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ABSTRACT
Formulating efficient SQL queries requires several cycles of
tuning and execution. We examine methods that can acceler-
ate and improve this interaction by providing insights about
SQL queries prior to execution. We achieve this by predict-
ing properties such as the query answer size, its run-time,
and error class. Unlike existing approaches, our approach
does not rely on any statistics from the database instance
or query execution plans. Our approach is based on using
data-driven machine learning techniques that rely on large
query workloads to model SQL queries and their properties.
Empirical results show that the neural network models are
more accurate in predicting several query properties.
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1 INTRODUCTION
Formulating effective SQL queries is one of the main chal-
lenges of interacting with large relational databases. Partic-
ularly for inexperienced users, writing good SQL queries
may require several cycles of tuning and execution. This
diminishes the user experience, prevents them from easily
accessing information [20], and can also be costly. For exam-
ple, cloud-based services, such as Google BigQuery, charge
their users for running queries [15, 18, 19]. Moreover, in-
efficient SQL queries can pose a burden on the database’s
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resources. Our focus in this work is on facilitating user inter-
action with the database by providing additional information
about SQL queries prior to their execution.

We focus on two groups of users: end users and database ad-
ministrators (DBAs). To help end users compose SQL queries,
we study three problems: query answer size prediction, query
run-time prediction, and query error prediction. We can save
end users time and effort by pointing out when their queries
are inefficient, unlikely to work at all, or are likely to take
radically different time than they are expecting (and thus are
likely to be not the queries that they are trying to write).

We also improve user interaction for DBAs. To character-
ize how end users and programs use the service, DBAs need
to analyze incoming requests and queries and categorize
them into classes of clients [47]. This in turn allows them to
improve service quality for end users. To help DBAs with this
analysis, we study the problem of session type classification,
which is the automatic identification of the class of clients
that generated the queries in a session.
While we use estimates of SQL query properties to im-

prove usability, these estimates have typically been used to
improve tasks like admission control, access control, sched-
uling, and costing during query optimization [1, 13, 38, 39].
Most of these studies, however, are based on manually con-
structed cost models in the query optimizer and require ac-
cess to the database instance. But the analytical cost models
in the query optimizer can be imprecise due to simplify-
ing assumptions, e.g., uniform data distributions [10, 13, 36].
Moreover, access to the database instance can be infeasible
in an increasingly large number of settings, e.g., cloud-based
data warehouses like Google BigQuery [15], databases on
the hidden web, sources located behind wrappers in data
integration systems [5], and instances with limited access
due to cost or privacy issues [15, 16, 18, 19]. Due to these
restrictions, there is growing need for work that does not
assume direct access to database instances.
Our approach for modeling the queries and their proper-

ties relies on using SQL query workloads, which contain logs
of past queries submitted to the database. Query workloads
are an alternative resource in settings with limited database
instance access. They have been used to improve query per-
formance estimates for tasks like query optimization and
scheduling [1, 13, 38, 39]. In addition to requiring access
to the database instance and schema, these works examine
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synthetic or small-scale query workloads, e.g., TPC-H [52].
They extract hand-engineered features from query execution
plans, and apply a prediction model. However, synthetic and
small-scale query workloads do not represent the full capac-
ity and challenges of potential queries, as shown empirically
in [36].

We use SQL query workloads that are large-scale and real-
world and present an abundance of realistic usage patterns
from a variety of different users. These workloads are broadly
used and publicly available in scientific and academic re-
search domains. Examples are the Sloan Digital Sky Survey
(SDSS) query workload [44, 45, 50] and SQLShare [22]. Com-
panies and organizations, such as Snowflake [21, 23], often
maintain their own large-scale private workloads. DBMSs
support logging features that make it easy to generate and
maintain these workloads.
When large-scale workloads do not exist for a database,

knowledge learned from workloads over other databases
may be used for query property prediction. Consequently,
we define different query facilitation problem settings that
vary in their data heterogeneity. This makes the prediction
problem more challenging due to different underlying data
distributions for the SQL query and the workload. These
settings require models that generalize well and can transfer
knowledge learned from workloads to predict query proper-
ties over a different database. We empirically show that some
models generalize better, which allows reusing large-scale
workloads for query performance property prediction. We
hope in light of research like ours that shows the benefits of
large-scale workloads, more companies and organizations de-
velop, maintain, and share their query workloads, which can
ultimately improve transparency and customer engagement.
We use data-driven machine learning techniques that re-

quire large-scale workloads to build effective models and
predict different query properties. Since there are no stan-
dard models for our problems, we start by establishing appro-
priate baseline models. Our query facilitating problems are
essentially query labeling tasks. A closely related area is text
categorization, where the goal is to predict categories for doc-
uments written in natural language [8, 25, 26, 28, 29, 31, 59].
We chose a broad set of applicable models from this domain;
on large-scale datasets, the dominant approaches use Long-
Term Short-Term (LSTM) and Convolutional Neural Network
(CNN) models [3, 8, 35, 54]. LSTMs treat texts as sequential
inputs, while CNNs can automatically identify n-grams. SQL
queries have significant differences with natural language
sentences, e.g., they include mathematical expressions that
are important to retain in the query representation. We there-
fore applied all models at both character and word level.
Our work is closest to [21, 23], which assume no direct

access to database instances and apply data-driven models

SELECT ... FROM PhotoObj
WHERE flags & dbo.fPhotoFlags('BLENDED ') > 0

Figure 1: An inefficient query in which the function in
the WHERE clause is called once per matching row.

to large-scale query workloads. They address workload man-
agement tasks, such as index recommendation and security
audits. We introduce additional problems related to facilitat-
ing query composition and analysis, e.g., session classifica-
tion. Moreover, we formalise and study different problem
settings and conduct an extensive workload analysis that
results in encouraging empirical results.

In summary we contribute the following:
• Wemotivate (Section 2) and formally define (Section 3)
four problems that help end users and DBAs with com-
position and analysis by providing query insights prior
to execution.

• Our approach relies on exploiting large query work-
loads. We use two real-world query workloads that are
publicly available, SDSS and SQLShare. In Section 4, we
describe these workloads. Moreover, to enable better
model selection and evaluation, we conduct a compre-
hensive workload analysis that covers structural and
syntactic features of the queries and their labels.

• We examine a broad set of models to establish the
baselines and assess the feasibility of our problems in
Section 5. We adapted two classes of neural network
models to our problems and compared them with sim-
ple baselines and traditional NLP models.

• Our empirical evaluation (Section 6) shows the neural
networks are more accurate in predicting the query
error class, achieving a higher F-measure on classes
with fewer samples. For run-time and answer size pre-
diction, the neural networks obtain better results, par-
ticularly on complex queries. Additionally, we found
character level CNNs are able to generalize better un-
der various problem settings.

Section 7 describes related work and Section 8 concludes.

2 MOTIVATING EXAMPLE
We use the Sloan Digital Sky Survey (SDSS) as a motivat-
ing example. SDSS is an astronomy project that provides
a digital map of the sky [44, 45, 49, 50]. SDSS data can be
queried through SQL. A diverse set of end users, ranging
from high school students to astronomers, with varied levels
of astronomy and SQL knowledge, use SDSS [49]. To help
users compose queries, SDSS provides some resources. These
include a step-by-step tutorial for SQL basics and a set of sam-
ple SQL queries that can be used as templates. There are also
descriptions of costly queries with hints on how to rewrite



them to ensure they run faster. For example, users are advised
to always start with a “count” query to estimate of the query
answer size and prevent long wait times. Figure 1 shows
an inefficient query example, given on the SDSS website,
which runs the function dbo.fPhotoFlags(’BLENDED’) for
several records in PhotoObj. The users are advised to rewrite
it to a query that invokes the function only once.
While these resources are helpful, they are not sufficient.

In particular, the step-by-step SQL tutorial is generic and
helps inexperienced users learn SQL syntax rather than write
meaningful queries. The sample set of queries is small and
static compared to the size of the database and the complexity
of potential queries. The SDSS schema has 87 tables, 46 views,
467 functions, 21 procedures, and 82 indices. The schema size
and complexity makes it hard for users to become familiar
enough with the SDSS database to effectively optimize and
tune their queries. Ad-hoc hints do not cover all possible
optimization opportunities. In this context, real-time query
performance estimates like answer size or execution time
can increase user productivity and efficiency.

DBAs are another group who interact with SDSS. One of
their tasks is to analyze the incoming requests and queries
during a session and decide the class of the end user (e.g.,
human, bot, program) that generated the queries. This is
called the session classification problem, where a session
is defined as a sequence of interactions between an end
user and the system. Session classification allows DBAs to
improve the services offered based on usage patterns [50].
Session classification is challenging. First, identifying in-

dividual sessions is difficult. This is because users are anony-
mous and do not necessarily login to the system, their IP
addresses can change, and the same IP address can access
different SDSS interfaces. In fact, there has been research
on automatic session identification as a separate task [30].
We follow [50] and assume that a session is characterized by
an ordered sequence of hits (i.e., SQL query or web request)
from a single IP address, such that the gaps between hits in
the sequence is no longer than 30 minutes [44, 50].

The second step in session classification is specifying the
correct label for an identified session. These labels can be
used to enforce certain policies and optimize system services
(e.g., for resource allocation, or to design different interaction
modalities based on the usage patterns of different types of
sessions [50]). Although the web requests contain a string
that describes the browser or program that generated the re-
quest, this “agent string” is not reliable. Consequently, SDSS
user sessions are labeled using a combination of agent string,
IP address, and behavior during session. This procedure does
not consider the content or syntactic properties of queries.
Therefore, a question that arises is whether the raw query
itself can be used for performing the label assignment. This
functionality would provide a complementary resource for

SELECT * FROM PhotoTag WHERE objId=0 x112d075f80360018

(a) Error class: success, session class: bot, answer size: 1, and CPU
time: 0.015

SELECT p.objid ,p.ra,p.dec ,p.u,p.g,p.r,p.i,p.z
FROM PhotoObj AS p
WHERE type=6 AND p.ra BETWEEN (156.519 -0.2) AND (156.519+0.2) AND

p.dec BETWEEN (62.835 -0.2) AND (62.835+0.2)
ORDER BY p.objid

(b) Error class: success, session class: browser, answer size: 98877,
and CPU time: 41.342999

Figure 2: Example SQL queries in SDSS workload.

assisting DBAs. Additionally, it helps automate identification
of human traffic, which is needed for downstream usability
problems, like query recommendation for end users [30].

3 PROBLEM DEFINITION
We use small letters for scalars, capital letters for sets or
sequences, bold small letters for vectors, and bold capital
letters for matrices.

Definition 1. A query Q = (t1, ..., tn) is a sequence of
tokens from a vocabularyV . We consider two sets of vocabu-
laries: a vocabulary that contains characters and a vocabulary
that contains words. We define v to denote the size of V and
𝒬 to denote the collection of all queries over V . □

Definition 2. For a token ti in a query Q , we define
ei ∈ {0, 1}v as the one-hot encoding of ti , i.e., a vector of
bits for tokens in V where the bit that corresponds to ti is
1 and all the other bits are 0. We use xi ∈ Rd to refer to
the distributed representation of ti in latent space obtained
using an embedding matrix X ∈ Rd×v (xi = Xei ). We define
an n-gram in Q as a sequence of n tokens that appear in Q .□

Example 1. For the query in Figure 2a, Q1 =(“SELECT”,
“*”, “FROM”, ...) is a query with a vocabulary of words, and
Q2 = (‘S’, ‘E’, ‘L’, ‘E’, ...) is a query with a vocabulary
of characters. The one-hot encoding of t1 =“SELECT” and
t2 =“*” w.r.t. a vocabulary V = {t1, t2, t3, t4} is e1 = [1 0 0 0]
and e2 = [0 1 0 0]. Given an embedding matrix X =

[[3 6 4] [9 5 8] [4 3 0] [6 0 4]], x1 = [3 6 4] and x2 = [9 5 8]
are the distributed representation of t1 and t2, respectively.
The sequence (“SELECT”, “*”, “FROM”) is a 3-gram of words
and (‘F’,‘R’,‘O’,‘M’) is a 4-gram of characters. □

We want to model queries and their properties to generate
feedback for end users and DBAs. Similar to [5], we assume
a-priori access to the database instance, i.e., the tuples and
their statistics, is not available. This is commonly the case
for users of web services like Google BigQuery. Instead, our
approach exploits the rich content of large query workloads:



Definition 3. [Query workload] Let 𝒲 = {(Qi ,yi )}
n
i=1

denote the input query workload, where Qi is a query state-
ment and yi is a query label. The label is a query property
that is obtained by submitting Qi to the database. □

The query statement Qi is typically a SQL query and can
contain clauses such as SELECT, EXECUTE, CREATE, ALTER,
or combinations such as DELETE | UPDATE | INSERT clauses.
However, in realistic workloads such as SDSS, the end user
can submit any query to the system, including a random nat-
ural language sentence. So, the query type is not restricted.

The query label yi can correspond to different query prop-
erties, e.g., answer size or CPU time. We focus on four types
of query labels. Our goal is to develop models that can pre-
dict these labels — prior to execution. For each query Qi the
error class yei is a numeric indicator of whether the query
successfully executed or not. The query total CPU time yci
is a real number and represents the query execution time.
The query answer size yai is an integer and represents the
number of rows retrieved for the query. The session class
ysi is the class of client that generated the query (and its ses-
sion). Figure 2 shows sample queries from our SDSS query
workload, along with their properties.

Definition 4. [Query Facilitation Problems] Given a query
workload 𝒲 = {(Qi , yi )}

n
i=1 and a new query Q∗, a query

facilitating problem is to predict the label y∗ of Q∗. We de-
fine four query facilitating problems depending on the label:
error classification problem, CPU time prediction problem, an-
swer size prediction problem, and session classification problem,
where the label corresponds to either the error classes, CPU
times, answer sizes, or the session classes. □

The underlying assumption in Definition 4 is that Q∗

and 𝒲 have similar execution conditions, e.g., run over the
same database instance. However, this restriction does not
hold in many real applications. For example, cloud-based,
multi-tenant, and multi-database platforms receive millions
of queries from end users based on hundreds of schemas [23].
It is vital to consider such settings and develop models that
generalize well to unseen queries. Formally, we define:

Definition 5. [Query Facilitation Problem Settings] Given
a query workload𝒲 and a new query Q∗, the problems in
Definition 4 can be studied under the following settings:
(1) Homogeneous Instance: Q∗ and 𝒲 are posed to the same

database instance.
(2) Homogeneous Schema: Q∗ and𝒲 are posed to different

database instances with the same schema.
(3) Heterogeneous Schema: Q∗ and𝒲 are posed to different

databases with different schemas. □

In this definition, we assume 𝒲 and Q∗ are executed in
the same DBMS. However, the definition can be extended to

include settings that varyw.r.t. other execution conditions for
𝒲 andQ∗, e.g., their SQL version or their DBMSs. Moreover,
as the problem setting heterogeneity increases, the prediction
problem becomes more challenging. Our empirical study in
Section 6.2 confirms that while the prediction error of all
models increases with increasing problem heterogeneity,
some models can generalize better across settings.

4 WORKLOADS AND ANALYSIS
We describe our workloads in Sections 4.1 and 4.2, analyze
them in Section 4.3, and summarize the implications of our
analysis on model selection and evaluation, in Section 4.4.

4.1 SDSS Workload
The SDSS dataset contains logs of queries and requests sub-
mitted to SDSS servers. It is described in [44], which we
briefly summarize here. For hits, logged data includes the sub-
mitted query statement, the version of the database that was
queried, the IP address of the computer that generated the
hit, the web agent string which specifies the software system
that generated the hit, and a time stamp for the hit [44]. In the
SDSS schema, hits are recorded in the “SqlLog” and “Weblog”
tables, while session information is recorded in the “Session”
and “SessionLog” tables. Additional tables record auxiliary in-
formation about the hits. The “SqlLog” table contains around
194 million SQL query log entries that are grouped into ap-
proximately 1.6 million sessions. We extracted the following
information from the SDSS dataset:
• The raw query statement, extracted from the “SqlState-
ment.statement” column. This statement can range from a
correct SQL statement to random text.

• ThequeryCPU time label, extracted from the “SqlLog.busy”
column. This value is a real number and represents the
query CPU time in seconds [41].

• The query answer size label, extracted from the “Sql-
Log.rows” column. This value is an integer and represents
the number of rows retrieved for the query.

• Thequery error class label, extracted from the “SqlLog.error”
column. The three error classes include success (the nu-
meric value 0means that the query successfully executed),
non_severe error (the numeric value 1), and severe error
(the numeric value −1, indicates an invalid query that was
rejected by the web portal and was not submitted to the
database server).

• The query session class label is extracted through a se-
ries of joins on the following tables in the SDSS schema:
WebAgentString, AgentStringID, WebAgent, WebLog, Ses-
sionLog, Session, and SqlLog (details in [61]). The seven
session classes are no_web_hit (the session is not estab-
lished through the Web), unknown (the session is estab-
lished through the Web but no agent string is reported),



bot (e.g., search engine crawler), admin (administrative ser-
vice, e.g., performance monitor), program (a user program,
e.g., data downloader), and browser (a web browser).

The large size of the SDSS dataset (including 194 million
query logs in the SqlLog table) poses a computational chal-
lenge in developing machine learning models. In addition,
the SDSS dataset has data redundancy [22, 47]. The first type
of redundancy is because many sessions can contain thou-
sands of query logs with the same template for their query
statements, e.g., bot sessions or administrative sessions typ-
ically submit the same query template but with different
constants. The second type of redundancy is caused when
the same query statement appears in different query logs,
with varying values for properties like session class, error
class, and answer size. This is because the same statement
can be submitted in different sessions, via different access
interfaces, and against different versions of the database.
To resolve the redundancy and size issues, we extract a

workload by sampling a subset of the SDSS dataset. For the
first redundancy issue we randomly sample a SQL query
log from each session to ensure a large and diverse subset
(the input of our problems is a raw query statement and is
independent of other queries in the same session). The result
contains 1, 563, 386 query logs. For the second redundancy
issue, we group query logs with the same query statement.
We found 18.5% of the query statements appear in more than
one query log (see [61]). Therefore, we aggregate their meta-
data labels. In particular, for answer size and CPU time we
use the average of these values as the label. For session class,
and error class, we use the majority class as the label (with
ties broken randomly). Our final query workload contains
618, 053 unique query statements. Details are in [61].

4.2 SQLShare Workload
The SQLShare query workload [22] is the result of a multi-
year deployment of a database-as-a-service platform, where
users upload their data, write queries, and share their results.
This workload represents short-term, ad-hoc analytics over
user-uploaded datasets. We use the SQLShare workload in
our work and extracted the following information:

• The raw query statement, extracted from the “Query”
column. This may be a syntactically incorrect SQL query.

• The query CPU time label, extracted from the “QExec-
Time” column. This value is an integer and represents the
query CPU time in seconds.

4.3 Workload Analysis
4.3.1 Query Statement Analysis. We analyze the query

statement properties to understand the type of queries posed
and their syntactic properties and statistics. Regarding the

query statement types, SELECT statements comprise approx-
imately 96.5% and approximately 98% of statements on SDSS
and SQLShare, respectively. The remaining 3.36% (21540) and
2.02% (544) of statements on SDSS and SQLShare, correspond
to types such as EXECUTE, CREATE, DROP, UPDATE, ALTER, and
various combinations like DELETE | UPDATE | INSERT.

We used the ANTLR parser [42] to generate the Abstract
Syntax Trees (AST) of query statements and extract 10 syn-
tactic properties: (1) the number of characters in a query,
(2) the number of words in a query (digits are replaced with
the <DIGIT> token), (3) the number of function calls, (4) the
number of join operators, (5) the number of unique table
names in the query, (6) the number of selected columns in
the query, (7) the number of predicates (logical conditions,
e.g., s.flags_s=0) used in a query, (8) the number of predi-
cate columns (table names), (9) the query nestedness level,
and (10) a nested aggregation indicator that is true when
nested queries involve aggregation.
Statistics of the syntactic properties of SDSS statements

are shown in Figure 3 (see [61] for SQLShare). Figures 3a
and 3b plot the distribution of characters and words for SDSS.
The maximum number of characters and words is 7, 795 and
2, 975, respectively. Around 30% of the queries have more
than 62 characters, and more than 224 words (which are the
corresponding distribution means). Figures 3c-3i report key
structural metrics such as the number of joins and number
of predicates for SDSS. Approximately 5.91% (1.68%) of the
queries in SDSS (SQLShare) have at least one join operator,
14.01% (29.74%) of the queries in SDSS (SQLShare) access
more than one table, 0.34% (7.88%) of the queries in SDSS
(SQLShare) are nested queries, and 0.03% (0.71%) are nested
queries with aggregation. Note that the small percentage of
nested queries still corresponds to a considerable number of
queries (2, 112 for SDSS and 2, 107 for SQLShare).
Our analysis of the syntax of queries in SDSS and SQL-

Share shows that these workloads have queries of various
complexity w.r.t. the syntactic properties that we studied.
Comparing the syntactic properties of the statements in SDSS
with those in SQLShare, we observe that while queries are
typically longer in SQLShare, the mean number of predicates
in the where clause for SDSS is approximately four times
that of SQLShare. Although SQLShare queries access more
tables on average, SDSS queries perform more joins on aver-
age. Finally, SQLShare’s queries are more complex in both
nestedness and aggregation.

4.3.2 Label Analysis. Figures 4a and 4b show the label dis-
tributions of the classification problems for SDSS. As shown
in Figure 4a, the error classes are imbalanced; 97.22% of the
queries ran without an error (success), while 1.93% had
non_severe errors, and 0.85% had severe errors. Figure 4b
shows that session classes are also imbalanced, e.g., program



10
0

10
1

10
2

10
3

10
4

Number of characters

10
2

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=224.26

σ=471.38
Min=1
Max=7795
Mode=52.00
Median=59.00

(a)

10
0

10
1

10
2

10
3

Number of words

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=62.48

σ=126.57
Min=1
Max=2975
Mode=8.00
Median=8.00

(b)

10
0

10
1

10
2

Number of functions

10
2

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=0.79

σ=3.39
Min=0
Max=250
Mode=0.00
Median=0.00

(c)

10
0

10
1

Number of joins

10
2

10
4

N
um

be
r o

f q
ue

rie
s μ=0.40

σ=0.82
Min=0
Max=73
Mode=0.00
Median=0.00

(d)

10
0

10
1

10
2

Number of tables

10
2

10
4

N
um

be
r o

f q
ue

rie
s μ=1.24

σ=1.11
Min=0
Max=96
Mode=1.00
Median=1.00

(e)

10
0

10
1

10
2

Number of select columns

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=6.86

σ=18.31
Min=0
Max=541
Mode=0.00
Median=0.00

(f)

10
0

10
1

10
2

Number of predicates

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=2.71

σ=8.73
Min=0
Max=480
Mode=1.00
Median=1.00

(g)

10
0

10
1

10
2

Number of predicate columns

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s μ=3.38

σ=9.68
Min=0
Max=480
Mode=1.00
Median=1.00

(h)

0 1 2 3 4 5 6 8
Nestedness level

10
1

10
3

10
5

N
um

be
r o

f q
ue

rie
s

(i)

false true
Nested aggregation

10
3

10
4

10
5

N
um

be
r o

f q
ue

rie
s

(j)
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Figure 4: Label distributions for classification (Figures 4a and 4b) and regression problems (Figures 4c-4e).

and bot comprise 7.93% and 25.98% of the workload, respec-
tively. Note, a simple model that only predicts the majority
class (e.g., success in error classification) will achieve a high
accuracy. We address this issue in our evaluations by sepa-
rately calculating the per-class F-measure.
Figures 4c-4e show the label distributions for regression

problems. Figure 4c shows SDSS answer size distribution,
which ranges from a minimum of −1 (the query did not run
due to an error) to a maximum value of 966, 278, 220 tuples.
Despite the wide range of values, the data is concentrated
around smaller values with a median of 1, i.e., half of the
queries either do not run, return no answer, or return only
one answer. Figure 4d shows the CPU time distribution on
SDSS. The time ranges between 0 and 108 seconds with the
majority of queries taking little CPU time. Figure 4e shows
the CPU time distribution in SQLShare ranges approximately
between 0 and 4 ∗ 106 seconds.

4.4 Workload Analysis Implications
4.4.1 Model Selection and Train Loss Functions. Our query

facilitation problems in Definition 4 can broadly be catego-
rized as supervised classification and regression problems.

Text classification in NLP is a closely related area. Traditional
NLP models, work in two stages: a feature extraction phase,
where input features are hand-engineered, and a prediction
phase. As shown in Figure 3, queries range in complexity
and extracting an adequate set of features can be challenging.
Neural network architectures can learn features automati-
cally. They combine the feature extraction and prediction
stages in a joint training task, which allows them to develop
features and representations for the task [8]. LSTMs are a
type of recurrent neural network (RNNs), and are one of the
dominant models for text classification. They treat text as se-
quential inputs and try to preserve long-term dependencies
between tokens. However, query statements are long (Fig-
ures 3a and 3b), and this property can negatively affect the
performance of LSTMs. As an alternative, we assess CNNs,
which are feed-forward networks. Rather than preserving
long-term dependencies, CNNs automatically identify local
patterns (i.e., n-grams) in the input and preserve them in their
feature representations. For NLP tasks, CNNs are known to
be competitive with several more sophisticated architectures
(e.g., LSTMs) and are easier to train and interpret [3, 54].



Moreover, we observe that SQL queries often containmath-
ematical expressions consisting of numbers and operators.
These expressions significantly affect query properties like
query answer size or CPU time [13]. It is beneficial to re-
tain relevant information in the representation of queries.
However, the set of variable names and digits used in code
snippets is unbounded, and there are many rare words. For
word-levels models, this leads to the unbounded or open
vocabulary problem, which creates practical issues when
learning representations in machine learning [32]. We apply
the models in Section 5, at both character and word level.
For the latter, we replace the digits with a <DIGIT> token
to control for the vocabulary size.
Regarding the train loss functions, we observe that the

error class and session class labels are imbalanced (Figures 4a
and 4b). For some applications, like bot detection, models
that perform accurately on certain classes may be required.
Typically, application-dependant assumptions are enforced
by either re-sampling the data, or using weighted loss func-
tions during training of models. Because our work does not
focus on specific applications (e.g., bot detection), we treat
all classes equally and use an unweighted cross entropy loss
function for training the classification models in Section 5.
Our evaluation (Section 6), however, considers this class
imbalance where we analyze performance w.r.t. each class.

The regression labels have a wide range of values and are
highly skewed, with the majority of queries concentrated
around small values (Figures 4c-4e). To prevent the mod-
els from being too sensitive to queries with a large label
value (outliers), we perform two steps. We apply a loga-
rithmic transformation to the values of these labels y ′

i =

ln(yi + ϵ −min(y)), where yi is the label of query i , and y is
a vector representing the labels (answer size or CPU time)
of all queries, and y ′

i is the log-transformed value. When
yi = min(y), ϵ > 0 prevents the input of the ln(.) function
from being zero. We set ϵ = 1 to make the transformation
non-negative. We use the log-transformed values of CPU
time and answer size as the labels of queries in regression
problems. Moreover, to ensure that the regression models
are robust to outliers in the data, during training we use
the well-known Huber loss [17], which is a hybrid between
l2-norm for small residuals and l1-norm for large residuals.

4.4.2 Model Evaluation. In our work, we want to help end
users write queries. This is particularly important in settings
where query statements are complex and for users who have
little experience. Therefore, we need to assess model perfor-
mance on complex query statements. However, statement
complexity information is not included explicitly in the data.
To effectively assess feasibility of complex queries, we must
define both a notion of query statement complexity and a
proxy measure that captures it.
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Figure 5: SDSS structural property correlations.

Similar to [22], we want a proxy metric for complexity
that reflects the cognitive effort required to write the query
statement. Metrics based on query run time [13] are not
adequate in this context. The run time depends on factors
like the load of the database or the size of data selected,
which are not relevant to the cognitive effort of the user, e.g.,
a simple query that selects all rows of a large table can have
a long running time. In [22], query complexity is defined
in terms of the query’s ASCII length and the number of
distinct operators in the query execution plan. However, we
do not assume access to the database instance or execution
plan. The ASCII length, on the other hand, might not be
a sufficient proxy for complexity, e.g., when a query has
a simple structure with similar operations repeated many
times. Additional syntactic properties may be required.
However, it is not clear which set of syntactic proper-

ties capture a meaningful notion of statement complexity.
Figure 5 shows the correlation matrix for the syntactic prop-
erties in Figure 3 for SDSS. We observe some properties
are positively and linearly correlated with other types of
properties, and hence indicative of them. For example, the
number of characters is linearly correlated with the number
of words, the number of predicate columns, and the number
of predicates. So the latter properties are redundant since
the number of characters is indicative of them. But number
of characters is not positively correlated with properties like
nested aggregation and nestedness level and may not capture
those complexities. As another example, the number of joins
is only linearly correlated with the number of unique table
names. We observed similar patterns for SQLShare (see [61]).

Overall, these observations suggest that a subset of syntac-
tic properties might be required to capture the full range of
potential query complexities. Based on the query statement
feature correlations shown in Figure 5, we chose a subset
of five syntactic properties for the qualitative analysis in
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Figure 6: SDSS analysis by session class. The top and
bottom of each box represent the first and third quar-
tiles of the class data distribution. The horizontal line
in each box is themedian, themean is a green triangle.

Section 6.3.3. These include the number of characters, the
number of functions, the number of joins, the nestedness
level, and the nested aggregation indicator.
One viable assumption may be that different classes of

users write queries with different complexity levels. For ex-
ample, bot queries may use linear predicates in the where
clause, while queries via browser may be more complex.
Thus, session class, if available, can be an indirect proxy
for query complexity. Figure 6a plots the distribution of
the answer size for each session class. The no_web_hit and
browser classes have similar distributions, with the latter
having slightly smaller values (likely due to the limitations
for queries posed via the web-based interface). In Figure 6b
the distribution of the CPU time for each session class is
shown. Queries in the no_web_hit class have a wider range
of values. Figures 6d and 6c show the query size distribu-
tions by session class. Overall, queries from no_web_hit and
browser classes have similar distributions at both the char-
acter and word level. These figures suggest that queries in
the no_web_hit and browser class are more complex.

5 METHODS
Based on our analysis in Section 4.4.1, we extend three mod-
els from the NLP domain and benchmark their performance
for our problems. In Section 5.1 we describe a traditional

model. In Section 5.2 we describe a three-layer LSTM model
and in Section 5.3 we describe a shallow CNN.

5.1 Traditional Model
Traditional machine learning models work in two stages:
a feature extraction phase and a prediction phase. For the
feature extraction phase, Bag-of-ngrams and its TFIDF (term-
frequency inverse-document-frequency) are commonly used
in NLP applications. For the Bag-of-ngrams, we select the
most frequent n-grams (up to 5-grams) from the training
set. These features comprise the domain vocabulary V with
size v . Thus, this representation maps each query to a v-
dimensional vector obtained by computing the sum of the
one-hot representation of the n-grams that appear in the
query. Next, we compute the TFIDF weight of each token
ti in the v-dimensional representation of query Q w.r.t. the
collection of queries 𝒬. In particular, the weight of token
ti is computed using TFIDF(ti ,Q,𝒬) = TF(ti ,Q) × IDF(ti ,𝒬).
Here TF (ti ,Q) is the normalized frequency of ti in Q . The
normalization prevents bias towards longer queries. The
IDF(ti ,𝒬) component describes the discriminative power of
ti in 𝒬 and helps to control for the fact that some tokens
are generally more common than other tokens. It can be
computed by log |𝒬 |

1+ | {Q ∈𝒬,ti ∈Q } |
, where the denominator is

the number of queries in 𝒬 that contain ti . The TFIDF value
increases proportionally to the frequency of a token in a
query but is counterbalanced by the frequency of the term
in the collection.
We then apply a prediction model given this fixed v-

dimensional feature vector. For classification problems, we
apply the multinomial logistic regression model. For regres-
sion problems, we use Huber loss [17]. We implemented this
model using scikit-learn [43].

5.2 Three-layer LSTM
Long-Short Term Memory (LSTM) is a type of recurrent neu-
ral network (RNN) [57]. RNNs can process sequential inputs
of arbitrary length. Standard RNN units work by reading
the input sequence one token at a time from left to right. At
every step i , a hidden state hi ∈ Rk is emitted, which is a se-
mantic representation of the sequence of tokens observed so
far. Specifically, hi is produced using the recurrent equation
hi = f (Wxi +Uhi−1 + b) where xi ∈ Rd is the distributed
representation of the input token qi , and hi−1 ∈ Rk is the
hidden state at i − 1. The parameters of this RNN unit in-
clude weight matricesW and U , and a bias vector b. f (.)
is a point-wise non-linear activation function, such as the
Sigmoid or Rectified Linear unit (Relu) [14].
Standard RNNs suffer from the vanishing gradient prob-

lem. In particular, during training, the gradient vector can



grow or decay exponentially [14, 51]. LSTMs are a more ef-
fective variant of RNNs. They are equipped with a memory
cell c ∈ Rk , which helps preserve the long-term dependen-
cies better than standard RNNs. The LSTM unit [57] has a
hidden state hi that is a partial view of the unit’s memory
cell. The unit is equipped with additional parameters and
machinery to produce hi from ci−1 (memory cell at step i),
xi , and hi−1(details in [61]).

Since well-known RNN architectures do not exist for our
problems, we explore those used in similar domains. Deep ar-
chitectures consisting of many layers are often developed to
learn hierarchical representations for the input and to learn
non-linear functions of the input [8]. However, increasing
the number of layers and units increases the number of pa-
rameters to learn, and training time increases substantially.

A two-layer character-level LSTM architecturewas used to
predict program execution in [57]. We found a three-layered
LSTM model performed better for our problems. We use the
output of the last layer as the query vector representation.
For classification problems, we apply the softmax operation
to generate the output probability distribution. Similar to the
traditional models, we use the cross-entropy loss for classifi-
cation problems. For regression problems, we pass the vector
through a linear unit and use Huber loss. To optimize the
network, we examined both Adam and AdaMax [33] which
are gradient-based optimization techniques that are well
suited for problems with large data and many parameters.
We found the latter performed better.

5.3 Shallow CNN
Convolutional Neural Networks (CNNs) are feed-forward
neural networks that process data with grid-like topology,
e.g., a sequence of concatenated distributed representations
of tokens in NLP. Their application in NLP enables the model
to extract the most important n-gram features from the input
and create a semantic representation. As a result, long-term
dependencies may not be preserved and token order informa-
tion is preserved locally. CNNs, however, have comparable
performance to RNNs, they are easier to train, and are also
parallelizable [3, 54, 56].
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Figure 7: 1D convolution operationwith input x1:n and
kernelw . The outputp = x1:n ∗w is produced by sliding
w over x1:n and computing the dot product.

Each layer in a CNN consists of three stages [14]: a con-
volution stage, a detection stage, and a pooling stage. We
explain each of stages based on a 1D convolution operation,
although higher dimensions are also possible.

x1 SELECT

x2 *

x3 FROM

x4 PhotoTag

x5 WHERE

x6 objId

x7 =

x8 <DIGIT>

Input query: x1:n = x1 ⊕ x2...⊕ xn

Convolution and
non-linearities

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Activation maps

Figure 8: 1-layer CNN, adapted from [31].

The convolution stage applies several convolution oper-
ations. A convolution operator has two operands: a multi-
dimensional array of weights, called the kernel, and a multi-
dimensional array of input data. Convolving the input with
the kernel consists of sliding the kernel over all possible
windows of the input. At every position j , a linear activation
pj is obtained by computing the dot product between the
kernel entries and local regions of the input. Figure 7 shows
an example of a 1D convolution operation. Let ⊕ denote the
concatenation operation, and x1:n = x1⊕x2⊕ · · ·⊕xn denote
the concatenated distributed representations xi in an input
query (stacked length-wise as a long column). Let x j :j+m−1
represent a window ofm words andw ∈ Rm denote a kernel.
The dot product of w and eachm-gram in the sequence is
computed to obtainpj = wTx j :j+m−1+b whereb ∈ R is a bias
term. By sliding the kernel over all possible windows of the
input, we obtain a sequence p ∈ Rn−m+1 (b = 0 in Figure 7).
Note, in the convolution stage, several kernels with varying
window sizes may be convolved with the data to produce
different linear sequences. In the detector stage, the linear
sequence p is run through a non-linear activation function.
This results in a sequence of non-linear activations called
the activation map a = f (p), where a ∈ Rn−m+1 and f (.) is
a non-linear activation function, e.g., Relu. In the pooling
stage a pooling operation is applied to the activation map
to summarize its values which also enables the model to
handle inputs of varying size. For example, the max-pooling
function returns the maximum, i.e., д = max{a}.
Figure 8 shows the shallow CNN architecture in [31],

which we adapt for our application. The input query x1:n
and convolution operations are shown in 2D for easier pre-
sentation. In the convolution stage, several filters of varying
window size m ∈ {3, 4, 5} are applied, and the resulting
sequence p1,p2, ... is passed through a Relu function to gen-
erate activations a1,a2, ... . Different size sequence inputs
and kernels result in activation maps of different sizes. To
deal with variable length of the input and also obtain the
most important feature, a max pooling operation is applied to
obtain a single feature per kernel, д = max{a}. The resulting



features for all kernels are concatenated to produce a fixed
size vector д ∈ RK , where K is the number of kernels. This
output is used to create a fully connected layer, followed by
a dropout layer.

We tried changing the architecture by increasing the num-
ber of kernels and the window size but did not obtain signif-
icant improvements. Similar to the other models, for classifi-
cation problems we apply the softmax operation to generate
the output probability distribution. We use the cross-entropy
loss for classification problems. For regression problems, we
pass the vector through a linear unit and use Huber loss to
learn the parameters. We used AdaMax as the optimizer.

6 EMPIRICAL EVALUATION
We evaluate the performance of models in Section 5 on the
four query facilitation problems, considering two aspects:
(1) the different query facilitation problem settings and (2) the
query statement complexity (described in Section 4.4.2).

6.1 Setup
Data split. For Homogeneous Instance, we used our ex-
tracted SDSS workload. For Homogeneous Schema, we used
SQLShare. In both settings, we randomly split the queries. For
Heterogeneous Schema, we used SQLShare and randomly
split the data based on users, so as to decrease the likelihood
of data sharing. The SDSS workload has a total of 618, 053
queries. SQLShare has a total of 26, 728 queries. In all three
settings, we used a (80/10/10) split for the train, validation,
and test sets, respectively.

Methods compared. We compare the models in Section 5,
where character-level model names begin with c and word-
levels models with w. The traditional models are ctfidf
and wtfidf. The 3-layer LSTM models are clstm and wlstm.
The CNN models are ccnn and wcnn. For each prediction
task, we also include a simple baseline. For classification
problems, mfreq predicts the most frequent label, i.e., it pre-
dicts success for error classification, and no_web_hit for
session class prediction. For regression problems, median
predicts the median of the corresponding train distribution,
i.e., the median of train answer size distribution is 1.099,
and the median of the train CPU time distribution is 0. Fol-
lowing [1, 13, 38] we report results for an opt model which
uses linear regression to predict CPU time from the query
optimizer estimates cost estimates.

Hyper-parameter tuning. We tune the hyper-parameters
based on Homogeneous Instance (SDSS). To keep this prob-
lem tractable, we restrict the set of hyper-parameters of each
model and choose the best set of hyper-parameters based on
performance on the validation set. We fixed the learning rate
1e-3, batch size to 16, and token embedding size to 100. For

clstm and wlstm, we tested the number of hidden dimen-
sions in {150, 300} and clipping rate in {0.25, 0}. For ccnn
and wcnn, we tested number of kernels in {100, 250}, drop
out in {0.5, 0}, and clipping rate in {0.25, 0}. We report re-
sults for the best performing model and also use the model in
Homogeneous Schema and Heterogeneous Schema settings.

Performance metrics. For the classification problems we
report the test average loss measured by cross entropy loss .
We also report accuracy, which is the number of correct pre-
dictions divided by the total number of predictions. Due to
the class imbalance for both error and session classification,
for every class C , we report the per class F-measure com-
puted by FC = 2.PrecisionC .RecallC

PrecisionC+RecallC . PrecisionC is the number
of correct predictions for class C divided by the total num-
ber predictions for class C . RecallC is the number of correct
predictions for class C divided by the total number queries
in class C . For the regression problems we report the test
average loss measured by Huber loss. We also report Mean
Square Error (MSE) computed as MSE = 1

m
∑m

i (y
′
i − ŷi )

2,
where y ′

i is the log-transformed label (CPU time or answer
size) of query i , and ŷi is the predicted value. We also use
qerror [36] to measure the quality of estimates. It is defined
as qerrori = max(yiŷi ,

ŷi
yi
) for a query. For qerror analysis, we

do not apply log-transformation to the query labels.

6.2 Model Performance
6.2.1 Homogeneous Instance. Table 1 (left) shows the er-

ror classification results. The mfreq baseline achieves a high
Fsuccess but performs poorly w.r.t. other classes. All other
models improve upon this baseline. The ccnn model obtains
a high Fsevere = 0.7961 and has the highest test accuracy.
Table 1 (middle) shows results for CPU time prediction. The
wcnn model obtains the lowest test loss, followed closely by
the wlstm model. Table 1 (right) shows results for answer
size prediction. The ccnn model obtains the lowest test loss,
followed closely by the clstm model. In Section 6.3.1 we as-
sess both problems w.r.t. MSE values. Table 3 shows results
for session classification. Again the mfreq baseline achieves
a high Fno_web_hit (the majority class) but under-performs all
other models w.r.t. other classes. The highest test accuracy
is obtained by the ctfidf model, which outperforms other
models in the F-measure of individual classes, except for
Funknown which is 0. Fadmin is 0 since admin only has 2 queries
in the test set.

Table 2 shows the qerror of the answer size predictions of
62K test queries in SDSS. The percentage of queries that have
at most the reported qerror is shown, e.g., the qerror of 75% of
the test queries is less than 2.38 for clstm. Intuitively, qerror
for answer size is the factor by which an estimate differs
from the true answer size. We observe ccnn and clstm have
the lowest qerrors. Note, all models perform well for 50% of



Error Classification CPU Time Answer Size

Model v p Accuracy Fsevere Fsuccess Fnon_severe Loss p Loss p Loss
baseline - - 0.9730 0.0000 0.9863 0.0000 0.5951 - 0.0675 - 1.6357
ctfidf 500000 1500000 0.9778 0.7131 0.9888 0.0053 0.5860 500000 0.0668 500000 1.0400
ccnn 159 17403 0.9797 0.7961 0.9897 0.1669 0.1106 16801 0.0471 16801 0.7517
clstm 159 1944003 0.9786 0.6922 0.9893 0.2206 0.0830 1943401 0.0452 529651 0.7678
wtfidf 500000 1500000 0.9773 0.6546 0.9885 0.0620 0.5836 500000 0.0668 500000 1.0922
wcnn 85942 8597953 0.9790 0.7441 0.9894 0.2006 0.1006 8595101 0.0441 8595101 0.8472
wlstm 85942 10522303 0.9776 0.6971 0.9887 0.0018 0.0691 10521701 0.0443 9107951 0.8256

Table 1: Query error classification (left), CPU time (middle), and answer size (right) prediction in Homogeneous
Instance (SDSS). Here v is #tokens in the vocabulary, p is #model parameters, Loss is the average test loss (lower
loss is better). baseline is median in the regression problems and mfreq in the classification problem. In the classi-
fication problem, FC is the F-measure of class C. The #samples of each class in the test set are: severe = 533, success
= 60138, non_severe = 1134.

Model 50% 75% 80% 85% 90% 95%
median 1 36 50 144 1885 50000
ctfidf 1.13 4.86 10 25 88 727
ccnn 1.36 2.60 3.75 6.79 18 174
clstm 1.07 2.38 3.50 6.79 19 172
wtfidf 1.00 5.37 11.04 31.98 100 879
wcnn 1.33 3.42 5.14 10.93 36 295
wlstm 1.12 2.62 4.27 10.43 30 292

Table 2: Answer size prediction qerror (SDSS).

the queries and the main comparison is for the other 50% of
the queries for which prediction is more difficult.

6.2.2 Homogeneous Schema. Table 4 reports performance
for CPU time prediction in Homogeneous Schema. The ccnn
model outperforms other models. Compared to Homoge-
neous Instance, the overall loss value is higher for all mod-
els. This is because the latter poses an additional challenge
where the distribution of the queries in individual database
instances is different, and to get accuracy compared to Ho-
mogeneous Instance, we need to increase model capacity
(e.g., add more layers in the architecture). Moreover, observe
that the optmodel, that is based on the query optimizer cost
model, is closer to median in it’s error. Our qerror analy-
sis for 2,674 test queries in SQLShare shows ccnn performs
better across different percentiles. For 50% and 75% of the
queries, qerror is less than 1.94 and 27, resp (see [61]).

6.2.3 Heterogeneous Schema. Table 4 reports performance
for CPU time prediction in Heterogeneous Schema. Similar to
Homogeneous Schema, the ccnn model outperforms others.
However, compared to Homogeneous Instance and Homoge-
neous Schema, the loss value achieved by all models is higher.
This is expected since the data is extracted from databases

with different schemata, which makes it more challenging
for the models to predict, i.e., the train and test sample dis-
tributions are different. For opt, prediction is more difficult,
too. As explained in [1], the query optimizer cost model
assumes I/O is most time consuming, even though certain
computations (e.g., nested aggregates over numeric types)
are performed in memory. Moreover, a non-linear regression
model may improve performance of opt. Our qerror analysis
(see [61]) shows ccnn performs better across different per-
centiles in Heterogeneous Schema. For 30% of the queries,
qerror is less than 34. The substantial qerror increase means
prediction is harder in Heterogeneous Schema.

6.2.4 Discussion. We found the following: (1) Charac-
ter-level models (ccnn and ctfidf) obtain the best perfor-
mance for all problems except CPU time prediction in Ho-
mogeneous Instance, where word-level models (wcnn and
wlstm) obtained the lowest test loss and MSE. Intuitively,
as the problem heterogeneity increases, the number of rare
words increases, making it difficult to learn word-level pat-
terns. In Homogeneous Instance setting, however, queries
have more words in common (e.g., table names and SQL
keywords), and the models can learn the underlying dis-
tributions better. (2) Overall, CNN and LSTM architectures
outperform others on all problems except session classifi-
cation, where ctfidf obtains better results in predicting
several classes. The frequency of the classes (see Table 3)
shows that ctfidf performs better for majority classes (e.g.,
no_web_hit and bot); and CNN and LSTM beat ctfidf in
non-frequent classes (e.g., unknown and program) where pre-
diction is more difficult. In addition, ccnn achieves almost the
same overall accuracy with much fewer parameters (16801
vs 500000). The neural networks learn features w.r.t. task, but
ctfidf and wtfidf are limited to pre-determined features.
(3) Regarding generalization of a single model under various



Model v p Loss Fno_web_hit Funknown Fbot Fprogram Fanonymous Fbrowser Accuracy
mfreq - - 1.7848 0.6186 0.0000 0.0000 0.0000 0.0000 0.0000 0.4478
ctfidf 500000 3500000 1.5786 0.6235 0.0000 0.7272 0.6128 0.6176 0.5618 0.6421
ccnn 159 18607 0.7960 0.5921 0.2373 0.6940 0.6076 0.5441 0.5389 0.6152
clstm 159 1945207 0.8600 0.5774 0.0455 0.6817 0.6366 0.4868 0.5451 0.6102
wtfidf 500000 3500000 1.6077 0.5487 0.2903 0.6958 0.6241 0.6042 0.5416 0.6068
wcnn 85942 8596907 0.8373 0.5411 0.3778 0.6955 0.5344 0.5970 0.5615 0.6004
wlstm 85942 10523507 0.8452 0.5558 0.0000 0.6628 0.6278 0.4482 0.5303 0.5911

Table 3: Query Session classification in Homogeneous Instance (SDSS). The #examples in the test set for each class
is: no_web_hit = 27677, unknown = 42, bot = 16148, program = 4882, anonymous = 467, browser = 12587.

Homogeneous
Schema

Heterogeneous
Schema

Model v p Loss p Loss
median - - 2.0049 - 2.1616
opt - - 1.8909 - 2.2841
ctfidf 500000 500000 0.4742 500000 1.2360
ccnn 101 11001 0.4625 10901 1.1547
clstm 101 1937601 0.7935 1937501 1.6046
wtfidf 500000 500000 0.4898 500000 1.9702
wcnn 14843 1485201 0.5230 1395901 2.0416
wlstm 14843 3411801 0.8081 3322501 1.8546

Table 4: Query CPU time prediction (SQLShare)

settings, ccnn identifies local sequential character patterns
which help it learn the underlying data distribution better.

6.3 Detailed Qualitative Analysis
6.3.1 Performance by Session Class. We refine the anal-

ysis and use session class as a proxy for complexity in Ho-
mogeneous Instance. We analyze answer size prediction in
Figure 9a, which showsMSE by session class. TheMSE trends
show that predicting answer size for no_web_hit, program,
and browser is more difficult. Moreover, the simple baseline
median under-performs all models across all sessions. We
observe ctfidf and wtfidf also under-perform other mod-
els (we found they perform similarly to median for CPU time
prediction, see [61]). Our results indicate the neural network
models perform better on complex session classes.

6.3.2 Performance by Structural Properties. Figures 9b-
9e examine the error of answer size prediction for varying
structural properties in Homogeneous Instance. As expected,
error increases formore complex queries (with larger number
of characters, number of functions, and number of joins).
The decrease of error in the middle and end of the graphs in
Figures 9b-9d is due to fewer answers for the corresponding
queries, which makes prediction easier for all the models
(including median, which supports this claim).

Figure 10 examines the error of CPU time predication.
Figures 10a, 10c, and 10e show the MSE of all models in-
creases as the data heterogeneity (Homogeneous Instance to
Homogeneous Schema to Heterogeneous Schema) and the
query complexity, i.e., the number of characters, increase.
Figures 10b, 10d, and 10f show a breakdown of the prediction
error of ccnn, w.r.t. nestedness level, under various settings.
The unexpected decrease in MSE of queries with high nest-
edness (nestedness level=3, 4) is due to better prediction for
the few queries with small CPU time.

6.3.3 Case Study. We study performance for two sample
queries with different structural properties. Q1 in Figure 11
is a large query (number of characters =1, 247 and number of
words =376) that joins three large tables (e.g., Specobj and
Photoobj contain 4, 311, 571 and 794, 328, 715 rows, respec-
tively), selects 49 columns in the answer, and calls 3 functions.
The query is from the browser and ran successfully (error
class: success) with CPU time of 105.37 sec and returned
304 answers. Comparing ccnn and clstm, the former pre-
dicts 116.40 sec for CPU time while clstm’s estimation is 980
sec. The query length makes it hard for clstm to capture the
long-term dependencies, whereas ccnn detects local patterns
and combines them globally to make a better prediction.
Q2 in Figure 12, is shorter than Q1 (number of characters

=645 and number of words =181), but it is more complex
(nestedness level=3, number of functions=5, and number of
predicates=11). The query runs instantly since it accesses
tables (Jobs, Users, Status and Servers) with fewer rows.
Its answer size is 27 rows. The CPU time prediction of ccnn,
wcnn and clstm are 1.00 sec, 1.28 sec and 1.01 sec, respec-
tively. Their answer size predictions are 45, 46 and 49. For
Q2 all 3 models perform fairly well. The small CPU time and
the answer size of Q2 compared to Q1, contributes to more
accurate predictions (due to the logarithmic label transfor-
mation and Huber loss (cf. Section 4.4.1)). Q2 is shorter in
length compared to Q1, which makes it easier for clstm to
make predictions.
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Figure 9: Error analysis of answer size prediction in
Homogeneous Instance (SDSS). Performance break-
down across session classes in Figure 9a (legend shows
the totalMSE for eachmodel) andw.r.t. different struc-
tural properties in Figures 9b-9d. Error analysis for
ccnn by nested aggregation in Figure 9e.

6.3.4 Discussion. Using session information, CPU time
and answer size predictionweremore difficult for no_web_hit,
program, and browser sessions, for all models. This is be-
cause queries in these classes are more complex compared to
other classes (see Figure 6) and are likely issued by humans.
Our evaluation by structural properties showed that pre-
dicting labels is more difficult for complex queries (e.g., with
large number of characters, number of functions, and number
of joins), and in settings where data is from heterogeneous
sources. Word-level models suffer from many rare tokens in
heterogeneous settings, and do not generalize well. Among
the character-level models, clstm is sensitive to the query
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Figure 10: Error analysis of CPU time prediction by
number of characters (left). Error analysis of CPU
time prediction for ccnn by nestedness level (right).

SELECT q.name AS qname , dbo.fDistanceArcMinEq(q.ra,q.dec ,p.ra,p.
dec), ...

FROM SpecObj AS s, SDSSSQL010.MYDB_670681563.test.QSOQuery1_DR5 AS
q, PhotoObj AS p

WHERE ((s.bestobjid=p.objid) AND (s.ra BETWEEN 185 AND 190) AND
...) ORDER BY q.ra

Figure 11: Sample query Q1

SELECT j.target ,cast(j.estimate AS varchar) AS queue ,...
FROM Jobs j,Users u,Status s,

(SELECT DISTINCT target ,queue FROM Servers s1
WHERE s1.name NOT IN

(SELECT name FROM Servers s,
(SELECT target ,min(queue) AS queue
FROM Servers GROUP BY target) AS a

WHERE a.target=s.target)) b
WHERE j.outputtype LIKE '%QUERY%' AND ...

Figure 12: Sample query Q2

length and is outperformed by ccnn as statement complexity
increases.



7 RELATEDWORK

Deep learning, Machine Learning, and NLP. RNNs and
CNNs are dominant in many text applications [8]. Character-
level LSTMs were used for program execution in [57]. In [31],
a one-layerword-level CNNmodel outperformed tree-structured
models that use syntactic parse trees as their input, for text
categorization. Deep character-level CNN models [8, 27, 59]
outperformed shallow word-level CNNs [27]. Although shal-
low word-level models have more parameters and need more
storage, their computations are faster. Subsequently, deep
word-level CNNs have been applied in [29]. LSTMs and
CNNs are compared in [3, 54]. CNNs outperform RNNs, for
sequence modeling tasks. They are also parallelizable, which
leads to speeds up in their execution [54]. We examined
both character-level and word-level LSTMs and CNNs. Our
work is related to machine learning for Big Code and natu-
ralness [2]; we leave that analysis for future work.

Deep learning in databases. Research problems at the
intersection of deep learning and databases are introduced
in [53]. Examples include query optimization and natural lan-
guage query interfaces [53]. A feed-forward neural network
(with 1 hidden layer) for cardinality estimation of simple
range queries (without joins) is proposed and evaluated on a
synthetic dataset [39]. Recently, [60] developed a natural lan-
guage interface for database systems using deep neural net-
works. In [21], an LSTM autoencoder and a paragraph2vec
model were applied for the tasks of query workload summa-
rization and error prediction, with experiments on Snowflake,
a private query workload, and TPC-H [52]. Compared to
the datasets in [21, 60], SDSS and SQLShare are publicly-
available and real-world.

Modeling SQL query performance. Estimates of SQL
query properties and performance are used in admission con-
trol, scheduling, and costing during query optimization. Com-
monly, these estimates are based on manually constructed
cost models in the query optimizer, which may be imprecise.
Prior work has used machine learning to accurately estimate
SQL query properties [1, 13, 36, 38, 39]. Most works use rel-
atively small synthetic workloads, like TPC-H and TPC-DS,
along with traditional two-stage machine learning models.
Their results are better with query execution plans as input.
Similar to us, the database-agnostic approach in [23] auto-
matically learns features from large query workloads rather
than devising task-specific heuristics and feature engineer-
ing for pre-determined conditions. However, they focus on
index selection and security audits.

Facilitating SQL query composition. Form-based [24]
and keyword queries [5, 58] can help users write queries.
Natural language interfaces, like NaLIR [37], allow complex

query intents to be expressed. Query recommendation by
mining query logs [6, 11, 30] is another approach. Given the
schema, tuples, and some keywords, the approach in [12]
suggests SQL queries from templates. Additional query re-
sults are recommended for each query in [48]. However,
other than [30], these works access tuples. Other work as-
sume the user is familiar with samples in the query answer.
AIDE [9] helps the user refine linear queries using decision
tree classifiers. Finding minimal project join queries based
on a sample table of tuples contained in the query answer, is
studied in [46]. These works are complementary to ours.

Mining SQL query workloads. Several usability works
use the TPC-H benchmark dataset [52]. TPC-H has 8 ta-
bles, contains (22) ad-hoc queries, and data content modifica-
tions. A synthetic workload can be simulated from the ad-hoc
queries. Query workloads are also used for tasks like index
selection [21], improving query optimization [38], and work-
load compression [7]. Workload compression techniques can
provide an orthogonal extension for data extraction part of
our work. SDSS has been used to identify user interests and
access areas within the data space [40]. Ettu [34], is a system
that identifies insider attacks, by clustering SQL queries in a
query workload. We focus on different problems.

8 CONCLUSION
We address facilitating user interaction with the database
by providing insights about SQL queries — prior to query
execution. We leverage (only) the abundant information in
large-scale query workloads. We conduct an empirical study
on SDSS and SQLShare query workloads and adapt various
data-driven machine learning models. We found the neural
networks (character-level CNNs in particular) outperformed
other models, for query error classification, answer size pre-
diction, and CPU time prediction.

There are several avenues for future work.We intend to ap-
ply transfer-learning ideas to improve ccnn under heteroge-
neous settings [4, 55]. More sophisticated models, e.g., deep
character CNNs [8] or tree-structured architectures [51] may
lead to performance gains. Query workload extraction is an-
other direction. The SDSS dataset is large and noisy. To un-
derstand the challenges, we extracted a sample and analyzed
our problems. However, more adequate query workloads
can be extracted, separately, for various problems. Another
direction is to use multi-task models that learn correlations
between the query labels, although our models are applica-
ble in broader settings where workloads have only one label.
Incorporating other types of meta-data, e.g., the database
version that was queried, may increase accuracy. We leave
addressing these challenges for future work.
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