are frozen, and

the output layer’s weights are re-initialized randomly. Re-

training is then started on samples of real execution runtimes,

which would only change the output layer’s weights.

Intuitively, the process can be thought of as �rst using

the cost model to learn relevant features about the general

structure of subplans (e.g., “which relations are generally

bene�cial to join?”). �e re-trained output layer then projects

the e�ect of these features onto real runtimes. Due to its

inexpensive nature, partial re-training is a common strategy

applied in many machine learning applications.

5.2 Collecting Execution Data
For �ne-tuning, we collect a list of real-execution data,

(Graph, Join, Graph’, OpTime), where instead

of the cost of the join, the real runtime a�ributed to the

particular join operator is recorded. Per-operator runtimes

can be collected by instrumenting the underlying system,

or using the system’s native analysis functionality (e.g., EX-
PLAIN ANALYZE in Postgres).

6 EVALUATION
We extensively evaluate DQ to investigate the following

major questions:

• How e�ective is DQ in producing plans, how good

are they, and under what conditions (§6.1.1, §6.1.2,

§6.1.3)?

• How e�cient is DQ at producing plans, in terms of

runtimes and required data (§6.1.4, §6.1.5, §6.1.6)?

• Do DQ’s techniques apply to real-world scenarios,

systems, and workloads (§6.2, §6.3)?

To address the �rst two questions, we run experiments on

standalone DQ . �e last question is evaluated with end-to-

end experiments on DQ-integrated Postgres and SparkSQL.

6.1 Standalone Optimization Experiments
We implemented DQ and a wide variety of optimizer search

techniques previously benchmarked in Leis et al. [29] in a

standalone Java query optimizer harness. Apache Calcite

is used for parsing SQL and representing the SQL AST. We

�rst evaluate standalone DQ and other optimizers for �nal

plan costs; unless otherwise noted, exploration (§3.3) and

real-execution feedback (§5) are turned o�. We use the Join

Order Benchmark (JOB) [29], which is derived from the real

IMDB dataset (3.6GB in size; 21 tables). �e largest table

has 36 million rows. �e benchmark contains 33 templates

and 113 queries in total. �e joins have between 4 and 15

relations, with an average of 8 relations per query.

We revisit a motivating claim from earlier: heuristics are

well-understood when the cost model is linear but non-

linearities can lead to signi�cant suboptimality. �e experi-

ments intend to illustrate that DQ o�ers a form of robustness
to cost model, meaning, that it prioritizes plans tailored to the

structure of the cost model, workload, and physical design—

even when these plans are bushy.

We consider 3 cost models: CM1 is a model for a main-

memory database; CM2 additionally considers limited mem-

ory hash joins where a�er a threshold the costs of spilling

partitions to disk are considered; CM3 additionally considers

the re-use of already-built hash tables during upstream oper-

ators. We compare with the following baselines: �ickPick-

1000 (QP) [51] selects the best of 1000 random join plans;

IK-KBZ (KBZ) [27] is a polynomial-time heuristic that de-

composes the query graph into chains and orders them; dy-

namic programs Right-deep (RD), Le�-deep (LD), Zig-zag

(ZZ) [55], and Exhaustive (EX) exhaustively enumerate join

plans with the indicated plan shapes. Details of the setup are

listed in Appendix §A.

9



Optimizer Cost Model 1 Cost Model 2 Cost Model 3
Min Mean Max Min Mean Max Min Mean Max

�ickPick (QP) 1.0 23.87 405.04 7.43 51.84 416.18 1.43 16.74 211.13

IK-KBZ (KBZ) 1.0 3.45 36.78 5.21 29.61 106.34 2.21 14.61 96.14

Right-deep (RD) 4.70 53.25 683.35 1.93 8.21 89.15 1.83 5.25 69.15

Le�-deep (LD) 1.0 1.08 2.14 1.75 7.31 65.45 1.35 4.21 35.91

Zig-zag (ZZ) 1.0 1.07 1.87 1.0 5.07 43.16 1.0 3.41 23.13

Exhaustive (EX) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DQ 1.0 1.32 3.11 1.0 1.68 11.64 1.0 1.91 13.14

Table 2: DQ is robust and competitive under all three cost models (§6.1). Plan costs are relative to optimal plans produced by
exhaustive enumeration, i.e., costalдo/costEX. Statistics are calculated across the entire Join Order Benchmark.

Results of this set of experiments are shown in Table 2.

6.1.1 Cost Model 1. Our results on CM1 reproduce the

conclusions of Leis et al. [29], where le�-deep plans are gen-

erally good (utilize indexes well) and there is li�le need for

zigzag or exhaustive enumeration. DQ is competitive with

these optimal solutions without a priori knowledge of the in-

dex structure. In fact, DQ signi�cantly outperforms the other

heuristic solutions KBZ and QP. While it is true that KBZ
also restricts its search to le�-deep plans, it is suboptimal for

cyclic join graphs—its performance is hindered since almost

all JOB queries contain cycles. We found that QP struggles

with the physical operator selection, and a signi�cant num-

ber of random samples are required to �nd a narrow set of

good plans (ones the use indexes e�ectively).

Unsurprisingly, these results show that DQ , a learning-

based solution, reasonably matches performance on cases

where good heuristics exist. On average DQ is within 22%

of the LD solution and in the worst case only 1.45× worse.

6.1.2 Cost Model 2. By simply changing to a di�erent,

yet realistic, cost model, we can force the le�-deep heuristics

to perform poorly. CM2 accounts for disk usage in hybrid

hash joins. In this cost model, none of the heuristics match

the exhaustive search over the entire workload. Since the

costs are largely symmetric for small relation sizes, there is

li�le bene�t to either le�-deep or right-deep pruning. Simi-

larly zig-zag trees are only slightly be�er, and the heuristic

methods fail by orders-of-magnitude on their worst queries.

DQ still comes close to the quality of exhaustive enumer-

ation (1.68× on average). It does not perform as well as in

CM1 (with its worst query about 12× the optimal cost) but is

still signi�cantly be�er than the alternatives. Results on CM2

suggest that as memory becomes more limited, heuristics be-

gin to diverge more from the optimal solution. We explored

this phenomenon further and report results in Table 3.

6.1.3 Cost Model 3. Finally, we illustrate results on CM3

that allows for the reuse of hash tables. Right-deep plans are

no longer ine�cient in this model as they facilitate reuse of

the hash table (note right and le� are simply conventions

M = 10
8 M = 10

6 M = 10
4 M = 10

2

KBZ 1.0 3.31 30.64 41.64

LD 1.0 1.09 6.45 6.72

EX 1.0 1.0 1.0 1.0

DQ 1.04 1.42 1.64 1.56

Table 3: Cost Model 2: mean relative cost vs. memory limit
(number of tuples in memory).

and there is nothing important about the labels). �e chal-

lenge is that now plans have to contain a mix of le�-deep

and right-deep structures. Zig-zag tree pruning heuristic

was exactly designed for cases like this. Surprisingly, DQ is

signi�cantly (1.7× on average and in the worst) be�er than

zig-zag enumeration. We observed that bushy plans were

necessary in a small number of queries and DQ found such

lower-cost solutions.

In summary, results in Table 2 show that DQ is robust

against di�erent cost model regimes, since it learns to adapt

to the workload at hand.

6.1.4 Planning Latency. Next, we report the planning (op-

timization) time of DQ and several other optimizers across

the entire 113 JOB queries. �e same model in DQ is used to

plan all queries. Implementations are wri�en in Java, single-

threaded
3
, and reasonably optimized at the algorithmic level

(e.g., �ickPick would short-circuit a partial plan already

estimated to be more costly than the current best plan)—

but no signi�cant e�orts are spent on low-level engineering.

Hence, the relative magnitudes are more meaningful than

the absolute values. Experiments were run on an AWS EC2

c5.9xlarge instance with a 3.0GHz CPU and 72GB memory.

Figure 5 reports the runtimes grouped by number of rela-

tions. In the small-join regime,DQ’s overheads are a�ributed

interfacing with a JVM-based deep learning library, DL4J
(creating and �lling the featurization bu�ers; JNI overheads

due to native CPU backend execution). �ese could have

been optimized away by targeting a non-JVM engine and/or

3
To ensure fairness, for DQ we con�gure the underlying linear algebra

library to use 1 thread. No GPU is used.
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Figure 5: Optimization latency (log-scale) on all JOB
queries grouped by number of relations in each query
(§6.1.4). A total of 5 trials are run; standard deviations are
negligible hence omitted.

Figure 6: Mean relative cost (in log-scale) as a function
of the number of training queries seen by DQ. We include
�ickPick-1000 as a baseline. Cost Model 1 is used.

GPUs, but we note that when the number of joins is small,

exhaustive enumeration would be the ideal choice.

In the large-join regime, DQ achieves drastic speedups:

for the largest joins DQ runs up to 10,000× faster than ex-

haustive enumeration and > 10× than le�-deep. DQ upper-

bounds the number of neural net invocations by the number

of relations in a query, and additionally bene�ts from the

batching optimization (§4.3). We believe this is a profound

performance argument for a learned optimizer—it would

have an even more unfair advantage when applied to larger

queries or executed on specialized accelerators [24].

6.1.5 �antity of Training Data. How much training data

does DQ need to become e�ective? To study this, we vary the

number of training queries given to DQ and plot the mean

relative cost using the cross validation technique described

before. Figure 6 shows the relationship. DQ requires about

60-80 training queries to become competitive and about 30

queries to match the plan costs of �ickPick-1000.

Digging deeper, we found that the break-even point of

30 queries roughly corresponds to seeing all relations in

the schema at least once. In fact, we can train DQ on small

queries and test it on larger ones—as long as the relations

are covered well. To investigate this generalization power,

Figure 7: Relevance of training data vs.DQ’s plan cost. R80
is a dataset sampled independently of the JOB queries with
random joins/predicates from the schema. R80wp has ran-
dom joins as before but contains the workload’s predicates.
WK80 includes 80 actual queries sampled from the workload.
T80 describes a schemewhere each of the 33 query templates
is covered at least once in sampling. �ese schemes are in-
creasingly “relevant”. Costs are relative w.r.t. EX.

# Training�eries Mean Relative Cost

Random 80 1.32

Train ≤ 9-way 82 1.61

Train ≤ 8-way 72 9.95

Table 4:DQ trained on small joins and tested on larger joins.
Costs are relative to optimal plans.

we trained DQ on all queries with ≤ 9 and 8 relations, re-

spectively, and tested on the remaining queries (out of a total

of 113). For comparison we include a baseline scheme of

training on 80 random queries and testing on 33; see Table 4.

Table 4 shows that even when trained on subplans, DQ
performs relatively well and generalizes to larger joins (recall,

the workload contains up to 15-way joins). �is indicates that

DQ indeed learns local structures—e�cient joining of small

combinations of relations. When those local structures do

not su�ciently cover the cases of interest during deployment,

we see degraded performance.

6.1.6 Relevance and �ality of Training Data. �antity

of training data ma�ers, and so do relevance and quality. We

�rst study relevance, i.e., the degree of similarity between the

sampled training data and the test queries. �is is controlled

by changing the training data sampling scheme. Figure 7

plots the performance of di�erent data sampling techniques

each with 80 training queries. It con�rms that the more

relevant the training queries can be made towards the test

workload, the less data is required for good performance.

Notably, it also shows that even synthetically generated

random queries (R80) are useful. DQ still achieves a lower

relative cost compared to �ickPick-1000 even with random

queries (4.16 vs. 23.87). �is experiment illustrates that DQ
does not actually require a priori knowledge of the workload.
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Figure 8: �ality of training data vs. DQ’s plan cost. DQ
trained on data collected from�ickPick-1000, le�-deep, or
the bushy (exhaustive) optimizer. Data variety boosts con-
vergence speed and �nal quality. Costs are relative w.r.t. EX.

Next, we study the quality of training data, i.e., the opti-

mality of the native planner DQ observes and gathers data

from. We collect a varying amount of data sampled from the

native optimizer, which we choose to be �ickPick-1000, le�-

deep, or bushy (EX). Figure 8 shows that all methods allow

DQ to quickly converge to good solutions. �e DP-based

methods, le�-deep and bushy, converge faster as they pro-

duce �nal plans and optimal subplans per query. In contrast,

�ickPick yields only 1000 random full plans per query. �e

optimal subplans from the dynamic programs o�er data va-

riety valuable for training, and they cover be�er the space of

di�erent relation combinations that might be seen in testing.

6.2 Real Systems Execution
It is natural to ask: how di�cult and e�ective is it for a

production-grade system to incorporateDQ? We address this

question by integrating DQ into two systems, PostgreSQL

and SparkSQL.
4

�e integrations were found to be straight-

forward: Postgres and SparkSQL each took less than 300 LoC

of changes; in total about two person-weeks were spent.

6.2.1 Postgres Integration. DQ integrates seamlessly with

the bo�om-up join ordering optimizer in Postgres. �e orig-

inal optimizer’s DP table lookup is replaced with the invo-

cation of DQ’ Tensor�ow (TF) neural network through the

TF C API. As discussed in §6.1.4, plans are batch-evaluated

to amortize the TF invocation overhead. We run the Join

Order Benchmark experiments on the integrated artifact and

present the results below. All of the learning utilizes the cost

model and cardinality estimates provided by Postgres.

Training. DQ observes the native cost model and cardi-

nality estimates from Postgres. We con�gured Postgres to

consider bushy join plans (the default is to only consider

4
Versions: Spark 2.3; Postgres master branch checked out on 9/17/18.

0 50 100 150 2000

50

100

150

200

DQ
 (s

ec
on

ds
)

Execution Latency

0.00 0.05 0.10 0.15
0.00

0.05

0.10

0.15
Optimization Latency

Postgres (seconds)

Figure 9: Execution and optimization latencies of DQ and
Postgres on JOB. Each point is a query executed by native
Postgres (x-axis) and DQ (y-axis). Results below the y = x
line represent a speedup. Optimization latency is the time
taken for the full planning pipeline, not just join ordering.

Median Max

Postgres, no collection 19.17 ms 149.53 ms

Postgres, with collection 35.98 ms 184.22 ms

Table 5: Planning latency with collection turned o�/on.

le�-deep plans). �ese plans generate traces of joins and

their estimated costs in the form described in §3.3. We do not
apply any exploration and execute the native optimizer as is.

Training data is collected via Postgres’ logging interface.

Table 5 shows that DQ can collect training data from an

existing system with relatively minimal impact on its normal

execution. �e overhead can be further minimized if training

data is asynchronously, rather than synchronously, logged.

Runtimes on JOB (Figure 9). We allow the Postgres query

planner to plan over 80 of the 113 training queries. We use a

5-fold cross validation scheme to hold out di�erent sets of

33 queries. �erefore, each query has at least one validation

set in which it was unseen during training. We report the

worst case planning time and execution time for queries that

have multiple such runs. In terms of optimization latency,

DQ is signi�cantly faster than Postgres for large joins, up

to 3×. For small joins there is a substantial overhead due to

neural network evaluations (even though DQ needs score

much fewer join orders). �ese results are consistent with

the standalone experiment in Section 6.1.4 and the same

comments there on small-join regimes apply. In terms of

execution runtimes, DQ is signi�cantly faster on a number

of queries; averaging over the entire workload DQ yields a

14% speedup.

6.2.2 SparkSQL Integration. DQ is also integrated into

SparkSQL, a distributed data analytics engine. To show that

DQ’s e�ectiveness applies to more than one workload, we

evaluate the integrated result on TPC-DS.

Training. SparkSQL 2.3 contains a cost-based optimizer

which enumerates bushy plans for queries whose number of

relations falls under a tunable threshold. We set this thresh-

old high enough so that all queries are handled by this bushy

dynamic program. To score plans, the optimizer invokes
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Figure 10: Execution and optimization latencies of DQ
and SparkSQL on TPC-DS (SF1). We use an EC2 c5.9xlarge
instance with 36 vCPUs. SparkSQL’s bushy dynamic pro-
gram takes 1000 seconds to plan the largest query (Q64, 18-
relation join); we include a zoomed-in view of the rest of the
planning latencies. Results below the y = x line represent
a speedup. Across the workload, DQ’s mean speedup over
SparkSQL for execution is 1.0× and that for optimization is
3.6×.

DQ’s trained neural net through TensorFlow Java. We use

the native SparkSQL cost model and cardinality estimates.

All algorithmic aspects of training data collection remain the

same as the Postgres integration.

E�ectiveness on TPC-DS (Figure 10). We collect data

from and evaluate on 97 out of all 104 queries in TPC-DS

v2.4. �e data �les are generated with a scale factor of 1 and

stored as columnar Parquet �les. In terms of execution run-

times, DQ matches SparkSQL over the 97 queries (a mean

speedup of 1.0×). In terms of optimization runtimes, DQ has

a mean speedup of 3.6× but a max speedup of 250× on the

query with largest number of joins (Q64). Note that the mean

optimization speedup here is less drastic than JOB because

TPC-DS queries contain much less relations to join.

Discussion. In summary, results above show that DQ’s ef-

fective not only on the one workload designed to stress-

test joins, but also on a well-established decision support

workload. Further, we demonstrate the ease of integration

into production-grade systems including a RDBMS and a

distributed analytics engine. We hope these results provide

motivation for developers of similar systems to incorporate

DQ’s learning-based join optimization technique.

6.3 Fine-Tuning With Feedback
Finally, we illustrate how DQ can overcome an inaccurate

cost model by �ne-tuning with feedback data (§5). We focus

on a speci�c JOB query, Q10c, where the cost model particu-

larly deviates from the true runtime. Baseline DQ is trained

on data collected over 112 queries, which is every query ex-

cept for Q10c, as usual (i.e., values are costs from Postgres’

native cost model). For �ne-tuning we execute a varying

amount of these queries and collect their actual runtimes. To

encourage observing a variety of physical operators, we use

Figure 11: E�ects of �ne-tuning DQ on JOB Q10c. A
modest amount of real execution using around 100
queries allows DQ to surpass both its original perfor-
mance (by 3×) as well as Postgres (by 3.5×).
an exploration parameter of ϵ = 0.1 when observing run-

times (recall from §3.3 exploration means with probability ϵ
we form a random intermediate join).

Figure 11 shows the results as a function of the number

of queries observed for real execution. Postgres emits a plan

that executes in 70.0s, while baseline DQ emits a plan that

executes in 60.1s. A�er �ne-tuning, DQ emits a plan that

executes in 20.3s, outperforming both Postgres and its orig-

inal performance. �is shows true runtimes are useful in

correcting faulty cost model and/or cardinality estimates.

Interestingly, training a version of DQ using only real run-

times failed to converge to a reasonable model—this suggests

learning high-level features from inexpensive samples from

the cost model is bene�cial.

7 RELATEDWORK
Application of machine learning in database internals is still

the subject of signi�cant debate this year and will continue

to be a contentious question for years to come [11, 26, 32, 37].

An important question is what problems are amenable to ma-

chine learning solutions. We believe that query optimization

is one such sub-area. �e problems considered are generally

hard and orders-of-magnitude of performance are at stake.

In this se�ing, poor learning solutions will lead to slow but

not incorrect execution, so correctness is not a concern.

Cost Function Learning We are certainly not the �rst to

consider “learning” in the query optimizer and there are a

number of alternative architectures that one may consider.

�e precursors to this work are a�empts to correct query

optimizers through execution feedback. One of the seminal

works in this area is the LEO optimizer [35]. �is optimizer

uses feedback from the execution of queries to correct inac-

curacies in its cost model. �e underlying cost model is based

on histograms. �e basic idea inspired several other impor-

tant works such as [14]. �e sentiment in this research still

holds true today; when Leis et al. extensively evaluated the
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e�cacy of di�erent query optimization strategies they noted

that feedback and cost estimation errors are still challenges

in query optimizers [29]. A natural �rst place to include

machine learning would be what we call Cost Function Learn-
ing, where statistical learning techniques are used to correct

or replace existing cost models. �is is very related to the

problem of performance estimation of queries [6, 52, 53].

We actually investigated this by training a neural network

to predict the selectivity of a single relation predicate. Results

were successful, albeit very expensive from a data perspec-

tive. To estimate selectivity on an a�ribute with 10k distinct

values, the training set had to include 1000 queries. �is ar-

chitecture su�ers from the problem of featurization of literals;
the results are heavily dependent on learning structure in

literal values from the database that are not always straight-

forward to featurize. �is can be especially challenging for

strings or other non-numerical data types. A recent work-

shop paper does show some promising results in using Deep

RL to construct a good feature representation of subqueries

but it still requires > 10k queries to train [41].

Learning in�eryOptimization Recently, there has been

several exciting proposals in pu�ing learning inside a query

optimizer. Ortiz et al. [41] applies deep RL to learn a repre-

sentation of queries, which can then be used in downstream

query optimization tasks. Liu [31] and Kipf [25] use DNNs to

learn cardinality estimates. Closer to our work is Marcus et

al.’s proposal of a deep RL-based join optimizer, ReJOIN [33],

which o�ered a preliminary view of the potential for deep

RL in this context. �e early results reported in [33] top out

at a 20% improvement in plan execution time of Postgres

(compared to our 3x), and as of that paper they had only

evaluated on 10 out of the 113 JOB queries that we study

here. DQ qualitatively goes beyond that work by o�ering

an extensible featurization scheme supporting physical join

selection. More fundamentally, DQ integrates the dynamic

programming of Q-learning into that of a standard query

optimizer, which allows us to use o�-policy learning. Due

to use of on-policy policy gradient methods, [33] requires

about 8,000 training queries to reach native Postgres� cost

on the 10 JOB queries. DQ exploits optimal substructures of

the problem and uses o�-policy Q-learning to increase data-

e�ciency by two orders of magnitude: 80 training queries to

outperform Postgres� real execution runtimes on the entire

JOB benchmark.

Adaptive �ery Optimization Adaptive query process-

ing [9, 16] as well as the related techniques to re-optimize

queries during execution [10, 36] is another line of work

that we think is relevant to the discussion. Reinforcement

learning studies sequential problems and adaptive query op-

timization is a sequential decision problem over tuples rather

than subplans. We focus our study on optimization in �xed

databases and the adaptivity that DQ o�ers is at a work-

load level. Continuously updating a neural network can be

challenging for very �ne-grained adaptivity, e.g., processing

di�erent tuples in di�erent ways.

Robustness �ere are a couple of branches of work that

study robustness to di�erent parameters in query optimiza-

tion. In particular, the �eld of “parametric query optimiza-

tion” [22, 48], studies the optimization of piecewise linear

cost models. Interestingly, DQ is it is agnostic to this struc-

ture. It learns a heuristic from data identifying di�erent

regimes where di�erent classes of plans work. We hope to

continue experiments and a�empt to interpret how DQ is

partitioning the feature space into decisions. �ere is also a

deep link between this work and least expected cost (LEC)

query optimization [15]. Markov Decision Processes (the

main abstraction in RL) are by de�nition stochastic and opti-

mize the LEC objective.

Join Optimization At Scale Scaling up join optimization

has been an important problem for several decades, most re-

cently [40]. At scale, several randomized approaches can

be applied. �ere is a long history of randomized algo-

rithms (e.g., the �ickPick algorithm [51]) and genetic al-

gorithms [13, 46]. �ese algorithms are pragmatic and it is

o�en the case that commercial optimizers will leverage such

a method a�er the number of tables grows beyond a certain

point. �e challenge with these methods is that their e�cacy

is hard to judge. We found that �ickPick o�en varied in

performance on the same query quite dramatically.

Another heuristic approach is relaxation, or solving the

problem exactly under simpli�ed assumptions. One straight-

forward approach is to simply consider greedy search avoid-

ing Cartesian products [17], which is also the premise of the

IK-KBZ algorithms [23, 27]. Similar linearization arguments

were also made in recent work [40, 49]. Existing heuristics

do not handle all types of non-linearities well, and this is

exactly the situation where learning can help. Interestingly

enough, our proposed technique has a O(n3) runtime, which

is similar to the linearizedDP algorithm described in [40].

We hope to explore the very large join regime in the future

and an interesting direction is to compare DQ to recently

proposed techniques like [40].

8 DISCUSSION, LIMITATIONS, AND
CONCLUSION

We presented our method with a featurization designed for

inner joins over foreign key relations as these were the ma-

jor join queries in our benchmarks. �is is not a fundamen-

tal restriction and is designed to ease exposition. It is rela-

tively straightforward to extend this model to join conditions

composed of conjunctions of binary expressions. Assume

the maximum number of expressions in the conjunction is
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capped atN . As before, letA be the set of all a�ributes in the

database. Each expression has two a�ributes and an opera-

tor. As with featurizing the vertices we can 1-hot encode the

a�ributes present. We additionally have to 1-hot encode the

binary operators {=,,, <, >}. For each of the expressions in

the conjunctive predicate, we concatenate the binary feature

vectors that have its operator and a�ributes. Since the maxi-

mum number of expressions in the conjunction capped at

N , we can get a �xed sized feature vector for all predicates.

More broadly, we believe DQ is a step towards a

learning query optimizer. As illustrated by the Cascades

optimizer [19] and follow-on work, cost-based dynamic

programming—whether bo�om up or top-down with

memoization—needs not be restricted to select-project-join

blocks. Most query optimizations can be recast into a space

of algebraic transformations amenable to dynamic program-

ming, including asymmetric operators like outer joins, cross-

block optimizations including order optimizations and “side-

ways information passing”, and even non-relational opera-

tors like PIVOT. �e connection between RL and Dynamic

Programming presented in this paper can be easily leveraged

in those scenarios as well. Of course this blows up the search

space, and large spaces are ideal for solutions like the one

we proposed.

It is popular in recent AI research to try “end-to-end” learn-

ing, where problems that were traditionally factored into

subproblems (e.g., self-driving cars involve separate models

for localization, obstacle detection and lane-following) are

learned in a single uni�ed model. One can imagine a simi-

lar architectural ambition for an end-to-end learning query

optimizer, which simply maps subplan features to measured

runtimes. �is would require a signi�cant corpus of run-

time data to learn from, and changes to the featurization and

perhaps the deep network structure we used here. DQ is a

pragmatic middle ground that exploits the structure of the

join optimization problem. Further exploring the extremes

of learning and query optimization in future work may shed

more insights.
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A STANDALONE OPTIMIZATION
EXPERIMENT SETUP

We consider three di�erent cost models on the same work-

load:

CM1: In the �rst cost model (inspired by [29]), we model

a main-memory database that performs two types of joins:

index joins and in-memory hash joins. Let O describe the

current operator, Ol be the le� child operator, and Or be the

right child operator. �e costs are de�ned with the following

recursions:

ci j (O) = c(Ol ) +match(Ol ,Or ) · |Ol |

chj (O) = c(Ol ) + c(Or ) + |O |
where c denotes the cost estimation function, | · | is the car-

dinality function, and match denotes the expected cost of

an index match, i.e., fraction of records that match the index

lookup (always greater than 1) multiplied by a constant fac-

tor λ (we chose 1.0). We assume indexes on the primary keys.

In this cost model, if an eligible index exists it is generally

desirable to use it, since match(Ol ,Or ) · |Ol | rarely exceeds

c(Or )+ |O | for foreign key joins. Even though the cost model

is nominally “non-linear”, primary tradeo� between the in-

dex join and hash join is due to index eligibility and not

dependent on properties of the intermediate results. For the

JOB workload, unless λ is set to be very high, hash joins have

rare occurrences compared to index joins.
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CM2: In the next cost model, we remove index eligibility

from consideration and consider only hash joins and nested

loop joins with a memory limit M . �e model charges a cost

when data requires additional partitioning, and further falls

back to a nested loop join when the smallest table exceeds

the squared memory:

cjoin =


c(Ol ) + c(Or ) + |O | if |Or | + |Ol | ≤ M
c(Ol ) + c(Or ) + 2( |Or | + |Ol |) + |O | if min( |Or |, |Ol |) ≤ M2

c(Ol ) + c(Or ) + ( |Or | +
⌈
|Or |
M

⌉
|Ol |)

�e non-linearities in this model are size-dependent, so con-

trolling the size of intermediate relations is important in the

optimization problem. We set the memory limit M to 10
5

tuples in our experiments. �is limit is low in real-world

terms due to the small size of the benchmark data. However,

we intend for the results to be illustrative of what happens

in the optimization problems.

CM3: In the next cost model, we model a database that

accounts for the reuse of already-built hash tables. We use

the Gamma database convention where the le� operator as

the “build” operator and the right operator as the “probe”

operator [18]. If the previous join has already built a hash

table on an a�ribute of interest, then the hash join does not

incur another cost.

cnobuild = c(Ol ) + c(Or ) − |Or | + |O |

We also allow for index joins as in CM1. �is model makes

hash joins substantially cheaper in cases where re-use is

possible. �is model favors some subplans to be right-deep

plans which maximize the reuse of the built hash tables.

�erefore, optimal solutions have both le�-deep and right-

deep segments.

In our implementation of these cost models, we use true

cardinalities on single-table predicates, and we leverage stan-

dard independence assumptions to construct more compli-

cated cardinality estimates. (�is is not a fundamental limita-

tion of DQ . Results in §6.2 have shown that when Postgres

and SparkSQL provide their native cost model and cardinality

estimates, DQ is as e�ective.) �e goal of this work is to eval-

uate the join ordering process independent of the strength

or weakness of the underlying cardinality estimation.

We consider the following baseline algorithms. �ese algo-

rithms are not meant to be a comprehensive list of heuristics

but rather representative of a class of solutions.

(1) Exhaustive (EX): �is is a dynamic program that ex-

haustively enumerates all join plans avoiding Carte-

sian products.

(2) le�-deep (LD): �is is a dynamic program that ex-

haustively enumerates all le�-deep join plans.

(3) Right-Deep (RD): �is is a dynamic program that

exhaustively enumerates all right-deep join plans.

(4) Zig-Zag (ZZ): �is is a dynamic program that ex-

haustively enumerates all zig-zag trees (every join

has at least one base relation, either on the le� or

the right) [55].

(5) IK-KBZ (KBZ): �is algorithm is a polynomial time

algorithm that decomposes the query graph into

chains and orders the chains based on a linear ap-

proximation of the cost model [27].

(6) �ickPick-1000 (QP): �is algorithm randomly se-

lects 1000 join plans and returns the best of them.

1000 was selected to be roughly equivalent to the

planning latency of DQ [51].

(7) Minimum Selectivity (MinSel): �is algorithm se-

lects the join ordering based on the minimum se-

lectivity heuristic [40]. While MinSel was fast, we

found poor performance on the 3 cost models used

in the paper.

(8) Linearized Dynamic Program (LDP): �is approach

applies a dynamic program in the inner-loop of

IK-KBZ [40]. Not surprisingly, LDP�s results were

highly correlated with those of IK-KBZ and Le�-

Deep enumeration, so we chose to omit them from

the main body of the paper.

All of the algorithms consider join ordering without

Cartesian products, so EX is an optimal baseline. We re-

port results in terms of the suboptimality w.r.t. EX, namely

costalдo/costEX. We present results on all 113 JOB queries.

We train on 80 queries and test on 33 queries. We do 4-fold

cross validation to ensure that every test query is excluded

from the training set at least once. �e performance of DQ is

only evaluated on queries not seen in the training workload.

Our standalone experiments are integrated with Apache

Calcite [2]. Apache Calcite provides libraries for parsing

SQL, representing relational algebraic expressions, and a

Volcano-based query optimizer [19, 20]. Calcite does not han-

dle physical execution or storage and uses JDBC connectors

to a variety of database engines and �le formats. We imple-

mented a package inside Calcite that allowed us to leverage

its parsing and plan representation, but also augment it with

more sophisticated cost models and optimization algorithms.

Standalone DQ is wri�en in single-threaded Java. �e ex-

tended results including omi�ed techniques are described in

Table 6.

B COUT COST MODEL
We additionally omi�ed experiments with a simpli�ed cost

model only searching for join orders and ignoring physical

operator selection. We fed in true cardinalities to estimate

the selectivity of each of the joins, which is a perfect version

of the “Cout ” model. We omi�ed these results as we did not

see di�erences between the techniques and the goal of the

study was to understand the performance of DQ over cost
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Optimizer Cost Model 1 Cost Model 2 Cost Model 3
Min Mean Max Min Mean Max Min Mean Max

�ickPick (QP) 1 23.87 405.04 7.43 51.84 416.18 1.43 16.74 211.13

IK-KBZ (KBZ) 1 3.45 36.78 5.21 29.61 106.34 2.21 14.61 96.14

Right-deep (RD) 4.7 53.25 683.35 1.93 8.21 89.15 1.83 5.25 69.15

Le�-deep (LD) 1 1.08 2.14 1.75 7.31 65.45 1.35 4.21 35.91

Zig-zag (ZZ) 1 1.07 1.87 1 5.07 43.16 1 3.41 23.13

Exhaustive (EX) 1 1 1 1 1 1 1 1 1

DQ 1 1.32 3.11 1 1.68 11.64 1 1.91 13.14

Minimum Selectivity (MinSel) 2.43 59.86 1083.12 23.46 208.23 889.7 9.81 611.1 2049.13

IK-KBZ+DP (LDP) 1 1.09 2.72 2.1 10.03 105.32 2.01 3.99 32.19

Table 6: Extended results including omitted techniques for all three cost models.

models that cause the heuristics to fail. In particular, we

found that threshold non-linearities as in CM3 cause the

most problems.

Cout Mean

QP 1.02

IK-KBZ 1.34

LD 1.02

ZZ 1.02

Ex 1

DQ 1.03

MinSel 1.11

C ADDITIONAL STANDALONE
EXPERIMENTS

In the subsequent experiments, we try to characterize when

DQ is expected to work and how e�ciently.

C.1 Sensitivity to Training Data
Classically, join optimization algorithms have been deter-

ministic. Except for QP, all of our baselines are deterministic

as well. Randomness in DQ (besides �oating-point compu-

tations) stems from what training data is seen. We run an

experiment where we provide DQ with 5 di�erent training

datasets and evaluate on a set of 20 hold-out queries. We

report the max range (worst factor over optimal minus best

factor over optimal) in performance over all 20 queries in

Table 7. For comparison, we do the same with QP over 5

trials (with a di�erent random seed each time).

CM1 CM2 CM3

QP 2.11× 1.71× 3.44×
DQ 1.59× 1.13× 2.01×

Table 7: Plan variance over trials.

We found that while the performance of DQ does vary

due to training data, the variance is relatively low. Even if

we were to account for this worst case, DQ would still be

competitive in our macro-benchmarks. It is also substantially

lower than that of QP, a true randomized algorithm.

C.2 Sensitivity to Faulty Cardinalities
In general, the cardinality/selectivity estimates computed

by the underlying RDBMS do not have up-to-date accuracy.

All query optimizers, to varying degrees, are exposed to

this issue since using faulty estimates during optimization

may yield plans that are in fact suboptimal. It is therefore

worthwhile to investigate this sensitivity and try to answer,

“is the neural network more or less sensitive than classical

dynamic programs and heuristics?”

In this microbenchmark, the optimizers are fed perturbed
base relation cardinalities (explained below) during optimiza-

tion; a�er the optimized plans are produced, they are scored

by an oracle cost model. �is means, in particular, DQ only

sees noisy relation cardinalities during training and is tested

on true cardinalities. �e workload consists of 20 queries

randomly chosen out of all JOB queries; the join sizes range

from 6 to 11 relations. �e �nal costs reported below are the

average from 4-fold cross validation.

�e perturbation of base relation cardinalities works as

follows. We pick N random relations, the true cardinality

of each is multiplied by a factor drawn uniformly from

{2, 4, 8, 16}. As N increases, the estimate noisiness increases

(errors in the leaf operators get propagated upstream in a

compounding fashion). Table 8 reports the �nal costs with

respect to estimate noisiness.

Observe that, despite a slight degradation in the N = 4

execution,DQ is not any more sensitive than theKBZ heuris-

tic. It closely imitates exhaustive enumeration—an expected

behavior since its training data comes from EX’s plans com-

puted with the faulty estimates.
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N = 0 N = 2 N = 4 N = 8

KBZ 6.33 6.35 6.35 5.85

LD 5.51 5.53 5.53 5.60

EX 5.51 5.53 5.53 5.60

DQ 5.68 5.70 5.96 5.68

Table 8: Costs (log
10
) when N relations have perturbed car-

dinalities.

Figure 12: We plot the runtime in milliseconds of a single
query (q10c) with di�erent variations of DQ (fully o�line,
�ne tuning, and fully online). We found that the �ne-tuned
approach was the most e�ective one.

C.3 Ablation Study
Table 9 reports an ablation study of the featurization de-

scribed earlier (§4.1):

Graph Features Sel. Scaling Loss

No Predicates No No 0.087

Yes No 0.049

Yes Yes 0.049

Predicates No No 0.071

Yes No 0.051

Yes Yes 0.020

Table 9: Feature ablation.

Without features derived from the query graph (Figure 3b)

and selectivity scaling (Figure 4a) the training loss is 3.5×
more. �ese results suggest that all of the di�erent features

contribute positively for performance.

D DISCUSSION ABOUT POSTGRES
EXPERIMENT

We also run a version of DQ where the model is only trained

with online data (e�ectively the se�ing considered in Re-

JOIN [33]). Even on an idealized workload of optimizing a

single query (�ery 10c), we could not get that approach to

converge. We believe that the discrepancy from [33] is due

to physical operator selection. In that work, the Postgres op-

timizer selects the physical operators given the appropriate

logical plans selected by the RL policy. With physical oper-

ator selection, the learning problem becomes signi�cantly

harder (Figure 12).

We initially hypothesized the DQ outperforms the native

Postgres optimizer in terms of execution times since it consid-

ers bushy plans. �is hypothesis only partially explains the

results. We run the same experiment where DQ is restricted

to producing le�-deep plans; in other words, DQ considers

the same plan space as the native Postgres optimizer. We

found that there was still a statistically signi�cant speedup:

Mean Max

DQ:LD 1.09× 2.68×
DQ:EX 1.14× 2.72×

Table 10: Execution time speedup over Postgres with dif-
ferent plan spaces considered by DQ. Mean is the average
speedup over the entire workload and max is the best case
single-query speedup.

We speculate that the speedup is caused by imprecision in

the Postgres cost model. As a learning technique, DQ may

smooth out inconsistencies in the cost model.

Finally, we compare with Postgres’ genetic optimizer

(GEQ) on the 10 largest joins in JOB. DQ is about 7% slower

in planning time, but nearly 10× faster in execution time. �e

di�erence in execution is mostly due to one outlier query on

which GEQ is 37× slower.
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