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ABSTRACT

Smart databases are adopting artificial intelligence (AI) tech-
nologies to achieve instance optimality, and in the future,
databases will come with prepackaged Al models within
their core components. The reason is that every database
runs on different workloads, demands specific resources, and
settings to achieve optimal performance. It prompts the ne-
cessity to understand workloads running in the system along
with their features comprehensively, which we dub as work-
load characterization.

To address this workload characterization problem, we
propose our query plan encoders that learn essential features
and their correlations from query plans. Our pretrained en-
coders captures the structural and the computational per-
formance of queries independently. We show that our pre-
trained encoders are adaptable to workloads that expedites
the transfer learning process. We performed independent
assessments of structural encoder and performance encoders
with multiple downstream tasks. For the overall evaluation
of our query plan encoders, we architect two downstream
tasks (i) query latency prediction and (ii) query classifi-
cation. These tasks show the importance of feature-based
workload characterization. We also performed extensive ex-
periments on individual encoders to verify the effectiveness
of representation learning, and domain adaptability.

PVLDB Reference Format:
Debjyoti Paul, Jie Cao, Feifei Li, Vivek Srikumar . Database
Workload Characterization with Query Plan Encoders . PVLDB,

(): xxxX-yyYyy, -
DOI: https://doi.org/TBD

0
1. INTRODUCTION

Database Management Systems (DBMS) are general-purpose

systems that aim to provide solutions to many applications
as possible. Database designers expose many configuration
settings to facilitate end-users in managing complex work-
loads efficiently. However, there is no single configuration
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that works for all workloads and finding the optimal config-
uration setting is very dependent on the workload charac-
teristics.

In the usual process, DBAs first need to learn about the
database queries that frequently run on their database sys-
tem and then dig deeper to characterize these queries. It
requires an in-depth knowledge and robust understanding
of the queries and its execution features. It is a challenging
as well as laborious task for DBAs to comprehend execu-
tion features of queries and its relations with configuration
knobs. Furthermore, the large number of possible DBMS
configurations settings makes it a daunting task for DBAs.
Currently, advanced DBAs applies simple data mining tech-
niques and hand-tweaked feature engineering to understand
the nature of workload, but this requires domain expertise,
which is rare.

Nowadays, many small to medium businesses (SMBs) man-
age their databases with cloud services. Cloud database
service providers can now obtain and analyze large amounts
of anonymized workload data. Managing database resources
efficiently is indispensable for providing quality services. Each
database instance runs a different workload. Applying data
science can help in identifying workloads with similar char-
acteristics, and then it can be used in downstream tasks e.g.,
query optimization, configuration recommendation and in-
dex recommendation. Essentially, it raises a requirement of
database workload characterization, i.e., ability to describe
distinctive nature and features of queries in a workload.

Previous work [27] shows with TPC-H benchmarks how
each database query behaves differently with changes in
database configuration settings. For example, query Q18
and query Q7 in TPC-H benchmark responds to knob changes
shared buffers vs. effective_cache_size very differently
w.r.t. query latency. Each query possesses distinct features,
and the demands for computational resources are also dif-
ferent. It suggests that each query needs to be treated
uniquely and based on their characteristic. Recent research
works [9}/10,/16] leverages query plans as the feature descrip-
tion of queries and use it for tasks like index recommenda-
tion [9;/10] and configuration knob tuning [16].

In natural language domain, a word is a structural and
functional unit of a meaningful sentence. Similarly, in the
database domain, if a query is the structural unit, then
a database query plan is the functional unit of a work-
load. With the advancement in distributed representation of
words, the downstream tasks like sentence similarity, ques-
tion answering, and textual entailment have improved dra-
matically [8[20L[34]. In a similar way, we foresee that down-



stream tasks like workload similarity, index recommenda-
tion, and database configuration recommendation can ben-
efit from the study of workload characterization.

We propose a scalable data-driven artificial intelligence
(AI) approach for workload characterization with distributed
representation of query plans. One of the benefits of Al
deep learning models is automatic feature engineering and
auto-correlation among features. It is an non-trivial ardu-
ous task and possess many challenges in achieving the aim
of workload characterization. Some of the challenges that
makes it very different from other entity represention learn-
ing are Query Independence, Diverse Query Structure, Mod-
eling Computational Complezity, and Data Dependence. We
present a constructive detail on each of aforementioned chal-
lenges in
Our Approach. In our work, we first propose a query
plan distributed representation model that captures the in-
herent characteristics such as structure, computational de-
mand, and feature manifests embedded within a query plan
structure. Hence, we created two parts for query plan repre-
sentation, (i) Structure Representation, (i1) Computational
Performance Representation. The two representations, ei-
ther separately or collectively, can be used in downstream
tasks to understand a query comprehensively. As an ex-
ample, we demonstrate an approach to perform query la-
tency prediction with the help of query representations. It
can help in offline profiling of workloads and aid in tuning
database settings. We believe that instance optimality of
a database can only be achieved with the in-depth under-
standing of queries running in a system, and suggests the
introduction of workload characterization component for it.

In our choice of design for distributed representation, we
can either use a fized-embedding or a pretrained encoder ap-
proach. Fixed embedding is useful where the set of elements
is complete, and after model training, we get a fixed repre-
sentation for all the elements in the set. This approach
is instrumental in domain like graph embedding. On the
other hand, pretrained encoder is a learned model that can
output embedding on receiving the input by featurizing the
attributes from the input along with learned weights from
previous observations. We follow the pretrained encoder ap-
proach for adaptibility and transfer of knowledge.

Furthermore, we follow a bidirectional encoder strategy
with both feature-based and finetuning-based approach in-
spired by the language models [§8]. In this approach, the
embedding obtained from the pretrained encoder is trained
to learn features, and then the feature embedding output
can be fed to multiple task-specific models. The approach
aims to alleviates the requirement of task- specific represen-
tation and facilitates reuse of already learned features from
the model to multiple domain-specific task. A pre-trained
plan representation model also simplifies the transfer learn-
ing process when trained on a large dataset and fine-tuned
for specific data and problem set.

We summarize the contribution of this paper.

e We propose plan encoders for distributed representa-
tion of query plans. The general feature-based en-
coders capture inherent characteristics of query plans.

e We capture two aspects of the query plans indepen-
dently with two classes of encoders. The structure ,
and the computation of query plans.

e The structure encoder is inspired by the natural lan-
guage model, representing a tree-structure of hetero-

geneous operators in a latent multidimensional space.
Thereafter, we evaluate our structure encoder model
with similar query classification and regression tasks
on multiple datasets.

e Our computational encoder is a collection of encoder
instances. Each encoder corresponds to a database
operator such as scan, join, sort, aggregate, etc., op-
timizing for multiple metrics to capture the computa-
tional features. The encoder uses statistical informa-
tion and data distribution of the underlying relational
data along with the explicitly specified plan features
and database configurations.

e The train both our encoders with a large dataset of di-
verse query plans and benchmarks for pretraining. We
then introduce a finetuning-based approach that can
quickly adapt to new data distribution with limited
data resources. It is essential for increment learning
and fast domain adaptation with new workloads.

e To show the overall effectiveness of our encoders, we
performed query latency prediction and query classi-
fication tasks. In query latency prediction, given a
query plan and a database configuration setting, the
downstream model predicts the query latency using
our plan encoders. In query classification task, we use
our plan encoders to classify closely related queries.

The rest of the paper is organized as follows. pro-
vides background and challenges we face while performing
query plan representation, respectively. In we present
our structure encoder and performance encoder, followed
by downstream tasks using plan encoders in §4] We present
experiments and results of our downstream tasks with plan
encoders in §f] and analysis of individual encoders in 6]
We present a brief section on related works in followed
by conclusion in §8]

2. PRELIMINARIES

Recently we are noticing a trend of utilizing the power of
Artificial Intelligence (AI) in buffer resource tuning, index-
ing, and query optimizer [14,/18L|26]. In the near future, we
expect database systems packaged with pretrained Al mod-
els, and dedicated cloud servers with embedded AI accel-
erators to facilitate the processing. Our proposed workload
characterization with distributed representation of query plans
can empower database core components to operate efficiently
with in-depth insights on workloads.

2.1 Workload, Query and Query Plan.

We define a database workload as W = {(q1,61), (g2, 62),
...y (qn,0r)}, where g; is the database query, and 6; is a
normalized weight of importance of ¢; in workload W such
that Z?zl 0; = 1. The weight 0, can be as simple as the fre-
quency of appearance of ¢; in W or can be arbitrarily decided
by the DBA. Generally, database users mostly runs a set
of predefined template queries with seldom ad-hoc queries
on databases. A data-driven smart database should collect
statistics of each query and use it to determine the impor-
tance of a query.

For each query g¢;, one can obtain the corresponding query
plan p; from the database system. Also, to note that a
query with a similar template can generate a different query
execution plan or query-plan based on the meta-information
of a table in a database. Let us say, q; generates two query
plan pr and query plan p; on different instances. In our
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Figure 1: A query execution plan from
TPC-H [28).

approach, it is safe to assume and treat both the queries

different from the functional point of view. Hence, there

can be a one-to-many mapping from queries to query-plans.
Alternatively, we can now define workload as

W= {(p1701)7 (p2a02)7 [ERE) (pm,em)},

where p; is the database query-plan, and 6; is a normal-
ized weight of importance of p; in workload W such that
>, 0; = 1. For readability, we will refer a query-plan as a
plan in the paper from now.

A plan is a tree structure with heterogeneous functional
operator nodes like Seq Scan, Indexr Scan, Bitmap Heap
Scan, Nested Loop, Hash Join, Aggregate, Sort, Filter etc.
Each operator node contains a set of execution properties.
We present an example of a plan in Figure [] of query Q5
from the TPC-H benchmark with operator types. All op-
erators have a set of common properties, and in addition,
a few contain specific properties based on their functions.
These operator properties carry valuable information about
their execution. Based on the functions of each operator, we
grouped all operators into five exclusive groups, i.e., Scan,
Join, Aggregate, Join and Others. In Table [I} we lay out
the properties common to all groups as All’ and the prop-
erties exclusive to Scan, Join, Sort, and Aggregate operators.
These operator properties are used for computational per-
formance representation of the plan. Please note that we do
not use properties like Total Cost, Actual Total Time, Actual
Startup Cost because we use them as labels in our prediction
tasks. We describe it in §3.2]

For any plan p; as input to our Structural Encoder and
Computational Encoder, the models outputs the structural
embedding S(p;) and the computational performance em-
bedding C(p;), respectively. These embeddings are used by
downstream models for different fine-tuning tasks.

2.2 Deep Neural Networks (DNNs)

DNNs are widely used computational frameworks for many
AT applications. DNNs are layers of neuron thoughtfully
structured that performs a weighted sum computation of
the input values at each neuron. A structure of DNNs or
model is also an instance of a machine learning algorithm

Table 1: The properties from query execution plan that are common to all the operators
and a few specific to major operators like Scan, Join, Sort and Aggregate.

that learns patterns from data by inferencing and then read-
justing weights to minimize error. DNNs are very efficient in
reducing high dimensional data into low dimensional code or
features [13]. DNN hardly requires feature engineering and
can learn complex relations among multiple features. In our
paper, we are specifically interested in the entity represen-
tation learning capability of DNNs. Moreover, we focus our
attention on Autoencoder (an Encoder-Decoder approach)
for learning the structural representation model. A particu-
lar kind of Autoencoder called Denoising Autoencoder can
capture robust generalized features from original data [32].
We applied an advanced feature-based encoding and learn-
ing technique inspired by natural language models. Recent
applications of encoder architectures on language models are
very successful in capturing structural and statistical prop-
Query plans are structurally complex, and
properties of plan operators are implicitly correlated. Hence,
we adapted the autoencoder approach in our representation
models. For the computational performance representation,
we used a supervised learning approach learning features

erties [8}[34].

contributing to multiple metrics for operators.

2.3 Challenges and Mitigation Strategies

Traditional machine learning approaches encode entities
into a fixed-length features before feeding them into any
We provide a consolidated set
of challenges we face while performing workload characteri-
zation with plan encoders because of heterogeneous nature,

model for prediction tasks.

diverse shape, and varying depth of plans.

e Query Independence: Each query is unique and inde-
pendent. Even if the queries are from the same bench-
mark or workload, they are seldom similar in struc-
tural and computational complexity. Unlike other en-
tity embedding where contextual appearances of enti-
ties play a pivotal importance (such as word embed-
ding), in workload contextual or temporal appearance

of queries are not related.

e.g., scan, join, sort etc.

Diverse Query Structure: The structure of query plans
is represented as a tree of functional operator nodes,
It is a non-trivial task to



represent a tree structure containing attribute features
at every node.

e Modeling Computational Complexity: Each query has
a specific demand for computational resources based
on their functional operations. Moreover, the resource
demand of each functional operator is different. An
open question arises whether to implement an operator-
level model or a single primary model for encoding.

e Data Dependence: In databases, the generation of query
plans from a query depends on many factors, such
as index availability, statistical information on data.
A complete query plan can only capture basic infor-
mation about underlying data. It arises a question
whether it is enough or we need to incorporate more
information.

e FEncoding Multiple Properties: Database plans contain
interrelated properties and information that give hints
about query performance and their execution metrics
such as latency and throughput. It is a challenge
to unify and discover complex correlation among the
properties and features explicitly obtained from plans.

e Domain Adaptation: The encoder models trained on
a set of workloads are likely to encounter a different
unseen workload in the prediction phase. It is a chal-
lenge to adapt to a new workload setting quickly (with
less training data) using the prior pretrained weights
of the models.

We adopted specific strategies in our approach to address
the above challenges. We purposefully design a feature-
based query plan encoder for learning the individual char-
acteristics from different query plans. For modeling the per-
formance complexity, we incorporate meta-information (e.g.,
data distribution, selectivity, cardinality) of database tables
and attributes used in queries providing a detailed picture
of the data access pattern.

In our approach, it is a not trivial attempt to incorpo-
rate all the relevant meta-information and capture relevant
features in our plan performance representation. Still, it is
reasonable to assume that if we can incorporate all the re-
quired information to the encoders, then we might be able to
learn the influencing factors contributes to evaluation met-
rics of query plans. After all, the query optimizers are uni-
versally designed logical components that generate query
plans. The encoders producing distributed representation
of query plans can facilitate many downstream tasks and
enhance the performance of core components. It encourages
us to keep the encoder as general as possible and capture
the correlation among properties well enough in the query
plan representation. With a data-driven approach, we aim
to create a pretrained encoder model that learns from large
and diverse datasets to learn plan features. In ideal scenario,
we want pretrained encoders to quickly adapt new domain
with less dataset, expediting domain transfer.

3. QUERY PLAN REPRESENTATION

In this section, we present our Structure Encoder and
Computational Performance Encoder for plans. Each node
in the tree is an instance of a functional operator with multi-
ple properties, and nodes are ordered and connected via un-
labeled edges depicting the dependence relation. For struc-
tural representation, we mainly study the operator type of
each node and leaving the performance-related properties
for computational performance representation in When

sketching our encoders, we realize keeping the structure, and
computational performance representation independent in-
creases the modularity in design, which also enables down-
stream tasks to choose and weigh each representations inde-
pendently in their model. It also helps us in evaluating the
structure and performance encoders separately.

For both Structure Encoder and Computational Encoder,
we hope that our pretrained model can be easily adapted to
new applications. Hence, we study both of them on a two-
stage framework: pretraining and finetuning. In this section,
we mainly introduce the pretraining tasks and model archi-
tectures for them. Then we outline our finetuning evaluation

in
3.1 Structure Encoder

Earlier, we have mentioned about the heterogeneity of op-
erators in plans. We now try to give a clear picture of the
diverse types of operators plans can possess. Same func-
tional operators can use different strategies to fulfill their
operations. There are multiple types of Scan operators like
Sequential Scan, Index Scan, Bitmap Heap Scan, etc. Again,
the same strategy often used in multiple functional opera-
tors, like, Hash Join and Hash Aggregate uses Hash strat-
egy. We organized each type of operator into three sub-
level type as taxonomy of operators. The top-level Level 1,
mostly suggest the functional property such as Sort, Insert,
Union, Scan, Join, etc. Level 2 and Level 8 are grouped
based on mutually exclusive strategy types such as Hash,
Index, Heap, etc. Table [2| shows all three levels of operator
sub-type for defining a real operator. We define all oper-
ator with three sub-type as (Level 1)-(Level 2)-(Level 3).
For example, operator Bitmap Heap Scan and Left Merge
Join is represented as Scan-Heap-Bitmap and Join-Merge-
Left, respectively. All those operaters types forms the tree
structure as shown in Figure [} we need to find a way to
encode the tree. Notice that workload analysis based on
similar query plans can help DBAs in optimal utilization of
database resources, e.g., buffers and configuration, by uti-
lizing historical experiences from other databases. Further-
more, encoders enables clustering of similar-featured queries
learned from a large set of queries without actually sharing
any private/sensitive query information. Inspired by this
goal, we propose a plan-pair similarity regression task to
guide the structural representation learning.

3.1.1 Plan-pair Similarity Regression

To measure the similarity between two plans, we adopt a
widely used graph similarity metric in natual language rep-
resentation domain: Smatch |5]. It caculates the degree of
overlap between two graph structures, which is defined as
the maximum F1-score obtainable via a one-to-one match-
ing of each node in two graph. Hence it is value from 0 to 1,
0 means totally different, while 1 means exact the same. In
this task, we treat the optimal Smatch score as the similiary
of two plans. The Smatch score between two tree-structure
plans can be computed by graph macthing optimization al-
gorithm, such as Interger Linear Programming (ILP) or Hill-
climbing methods. After we get the Smatch scores s;; of each
plan-pair < p;,p; >, this can easily form a large dataset
with Smatch score as the similarity supervision. Based on
thss large dataset, we propose that pretraining our struc-
ture encoder with a task of predicting the Smatch score of
each plan pair. Results on the downstream similarity tasks
or other applications also shows that the structure encoder
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Figure 2: Structure Representation Model.

Level Operator Sub-types

Aggregate, Append, Count, Delete, Enum, Gather,
Aggregate (Group, GroupAggregate), Hash, Insert,
Intersect, Join (Nested Loop), Limit, LockRows,
Loop, ModifyTable, Network, Result, Scan, Se-
quence, Set(SetOp), Sort, Union, Unique, Update,
Window, WindowAgg, Materialize

Level 1

And, CTE, Except, Exists, Foreign, Hash, Heap,
Index, IndexOnly, LoopHash, Merge, Or, Query,
Quick, Seq, SetOp, Subquery, Table, WorkTable

Level 2

Level 3 Anti, Bitmap, Full, Left, Parallel, Partial, Partition,

Right, Semi, XN

Table 2: The taxonomy of operator types for every node

pretrained from this task can be easily finetuned on new
application or new domain.

3.1.2 Model Architecture

In this paper, by linearizing the tree structure into a se-
quence of nodes, we can transform the tree-encoding prob-
lem into a sequence encoding problem, which has been well
studied in many areas, such as natural language processing,
time serials analysis.

Tree Traversal When linearize the tree into node sequence.
We use the root first traversaling, but adding hierarchical
brackets for each non-terminal nodes in the tree. Because
the bracket keeps more structural information of the origi-
nal plan structure, which shows less ambiguity than simple
BFS and DF'S strategies. The output of this strategy (DFS-
Bracket) for our running example in Figure|l|as shown in
We always sort the children nodes by typename, so that the
linearization of a tree is deterministic.

Strategy Node Sequence

(Filter—, (Sort—, (Aggregate—, (Join-Hash-, (Loop—
DFS Nested, (Join-Hash-, (Hash—, (Loop—Nested,
Bracket (Loop—Nested, Scan-Index-, Scan-Seq-) Scan-
Heap-Bitmap) ) Scan-Index-Bitmap) Scan-Index-)
Scan-Seq-))))

Table 3: Running examples for DFS-Bracket traversal Strategies.
We use hyphens to connect 3 subtypes. When no sub-type for
the node, we denote it as NIL type, here we use blank space
for it to save table space. For example, the first node ’Filter-’
actually means the first subtype is ‘Filter’, the second and the
third subtype is ‘NIL’

Self-attentive Encoder Layer. After we transform a
tree-structure plan into a sequence of normalized node types,

various language modeling architectures can be reused to
learn encoding for the linearized plan.

Inspired by the success of attention mechanism in NLP, we
employ the multi-head, multi-hop attention mechanism used
in Transformer networks [31] pictorially presented in Figure
As before, due to space constraints, we refer the reader
to the original work for details. We will use the (Q,K,V)
notation from the original paper here. These matrices rep-
resent a query, key, and value, respectively. The multi-head
attention is defined as:

Multihead(Q, K, V) = [head; o ... o heads]JW® (1)

Qw? (Kwi)"
Vd

The W,’s refer to projection matrices for the three inputs,

and the final W° projects the concatenated heads into a sin-

gle vector, and ﬁ is scaling factor where d is the dimension

head; = softmax ( > VWZV

of Q,K, and V. o means concatenating the encoding at-
tended by multiple heads.

The choices of the query, key and value defines the atten-
tion mechanism. In our work, we use self-attention, defined
by setting all three matrices to [nj1 ...njg], njx is the input
encoding of the jth self-attentive layer, which is correspond-
ing the encoding of the kth node in the linearized version,
as described above.

Input Embedding Layer In the 1st layer, nj; is the input
embedding of those operator nodes. As mentioned above,
for every operator node in the plan, we represent its input
embedding as a concatenation of embedding for its three
subtypes. Notice that in the DFS-bracket tree traversal,
besides the regular nodes, open and close bracket are also
treated as nodes with three subtypes, which are “BR_OPEN-
NIL-NIL” and “BR_CLOSE-NIL-NIL” for open and close
bracket nodes, respectively. When we use the self-attentive
encoder, as the transformer usage in BERT, we also add
CLS node at the beginning and SEP node at the end of
the linearized nodes. They are also denoted as 3 subtypes
as “CLS-NIL-NIL” and “SEP-NIL-NIL”. Hence, in Table 2
Level 1 node, we actually add four extra special subtypes:
“BR_-OPEN”, “BR_.CLOSE”, “CLS”, “SEP”.

Matching Layer The output of the transformer encoder
is a sequence of vector for each nodes, we use the output
encoding of "CLS’ node as the encoding of the plan p;, be-
cause it aggregates the weighted sum of all other nodes in
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the self-attentive layer. We denote the plan encoding for p; ¢ ¢ ¢
as P, € RY. After encoding the plan-pair < pi,p; > into [ FCNN LAYER (3 EMBEDDING_SIZE X EMBEDDING_SIZE) ]
vectors < P; P; >, then we use a matching layer to compute ( ReLU |
the similarity as }
( EMBEDDING LAYER ]
o (W [vi 0 0; 0 (vi —v;) o (viv;)] +) [ FCNN LAYER (EMBEDDING_SIZE X LABELS_SIZE) ]
where o denotes the sigmoid activation function, W €&
OUTPUT

R*?, o means concatenating the four vectors

3.2 Computational Performance Encoder

In this section, we present our computational performance
encoder, describing the pretraining task to supervise the en-
coder learning, and our proposed model architectures and
the thoughts behind it.

3.2.1 Performance Attribute Prediction

The properties mentioned in Table [1| for each type of
broadly classified operators in a plan gives an ample hint
on its computational demand. These properties are either
derived from complex logical inferences by plan optimiz-
ers or real output from the query execution. In previous
works [9}/101/18|, we notice the use of Total Cost, Total Time,
Startup Time properties as a measure of performance. We
strongly agree with previous research works on using the
properties above-mentioned as measures of computational
performance. Moreover, in our encoder, we use these at-
tributes as labels for prediction with an attempt to encode
the underlying features. We use properties explicitly men-
tioned in nodes (an instance of an operator in a plan), meta-
information from databases, and configuration settings of
the database to predict these labels. In the process of learn-
ing the labels, we learn the implicit features as embedding
with our computational performance encoder.

We first create encoders, each for (i) Scan (ii) Join (iii)
Sort (iv) Aggregate functional operators, these four oper-
ators are the most frequently used in query plans. The
nodes with operator type Hash Join, Merge Join, Nested
Loop, Left/Right/ Inner/Outer Merge Join, Nested Loop is
mapped to Join; similarly Seq Scan, Index Scan, Heap Scan,
Bitmap Heap Scan etc. are Scan nodes. From the proper-
ties of each node, we also extract the relation names and
attribute names of which it is accessing the data from node
properties such as Relation Name, Hash/Join/Merge/Index
Condition, Filter, Output. We map them with the refreshed
meta-information collected from the database. In Table [
we show the meta-information attributes we use as input to
the model used by the node. This information can be easily

!Other match function exists, e.g. bilinear similarity
vinJT, M € R¥*?. However, we found that this contanated
matching similarity can largely reduce the parameters size
from d? to 4d and achieve better performance

(LABELS_SIZE X 1)

Figure 3: The multicolumn deep neural network(DNN) for
our computational performance encoder.

extracted from system tables of database system like Post-
greSQL [25]. In case of multiple relations used we sum up
the attribute values and then use them as input features.
We also use a set of database configuration setting val-
ues of the running database as input features to the model.
These configuration settings are selected based on their im-
portance in for performance tuning as described in [23}30].
Altogether, we have three types of input features,

e (a) Plan Features, fnode: Explicitly obtained from a
node of a plan, see Table

e (b) Meta Features, fmeta: Meta-information about data
and its distribution, see Table @

e (¢) DB Settings, fay: Handful number of database con-
figuration settings, see Table [

To further clarify, the input features into a model are node
properties frode along with associated properties fmeta, fab
mentioned earlier. For example, if a plan has three nodes
ni,n2,n3 of same operator type, say Scan, then we have
three input data (fn1 s fmeta, fdb)7 (fnza fmeta, fdb)7 (fn37 fmeta,
fav) for the scan operator model. Besides, we create another
input data with the summation of the three node features
of the plan (fn, + fry + fngs fmeta, fap) for the predicting
the cumulative label metrics, i.e., Total Time or Total Cost
for the plan.

3.2.2 Model Architecture.

We now present the deep neural network (DNN) architec-
ture of the encoder with a pictorial representation in Figure
It is a three-column DNN on the top each for Plan fea-
tures, Meta features, and DB features, respectively, with an-
other fully-connected NN layer merging the three parts and
producing the embedding layer. The last fully-connected
NN component takes the output of the embedding layer to
predict the metric labels i.e., Total Cost, Total Time, Startup
Time. Also, each NN layer is followed by a activation func-
tion layer of ReLU (Rectified Linear Unit), Sigmoid or Tanh
functions. We create multiple instance of this supervised
regression model each for a type of functional operator as
mentioned earlier.
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Figure 4: A bird-view diagram, showing the role of plan encoders for downstream task.

A NN layer can efficiently represent or capture complex re-
lations among input features by applying an affine transfor-
mation of the input. With multiple feed-forward NN layer,
a recursive affine transformation and non-linear activation
functions are applied to the input features to produce an
output. The difference between the desired output and the
predicted output is calculated based on some metric func-
tions dubbed as loss. A gradient descent based technique
is applied to tweak the weights on each layer used to per-
form the affine transformation minimizing the loss. It allows
the model to learn non-linear and polynomial order complex
functions, automatically identifying the relevant features.

One of the key insights while architecting the model is that
the three-column multilayered feature approach on Plan,
Meta, and DB features, respectively, allows the model to
find correlation among the same type of features first. Then
transformed weighted features from each part can correlate
effectively. As a preliminary attempt, we train an alternate
model with a standard (single-column) DNN with all the
input features together. In we provide a comparative
study to evaluate both the models.

3.2.3 Joint Training

A general rule of thumb for any model is that the distri-
bution of predicted data remains the same as training data.
But, in our case, the data distributions change with new
workload. When the model learns from a single or small
workload benchmark, the model overfits and cannot gener-
ate a general model. With the assumption that if enough
information on the data distribution is used for training the
model, the model can learn the factors governing the perfor-
mance metrics for each operator (Scan, Join, Sort, Aggre-
gate, etc.). Also, the fact that a general query plan optimizer
(which is a logical component) uses the same statistical in-
formation we use as input to our model encourages us. The
trick is to learn a generalized pretrained model that can
adapt to an unseen workload with small data from the new
domain. Hence, the pretrained models should utilize already
learned parameters to adapt with the new workload.

We utilize a joint training approach for training the en-
coders. We train each operator model on multiple workloads

on different data distributions and multiple database con-
figuration settings. In joint training approach, we perform
multiple metric tasks, each task optimizes for each label, i.e.
Total Cost, Total Time and Startup Time. The difference in
each of these models is the last NN-layer, which uses the
embedding layer as input. Since the top level of the model
remains unchanged, the weights are naturally tweaked to
learn features based on multiple tasks.

We evaluate our performance encoder models on two cri-
teria, (i) the model uses less data from a new domain to
adapt, and (ii) the model error on validation and test data
converges. We provide a detailed evaluation results on our
pretrained computational performance encoder in

3.3 Finetuning Evaluation

Given the above pretraining for learning structure and
computational performance encoders, we hope that our learned
model can be easily used in other unseen applications. We
conduct two groups of finetuning evaluation for them:

Domain Adaptation. For both the structure encoder and
computational encoder, they are trained from a source dis-
tribution on plan-pair similarity regression and performance
attribution prediction tasks. Domain Adaptation aims at
that these models can be easily finetuned on a different tar-
get data distribution. Hence, we finetuning them on differ-
ent benchmark workloads on the same tasks, such as TPC-H
and TPC-DS , and Spatial benchmarks. For plan-pair simi-
larity regression task, we generate a collection of plan pairs
for each new benchmark, and then calculating the Smatch
scores for evaluation. For the performance attribute predic-
tion task, we collect the new dataset by running workloads
on different database configurations. More details about
those datasets is introduced in and the results on do-
main adaptation for each encoder are shown in §6}

Transfer Learning to New Tasks Besides the ability of
domain adaptation, we also define two new tasks to evaluate
whether our pretrained plan encoder can be easily used for
other tasks rather than our pretraining task in §4

4. DOWNSTREAM TASKS



In this section, we show two downstream tasks that use
our proposed plan structure and performance encoders. We
present a bird-eye view architecture of the model common
to our downstream tasks in Figure[d] For a given query plan
input, meta information of database, and database config-
uration, the plan encoders (structure and performance en-
coder) produce respective representations as output. This
output is then fed to the downstream task-specific model.
It is to note that for generating the computational perfor-
mance representation, we group plan nodes based on the
type of functional operator and then pass it to the corre-
sponding performance encoder to obtain representation.

The downstream task model is a standard multilayer-
DNN taking three inputs, (a) structure embedding,(b) com-
putational performance embedding, and (c) the database
settings. The properties of database settings are real num-
bers. They can have an arbitrarily large value, which hin-
ders learning a better model. We overcome the problem
by scaling each database settings with logarithmic function
and use them as added features along with the real num-
bers. Furthermore, we added a flexible design of reshaping
the dimension of structure or performance representation in
the downstream task model for obtaining better accuracy.

4.1 Query Latency Prediction

The first downstream task is a real-world task of pre-
dicting query latency for an input query plan on a given
database knob configuration settings utilizing our plan en-
coders. Formally, we define the query latency prediction
problem as follows.

PROBLEM 1 (QUERY LATENCY PREDICTION:). Given a
query plan p, meta-features fmeta of the database, and a
database configuration settings fan, the model predicts the
latency of the query.

For generating the training data for latency model, we
created an automated workload running script4”| that runs
on cloud server instances and uploads executed plans along
with the meta-features and database settings to our data
repository. The script generates a new database configu-
ration and configures the database automatically for each
run. These new database configuration are generated based
on the Latin Hypercube Sampling method [2|19] for the
properties mentioned in Table [4 This method for generat-
ing database setting has been earlier used by Duan et al.
and Aken et al. [11}/30].

4.2 Query Classification

One of the aims of workload characterization is to learn
the features of similar queries to classify and cluster them,
thus providing an opportunity for obtaining database in-
stance optimality. This task also validates the efficient repre-
sentation of similar queries from our encoders by projecting
them closely in latent dimensions. Besides the latency pre-
diction task, we also conduct experiments on query template
prediction task with our pretrained plan structure and per-
formance encoders. We formally define the problem state-
ment as follows.

PROBLEM 2  (QUERY CLASSIFICATION:). Given a query
plan p, meta-features fmeta of the database, and a database
configuration settings fan, the model predicts the predefined
class for the query plan based on feature similarities.

Zhttps://github.com/debjyoti385/workload_scripts

We conduct this experimental task with join order bench-
mark |15 containing 113 interesting query templates and 33
clusters of similar query templates. Due to cardinality of
the database tables and query predicates, the query plans
generated from the query optimizers can differ from one an-
other. It also makes the classification task challenging to
cluster the query features accordingly. Note that we include
the performance encoder in classification tasks as queries
even with similar plan structure can differ in performance
features. We present detail of this experiment and the role
of individual encoders in §[5.3]

S. EXPERIMENTS AND RESULTS

In this section we first describe the datasets we used in our
experiments. We then present evaluation methods with ex-
perimental results for latency prediction and query template
classification tasks.

5.1 Datasets

Crowdsourced Plan Dataset. We collected this dataset
containing PostgreSQL queries along with its execution plans
from a crowdsourced WebsiteEI [7]. We used this dataset for
pretraining our structure encoder model. After pruning the
plans with more than 200 nodes, we generate 57430/2871/2871
plan-pairs for training/dev/test, and then caculate the Smatch
score as their similarity score.

Industry Standard Benchmarks. We have used two
industry-standard TPC-H [28] and TPC-DS [29] benchmarks
as workloads with different scale factors, and execute them
with different database settings.

Spatial Benchmark. Spatial queries are notorious for hog-
ging resources and needs a proper database configuration for
optimal performance. PostGIS, the spatial and geographic
objects extension for PostgreSQL admits the configuration
tuning requirement based on workload type in their docu-
mentation [23]. We use the two following spatial benchmarks
in our experiments.

Jackpine: Jackpine [24] benchmark contains diverse spa-
tial queries on spatial join with multipolygons, lines, points
and combination of them. We revised’| the original bench-
mark with recently available shape datafiles, PostGIS exten-
sion and also made it publicly available.

Open Street Map (OSM): The Open Street Map(OSM)
workload has spatial overlap, distance and routing queries.
This dataset is created’| with inspiration from work [3]. Due
to sparsity, it is difficult to understand the underlying data
distribution, which makes it an inviting benchmark for ex-
periment. We used OSM map of New York and Los Angeles
county.

Join Order Benchmark. It contains 113 different queries,
which can be grouped into 33 clusters due the the simi-
lar SQL queries with different join orders. We run those
queries on different database configurations and then collect
the 16229 diffrent plans. We split that into 13505, 1362,
1362 as training, dev and test respectively.

5.2 Results on Query Latency Prediction

We first evaluate our query latency prediction model with
multiple experiments to project an overall effectiveness of
using our plan encoders. We used pretrained structure and

3https://explain.depesz.com
“https://github.com/debjyoti385/jackpine
Shttps://github.com/debjyoti385/0osm_benchmark
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Database Setting Unit Median 95th Percentile 5th percentile

bgwriter_delay ms 4,860.00 9,421.05 456.00
bgwriter_lru_maxpages integer 515.00 958.05 55.00
checkpoint_timeout ms 300.00 540.00 60.00
deadlock_timeout ms 300,000.00 540,000.00 26,000.00
default_statistics_target  integer 4,827.50 9,563.00 454.85
effective_cache_size bytes 1,048,576.00 1,966,080.00 131,072.00
effective_io_concurrency  integer 52.00 96.00 6.00
maintenance_work_mem bytes 7,340,032.00 15,728,640.00 876,953.60
max_stack_depth integer 3,072.00 5,120.00 417.95
random_page_cost number 5,028.60 9,507.39 560.40
shared_buffers bytes 2,097,152.00 3,932,160.00 131,072.00
wal_buffers bytes 130,624.00 131,072.00 12,416.00
work_mem bytes  15,728,640.00 31,457,280.00 1,048,576.00

Table 5: Statistics on configuration settings generated for
trainilrglgu&lata.
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Figure 5: Statistics on latency of spatial queries (> 500 mil-
liseconds) from Jackpine and OSM benchmark, where
the blue bar represents median, the orange line represents
the variability with 5th and 95th percentile of query latency
for different database configuration.

performance plan encoders trained on Crowdsourced dataset
and multiple TPC-H, TPC-DS workloads, respectively. A
detailed analysis of our pretrained encoders is given in
and

Ablation Studies. (a) Spatial Benchmark: We first present
an ablation study on individual queries. The aim of this
study is to measure the error in relative to the variability of
query latency. For initial training of the latency prediction
model, we used plans from spatial benchmark exe-
cuted on 120 different database configurations. The trained
model then predicts query latency for spatial queries on dif-
ferent database configuration. To prepare our test datasets,
we ran each benchmark 50 times with very different database
configuration settings.

Figure [5| shows the query latency statistics of query tem-
plates with median query latency greater than 500 millisec-
onds from spatial benchmark; Jackpine (with prefix Q) and
OSM benchmark (with prefix OSM). The blue bars in the
chart shows the median of the query latency for all the query
execution with different database settings. The orange line
shows the variability of the query latency due to change of
database settings. The bottom point of the orange line rep-
resents the 5th percentile, and the highest point marks the
95th percentile of query latency. We present a complimen-
tary Figure |§| along with Figure |5|that pictorially shows the
mean absolute error for all the query templates from the
spatial benchmark. The red line is the measure of time dif-
ference between 95th percentile and 5th percentile of a query
latency in milliseconds, depicting the extent of the variabil-
ity for the particular query. To note, vertical axes on both
figures i.e. Figure [§] and [f] are presented on a logarithmic
scale with milliseconds as unit. It shows that at least 68%
of the queries have MAE less than 10% of variability, and
90% of the queries have MAE less than 30% of variability.

Query latency prediction on spatial benchmark is chal-
lenging because of the sparse geospatial data distribution
from two areas contributing towards large variability. Fur-
thermore, the performance of spatial queries are easily af-
fected by database configurations. Significantly less mean
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Figure 6: The black bar represents mean absolute error
(MAE) (in milliseconds) for spatial Jackpine and OSM
queries, the red line represents the variability i.e. measure
of time difference between 95th percentile and 5th percentile
(same as the orange line from Figure [5)).

absolute error from the latency prediction model shows that
pretrained encoders helped the model.

(b) TPC-DS 100 Benchmark: In this experiment, we com-
pare our latency model with state-of-the-art latency predic-
tion models for each query template from TPC-DS bench-
mark for a scale factor of 100 (i.e. 100 GB). A recent study
by Marcus et al. shows TPC-DS query ablation study
with TAM , SVM , RBF and QPP Net . It is to
note that we used the same TPC-DS plan dataset used by
the study , and we split of our dataset in 80:20 ratio for
use as training and test data. In Figure [7] and [§] we show
a comparative study of our latency model with other ap-
proaches on mean absolute error (MAE) for each TPC-DS
query template.

Figure [7] shows all the query templates where our latency
model with plan encoders performed better than the major-
ity of the baseline approaches. 23 out of 33 query templates
produced at least 25% less error than the best baseline for
respective query templates.

In Figure[8] we present all the query templates where our
latency model could not perform better than the baselines.
12 out of 27 query templates achieved a mean error of less
than 25% of the baseline. 21 out of 27 templates have errors
less than twice of the baseline. We noticed that for some
query templates, there is a large gap in latency prediction
for non-indexed versions of the queries from the indexed ver-
sion of the queries. We could not collect enough metadata
information for this particular dataset on indexed columns
to fully replicate the database condition and then to use it
in our performance plan encoder. We used metadata infor-
mation for non-indexed database configuration for TPC-DS
with scale factor 100 in our plan encoder for this predic-
tion. Thus from the experiments, it shows that our initial
approach of plan encoders can be used for latency prediction
strategies.

Discussion on Structure Encoder Size: We performed an
experiment to find the optimal size of the structure encoder
to be used in the latency model. In latency prediction, we
find using only structure encoder yields error 5 times of the
latency model with only performance encoder. We designed
an experiment to show the influence of structure encoder
on the latency prediction model by varying the input em-
bedding size from structure encoder and keeping the perfor-
mance embedding size fixed to 300. We trained the latency
model with TPC-DS scale factor 10 dataset and tested it on
5 different test batch of TPC-DS dataset. In Figure [3 we
report the average of the mean absolute error from 5 test
dataset and found that embedding size of 128 and 160 per-
formed relatively well. It signifies that adding structure can
help latency prediction by a small amount with a suitable
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structure embedding size. This confirms that features from
performance encoder are dominant and have relatively low
importance of structure features in latency prediction task.

5.3 Results on Query Classification

As described in §4.2] our experiments are conducted on
join-order benchmark, we fuse our pretrained structure en-
coder and performance encoder to classify a plan into a tem-
plate id. Noticed that in the join order benchmark, there are
113 query templates and 33 clusters. We hope our classifier
can consistently predict both the cluster id and template
id. For example, when predicting a plan with ground truth
template id 11la. It means the ground truth cluster id is 11.
In this cluster, we also have another three template id 11b,
11lc and 11d. We sum up all 4 scores of those 4 template id
in a cluster as the score for predicting the cluster id as 11.
Then we add another cross entropy score for the clustering
prediction as a regularizer of our template id cross entropy.
Adding this regularizer largely improves the performance
of our model. Besides that, in this task, we found adding
a batch normalization layer when fusing our structure and
performance encoder as inputs is essential, which normalizes
them into the same scale. To understand how structure and
performance encoder performs in the task, we conduct abla-
tion studies for using structure-only, performance-only and
both in our experiments. The results in Table ?? show struc-
ture encoder plays in the main role of this task. Without
it, the performance-only performs very bad. What’s more,
adding the performance encoder can boost the performance
by 5.72 points on the test set. We also noticed that us-
ing both structure and performance only generalize better
on unseen test set than structure-only or performance-only
models. Below the line in the table, Both0.1 and Both0.3 are
the models only trained on 0.1 and 0.3 fraction of data, they
perform still good even in less amount of data, which indi-
cates that our pretrained encoder help on other new tasks
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with less data.

Methods Dev Test
template cluster template cluster
tructure-Only 0.2452 0.4670 0.1946  0.3847
Performance-Only 0.1645 0.2973 0.0977 0.1769
Both 0.2783 0.5573 0.2518 0.4647
Both0.1 0.2000  0.4927 0.151 0.334
Both0.3 0.2555 0.5228 0.1843  0.3855

Table 6: Results on Query Classication Accuracy

6. ANALYSIS

6.1 Structure Encoder

As described in §3.1] our structure encoder is pretrained
on plan-pair similarity regression task with the transformer
encoder. We use a large amount of dataset from the Crowd-
sourced Plan dataset for pretraining. In this paper, we
first prune those extremely large plans with more than 200
nodes. Then randomly select 63172 pairs of plans to form
the dataset for our plan-pair regression task and calculating
all the smatch scores of those pairs.

Baseline Models For pretraining tasks, we denote our
plan-pair similarity regression task as Transformer-PPSR,
and compare it a common self-supervised pretraining tasks:
Sparse Autoencoder(Sparse-AE). It learns to compress a in-
put plan into a hidden representation and then decode that
representation back into the original plan. Besides that we
also conduct a blation study for using LSTM on our PPSR
pretraining task, denoted as LSTM-PPSR.

Results on Finetuning We first pretraining on Crowd-
source dataset with 3 pretraining approaches: Sparse AE,
LSTM-PPSR, Transformer-PPSR. To investigate its abil-
ity for domain adaptation, we first random generate 11126,
55498, 60000 plan-pairs with plans in TPC-H, TPC-DS, and
SPATIAL, then creating the training, dev, test splits with a
ratio as 20 : 1 : 1. We finetuning the pretrained structure en-
coder on the above new domains. In Figure[I0 we show the
Mean Absolute Error (MAE) between the predicted smatch
score with the true smatch score. All the models in the table
are trained from the full dataset. As described above, the
methods above the line are training from scratch with FNN,
LSTM, Transformer Encoder. The models below the lines
are the 3 pretraining methods, and we use each of them
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Figure 10: Main Results of finetuning structure encoder on
TPC-H, TPC-DS, and SPATIAL

as fixed feature or finetuning. ‘Transformer-PPSR-fixed’
means using the output of the pretrained model as fixed fea-
tures without finetuning, which performs much worse than
its finetuning version ‘Transformer-PPSR’. Hence, our mod-
els are suitable for finetuning instead of fixed features in this
task. Except for the MAE on the spatial dataset, our pre-
trained model, can significantly reduce the error on both
TPC-H and TPC-DS. For spatial dataset, we noticed that
both LSTM and Transformer scratch models work very good;
using pretraining does not improve.

As shown in the Figure [11] we compare pretraining and

no-pretraining method with different amount of training data.

For all 3 benchmarks, especially TPCH and TPCDS, our
pretrained method can achieve small MAE of Smatch score
on less amount of data. On spatial data, our pretrained
method only slightly better than no-pretraining one.

6.2 Computational Performance Encoder

We now perform local probe on computational perfor-

mance encoder with a set of experiments evaluating the pre-
trained encoders for Scan, Join, Sort, and Aggregate oper-
ator. For pretraining, we used TPC-H and TPC-DS both
with scale factors 1,2,3 and 5 executed on at least 20 dif-
ferent configuration settings randomly generated via Latin
Hypercube Sampling method .
Pretraining: We first illustrate the training procedure and
a few learnings from it. We split the dataset into 8:1:1 ra-
tio for train, validation, and test for pretraining of all the
four operators. Figure shows the Mean Absolute Error
(MAE) on latency (Actual Total Time) label for train, val-
idation, and test data for scan, join, and sort operator. In
all the cases along with aggregate (not shown in Figure
the train, validation and test MAE converges below 1 sec-
ond and stays around tens of milliseconds. The MAE on
test data is calculated based on the epoch with best valida-
tion model so far seen while training. We stop the training
when the MAE on validation does not improve more than
5 milliseconds in last 100 epochs. With a 12 GB GPU on
a Ubuntu 18.04 operating system, each model takes around
6-8 hours to train.

A key insight on training the models is the best MAE
vary based on operators. The best MAE for Scan model
on test data is 12 milliseconds, where the validation MAE
is 7 milliseconds. In Join model and Sort model the test
MAZESs reaches a low of 3.42 milliseconds and 44 milliseconds
respectively. It is to note that we performed pretraining on
all the three labels Actual Total Time, Total Cost and Startup
Time but for brevity we reported only Actual Total Time in
our figures.

Finetuning with pretrained models. The goal of having
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Figure 12: Showing convergence of Mean absolute errors(MAE)
(in seconds) for the validation, test and train datasets, while pre-

training all the computational performance encoders.

a pretrained model is to expedite the domain adaptability
with less data. In many cases, obtaining adequate training
data is challenging and time-consuming. In this set of ex-
periments, we perform finetuning tasks on a new dataset,
of TPC-DS with scale factors 8 (SF-8). We also performed
the same experiment on spatial dataset which shows similar
result. Due to space constraints we could not add the result
on spatial dataset.

To show the effectiveness of pretraining models over scratch
or non-pretrained model, we orchestrated a comparative ex-
periment where the performance of models trained on frac-
tions of training data. We limit the full training dataset to
randomly chosen 2000 plans and test dataset to 500 plans
for both TPC-DS and Spatial datasets. We run each model
for 100 epochs which takes around than 10 minutes to train.
In all the line charts from Figure [13] we notice that as the
amount of training data increases, the MAE decreases on all
the models, but the validation MAEs of scratch models is
only comparable with the pretrained models when trained
with 0.5 to 0.7 fractions of training data. The critical obser-
vation is that pretrained test seldom improves beyond 0.3
fractions of training data for our workloads.

To make the clear distinction between pretrained and scratch
models, we show the MAE on test dataset for each opera-
tor and dataset with 0.3 fractions of training data in Fig-
ure [14] for TPC-DS SF-8 and Spatial workloads. We report
the test MAE for the best validation model obtained in 100
epochs. In all the cases, the pretrained model beats the
scratch model by a considerable margin. Conclusively, it
confirms that our pretrained encoders are useful and adapt
to the new workloads quickly.

Multi-column vs Standard DNN In this experiment, we
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perform a comparative evaluation between our three-column
DNN and a standard (single-column) DNN for the perfor-
mance encoder. Similar to the previous finetuning experi-
ment, we pretrained both the models with same workloads.
After that, we finetuned each model with 0.3 fraction of
training data from TPC-DS SF-8 and Spatial workloads in-
dependently to obtain multiple evaluation models. Figure
andshows the Mean Absolute Error(MAE) obtained
from the three-column DNN and the standard DNN models
for an unseen TPC-DS SF-8 and Spatial benchmark dataset,
respectively. With the TPC-DS workload, Figure [[5a]shows
MAE for the three-column DNN model is better than stan-
dard DNN for all the operators except the scan operator.
Whereas, the MAE for three-column DNN is significantly
less than standard DNN for spatial workload. It suggests
that keeping the performance features (frode, fmeta, fdb) in-
dependent for the first few layers helps the model. In the
single-column standard model, different types of features
might get intertwined in the early stage of the model, im-
peding its learnability.

In summary, our experiments present the effectiveness of
plan encoders in learning characteristics of query plans with
latency prediction task and multiple local probes on indi-
vidual encoders. The results suggest the necessity of pre-
trained models to feature and understand unseen queries.
Other database core systems certainly can leverage the plan
encoders for to increase their effectiveness and achieve in-
stance optimality.

7. RELATED WORKS

Workload characterization. There exists a number of
research work that uses data-driven analysis on query plans
and its features to comprehend workload characteristic |§|,
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Figure 15: Comparison of MAEs for multi-column vs stan-

dard DNN models with 0.3 fraction of finetuning data.
. Early research works , focuses on fea-
ture engineering with data mining techniques like k-NN @
on high-dimensional features. The initial works show the
importance of feature engineering, which encourages follow
up research works using neural networks for workload re-
lated prediction tasks (metrics, resource demands, indexing,
etc.) [9[10L[1618].

All these methods learn models from input features of
query plans for a specific task. In our paper, we show an
approach to learn pretrained query plan encoders that can
be used for many downstream tasks. Currently database
researches are proposing prepackaged Al learned models for
core-components of databases . Our work on query
plan encoders bridges the gap between query input and pre-
diction tasks.

Database tuning is an interesting problem to achieve in-
stance optimality and closely relates to query performance
prediction tasks. An earlier work, Ituned uses a feature-
based approach for tuning database. Recently published
work, QTune uses query plans and reinforcement learn-
ing for tuning databases. In both the approaches, query
plans are important. An attempt of ours to create a pre-
trained encoder for query plans is relevant to database tun-
ing and other similar tasks. We show its relevancy with a
latency prediction over a different configuration and differ-
ent data. An earlier work by Popescu et al. shows it is
feasible to accomplish performance prediction tasks on new
data distribution for the same query. One of the significant
contributions of our pretrained encoders is the adaptability
of the models with new query and data.

8. CONCLUSION

In this work, we study a method of featurizing database
workloads with Al based encoders that helps in understand-
ing database queries under structural and performance prop-
erties. We followed a pretrained encoder based approach for
our models that learns weights from diverse training dataset
and then use the learned model in downstream tasks like
query latency prediction. We perfomed multiple probes on
structural encoder and performance plan encoders, to prove
their learning capability and efficacy. We also present an in-
depth ablation study on query latency prediction for mul-
tiple benchmark workload proving the usefulness of work-
load characterization with plan encoders. Our approach of
studying database workloads with pretrained encoder mod-
els paves a new direction in this field.
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