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ABSTRACT 
Recently several important relational database tasks such as index 
selection, histogram tuning, approximate query processing, and 
statistics selection have recognized the importance of leveraging 
workloads. Often these tasks are presented with large workloads, 
i.e., a set of SQL DML statements, as input.  A key factor 
affecting the scalability of such tasks is the size of the 
workload. In this paper, we present the novel problem of 
workload compression which helps improve the scalability of 
such tasks. We present a principled solution to this challenging 
problem. Our solution is broadly applicable to a variety of 
workload-driven tasks, while allowing for incorporation of task 
specific knowledge. We have implemented this solution and our 
experiments illustrate its effectiveness in the context of two 
workload-driven tasks: index selection and approximate query 
processing. 

1. INTRODUCTION 
Information on how a database system is used can be important in 
performance tuning and management of the system. In the context 
of relational databases, one specific form of usage information is 
the workload, which is typically a set of SQL statements. Over the 
past few years, database practitioners and vendors have 
recognized the opportunity to tune and manage various aspects of 
database systems by analyzing workload information. Several 
workload-driven tasks have emerged recently for solving 
problems such as histogram tuning [1,7,15], improving query 
optimization [23], index selection [13,21], approximate answering 
of aggregation queries [2,9,10,17], and statistics selection [14]. 
We use the term application in this paper to generically refer to 
such workload-driven tasks.  

A key factor affecting the scalability of these applications is the 
size of the workload, i.e., the number of SQL statements in the 
workload. In many cases, the workload consumed by the 
application is gathered using mechanisms in modern DBMSs that 
allow recording of SQL statements that execute on the server. In 
order to capture a representative collection of statements that 

execute against the system, the user of the application, such as a 
database administrator – could collect as the workload a log of 
SQL statements over a sufficiently large window of time (e.g., a 
day or week). Consequently, workloads tend to be large in size. 
Moreover, these applications often perform detailed analysis of 
queries in the workload and their inter-relationships, and hence 
their running time can be affected significantly as the workload 
size increases. 

It is therefore natural to ask whether these applications can be 
sped up significantly by finding a substitute workload of smaller 
size (which we refer to as the compressed workload) as input, 
while qualitatively not degrading the result of the application. In 
other words, the result of the application when run on the 
compressed workload should be identical (or close) to the result 
when it is run on the original workload. It is crucial that this 
compressed workload be found efficiently, since otherwise the 
very purpose of the exercise is defeated. In this paper, we 
formalize the above question as the novel problem of workload 
compression. To the best of our knowledge, this is the first paper 
to study the problem of workload compression in the context of 
SQL workloads. We believe that this problem, and the solution 
we present in this paper can be applied to a variety of applications 
on relational databases.  

An obvious solution to the workload compression problem is to 
use uniform random sampling to pick a smaller subset of the 
original workload. While this strategy is efficient, we have 
observed that it is not an effective method for workload 
compression. The key reason for the poor compression achieved 
by uniform random sampling is that it is oblivious to the 
application for which the workload is being used, and hence 
ignores potentially valuable information about the statements in 
the workload. Thus, we seek a solution that can exploit 
application knowledge to obtain significantly better workload 
compression as compared to uniform random sampling.  

Our approach for incorporating application knowledge into the 
solution is via the use of a Distance function that quantitatively 
measures the “difference” between pairs of SQL statements with 
respect to the application. In our framework, we allow the 
Distance function to take on arbitrary values – e.g., unlike 
Euclidean distances, we do not impose restrictions that the 
function be symmetric or satisfy the triangle inequality. We have 
found this generality to be crucial in the two applications that we 
discuss in this paper.  

Workload compression is a computationally difficult 
combinatorial optimization problem. In fact, we show via a 
reduction from the well known Minimum k-Median problem [16] 
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that the workload compression problem is NP-Hard. In this paper, 
we present two algorithms for solving workload compression. Our 
first algorithm adapts a well-known and efficient solution to the 
Minimum k-Median problem. We also present an alternative 
greedy algorithm which we have found gives better compression 
in the two applications to which we have applied and compared 
these algorithms. Understanding the relative strengths of these 
two algorithms, and characterizing their effectiveness for different 
kinds of SQL workloads is an interesting issue that requires 
further study, and is part of our ongoing work. An important 
characteristic of both these algorithms is that they are application 
independent, and can therefore be used for a variety of 
applications by specifying an appropriate Distance function. We 
show the generality of our framework by applying and 
demonstrating its effectiveness for two different applications: 
index selection, and approximate answering of aggregation 
queries. We have designed and implemented Distance functions 
for these two applications and experimentally evaluated our 
solution in the context of (a) two commercial index selection 
tools: Index Tuning Wizard for Microsoft SQL Server [13] and 
the Index Advisor for IBM DB2 [21], (b) as well as a tool for 
approximate answering of aggregation queries [10]. These results 
show the superior quality of our approach compared to sampling. 
Moreover, we observe significant improvement in the scalability 
of both these applications due to workload compression.  

This work was done in the context of the AutoAdmin [6] project 
at Microsoft Research. The goal of this project is to automate the 
challenging task of tuning a database system by exploiting 
information about the workload faced by the system. The rest of 
the paper is organized as follows. In Section 2, we formally define 
the workload compression problem and analyze its complexity. 
We present the framework of our solution in Section 3, and the 
search algorithms for solving the optimization problem in Section 
4. In Section 5, we describe the application specific part of our 
solution, namely the Distance function, for both the above 
applications. Section 6 describes how we determine the relative 
importance of statements in the compressed workload. Section 7 
contains a thorough experimental evaluation of our solution. We 
review related work in Section 8. 

2. PROBLEM STATEMENT 
In this section, we provide a formal statement of the workload 
compression problem and analyze its complexity. We begin with a 
general version of the workload compression problem.  

2.1 General Workload Compression Problem 
For the purposes of this paper, we define a workload as a set of 
SQL DML statements. Thus W = {q1, …, qi, …} where qi is a 
SQL DML statement (i.e., SELECT, UPDATE, INSERT, 
DELETE). We associate a weight wi (a real number) with 
statement qi. We present workload compression as a technique for 
improving the scalability of an application A that consumes a 
workload W as input and produces a result R (Figure 1). Instead 
of passing W as input to the application, our objective is to first 
perform workload compression on W to obtain a compressed 
workload W’, and then pass W’ as input to the application, 
thereby obtaining result R’. Such use of workload compression is 
meaningful only if the following two criteria hold:  

Efficiency criterion: The total running time, i.e., time taken for 
workload compression plus the running time of the application, is 
less than the running time of the application on the original 
workload. This condition imposes the requirements that the 
workload compression algorithm itself is efficient and that it finds 
a W’ such that the running time of the application on W’ is less 
than the running time of the application on W.  

 

 

 

 

 

 

Quality criterion: Informally, this condition requires that the 
quality of the result R’ is “close enough” to the quality of the 
result R. More formally, let A be an application and FA be a 
function that quantitatively evaluates the result of the application 
with respect to the given workload W, i.e., FA(W,R) returns a real 
number that measures the quality of result R. Then this condition 
ensures that values FA(W,R) and FA(W,R’) are close enough. 
Note that the exact definition of the function FA is application 
dependent.  

The generalized workload compression problem can be stated as: 

 

 

 

 

 

 

We note that in the above formulation, W’ need not be a subset of 
W, i.e., W’ may contain statements not present in W. We now 
illustrate how workload compression can be applied in the context 
of two applications that consume a workload as input. For each 
example, we specify the result R of the application, and the 
evaluation function F.  

Example 1: Workload Compression for Index Selection 
Selecting the right set of indexes is crucial for the performance of 
a database system. Automatically selecting appropriate indexes for 
a database is an important task since it reduces the burden on 
database administrators, and hence the total cost of managing the 
database. Recently, several major commercial database systems 
[13,21] have developed tools to automate this task. An index 
selection tool takes as input a workload W and a database, and 
produces as output R a set of indexes appropriate for the given 
workload. To evaluate the quality of the result R, these tools 
typically use as FA (where A = index selection), the query 
optimizer estimated execution time of statements in W if the result 
R is implemented (i.e., if the set of indexes R is materialized in 
the database). Thus, e.g., specifying δδδδ = 0.05 for index selection 
implies that we are willing to accept a compressed workload W’ 
such that the optimizer estimated execution time of statements in 

Problem GEN-WCOMP: Let A be an application that takes 
as input a workload W and produces a result R. Let FA(W,R) 
be a function that quantitatively evaluates R with respect to 
W. Given δδδδ, 0 < δδδδ < 1, find the workload W’ that minimizes 
the total running time of application A (including time for 
finding W’), subject to the quality constraint:  
|FA(W,R) – FA(W,R’)|/|FA(W,R)| < δδδδ, where R’ is the result 
produced by running A on input W’. 

Application
A 

W’ Workload 
Compression

  W      R’

Figure 1. Workload compression 
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W when R’ is implemented cannot deviate by more than 5% 
compared to the optimizer estimated execution time if R had been 
implemented.  

Example 2: Workload Compression for Approximate Answering 
of Aggregation Queries 
The goal of approximate query processing (AQP) is to allow 
efficient but approximate answers to ad-hoc queries against large 
relational databases. Random sampling is an approach for 
approximately answering aggregation queries (e.g., queries 
computing SUM or COUNT aggregate expressions). In this 
approach, the query is executed on a sample of the data rather of 
the entire data, thereby returning approximate answers but 
speeding up the query significantly. Recently, several papers 
[2,9,10,17] have recognized the importance of using workload 
information to pick samples of the data and thereby improve upon 
the straightforward approach of uniform random sampling. Thus, 
the workload W is analyzed in a preprocessing step and this 
information is used to produce as result R, an appropriate set of 
samples of one or more tables in the database. These samples are 
chosen with the objective of minimizing the average relative 
error1 in answering queries in W2 over the sample. The 
preprocessing step described above can be expensive if the 
workload W is large, and is therefore a suitable application for 
workload compression. For example, in the stratified sampling 
approach presented in [10] and the weighted sampling technique 
presented in [9,17], this preprocessing step requires executing the 
queries in W. A commonly used definition of FA is the average 
relative error over all queries in W when answered using the 
samples. Thus, specifying δ = 0.1, for example, implies that we 
are willing to accept a compressed workload W’ that results in a 
sample over which the average relative error of queries in W 
cannot deviate by more than 10% compared to the case when we 
choose the sample based on the original workload W. For the rest 
of this paper we refer to the above application as AQP for short.  

2.2 Distance-Based Workload Compression 
Problem 
While the problem GEN-WCOMP is general, it does not appear 
to be amenable to efficient solutions for two reasons. First, 
statements in the compressed workload W’ need not be a subset 
of the statements in W. Thus, the space of possible statements that 
need to be considered during workload compression is potentially 
much larger. The second reason that makes it hard to solve GEN-
WCOMP efficiently is that exact verification of the constraint on 
the loss of quality, |FA(W,R) – FA(W,R’)|/|FA(W,R)| < δδδδ, is 
expensive, since computing FA requires running the application A 
itself.  

In this paper, we therefore consider a simpler version of GEN-
WCOMP called WCOMP that sacrifices some of the generality of 
GEN-WCOMP, but is more amenable to efficient solutions. In 
particular, WCOMP is obtained by applying the following two 
restrictions on GEN-WCOMP: (1) We require W’ to be a subset 
of W. (2) The quality constraint is defined in terms of “distances” 
between pairs of statements in the workload. We therefore assume 
                                                                 
1 Relative error of an aggregation query Q is defined as: |Exact 

Answer(Q) – Approximate Answer(Q)|/ |Exact Answer(Q)| 
2To be exact, the errors are optimized for a distribution of queries 

of which W is an instance.  

the availability of an application specific Distance function 
between any pair of statements in the workload. DistanceA (qi, qj) 
estimates the loss in quality of the result of application A for 
statement qi if qi is discarded, but statement qj is present in the 
compressed workload – independent of the other statements in the 
workload. More precisely, if Ri is the result of the application 
when the workload used is {qi} and Rj is the result of the 
application when the workload used is {qj}, then ∀  qi, qj  ∈  W 
DistanceA (qi, qj) estimates the quantity FA({qi}, Rj) – FA({qi}, Ri). 
Problem WCOMP can be visualized as shown in Figure 2.  

 

 

 

 

 

 

 

W’ is the compressed workload and W-W’ is the set of statements 
in W that have been discarded by workload compression. For 
each statement qi ∈ W-W’, we can find the “closest” statement in 
W’ as determined by the Distance function. WCOMP requires 
that the smallest W’ must be chosen such that if we take a 
weighted sum of the distances between each discarded statement 
and the retained statement closest to it, that sum should not 
exceed a pre-specified value. 

We now formulate the problem WCOMP, which is the focus of 
this paper: 

 

 

 

 

 

 

We make a few observations about WCOMP and the Distance 
function. First, observe that unlike in GEN-WCOMP where the 
constraint on quality δδδδ is relative, ∆∆∆∆ is specified in absolute terms 
and has the same units as the Distance function.  Second, we note 
that variations of WCOMP are possible by replacing the min in 
the quality constraint with other functions such as max or 
average. For example, using max makes the worst-case 
assumption that loss in quality for qi could be as large as the 
distance to the “furthest” statement from it in the compressed 
workload. Thus, if we use max, we potentially expect less 
degradation in quality of the application, but also less 
compression of the workload. Third, WCOMP makes no 
assumptions about properties of the Distance function. For 
example, it does not require that the Distance function be 
symmetric or obey the triangle inequality. In fact, the very 
definition of DistanceA (qi, qj) is asymmetric, since it measures the 
distance with respect to {qi}. We believe this generality is 
important since for the applications of workload compression we 

Problem WCOMP: Let A be an application that takes as 
input a workload W. Let DistanceA (qi, qj) be a function for 
application A that ∀  qi, qj  ∈  W, returns an estimate of the 
loss in quality for statement qi if it is discarded but qj is 
retained in the compressed workload. Given ∆∆∆∆, which is the 
limit on the maximum allowable loss in quality, find the 
smallest workload W’ ⊆  W, such that Σqi ∈  W – W’ min qj∈  W’  
{ wi ⋅DistanceA (qi, qj) } < ∆∆∆∆. 

Figure 2. Visualizing WCOMP 
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present in this paper, we found that these properties were not 
satisfied (see Section 5). Fourth, as we will show in Section 2.3, 
the WCOMP problem is provably hard when the Distance 
function can return arbitrary values. Finally, we emphasize that 
the exact definition of Distance3 (qi, qj) is application dependent 
since it must capture the impact on quality of the result produced 
by the application when qi is discarded and statement qj is retained 
in the compressed workload. Table 1 summarizes the distance-
based workload compression problem WCOMP for the two 
applications of workload compression described in Section 2.1. 

 

Application Meaning of 
Distance(qi, qj) 

Meaning of ∆∆∆∆ 

Index 
Selection 

Estimated increase in 
the cost of executing 
statement qi if it is 
discarded but qj is 
retained  

Maximum allowable 
increase in 
(estimated) running 
time of the workload 
W 

Approximate 
Answering of 
Aggregation 
Queries 

Increase in the relative 
error of answering 
query qi, if qi is 
discarded but qj is 
retained  

Maximum allowable 
increase in average 
relative error of 
queries in W 

2.3 Hardness of WCOMP 
The problem WCOMP, defined in Section 2.2, aims to minimize 
the size of the set W’, while satisfying the constraint Σqi ∈  W – W’ 
min qj∈  W’   { wi  ⋅ Distance (qi, qj) } < ∆∆∆∆. We now show that when 
the Distance function can generate arbitrary values, WCOMP is 
NP-Hard. We will use a reduction from the decision version of the 
Minimum k-Median problem which is known to be NP-Complete 
[16]. First, we define the decision problem of the Minimum k-
Median problem: 

 

 

 

 

 

Lemma 1. Problem WCOMP (defined in Section 2.2) is NP-Hard 
if the Distance function can return arbitrary values. 

Proof: The decision problem for WCOMP is as follows: Let A be 
an application that takes as input a workload W. Let Distance (qi, 
qj) be a function that quantifies the distance between any pair of 
statements qi, qj∈  W. Given an integer k, and a number ∆∆∆∆, does 
there exist a workload W’ ⊆  W of size k such that Σqi ∈  W – W’ min 

qj∈  W’ (Distance (qi, qj)
4) < ∆∆∆∆.? There is a direct correspondence of 

the two problems as follows: V ⇔ W, V’ ⇔ W’, k ⇔ k, Cost ⇔ 

                                                                 
3 From this point onwards, for notational convenience, we assume 

that the subscript A in Distance (qi, qj) is implicit.  
4 For this reduction, we assume a workload where the weight of 

each statement is 1.  

Distance, and s ⇔ ∆∆∆∆. Hence, the decision problem of WCOMP is 
NP-Complete. Therefore WCOMP is NP-Hard. ♦  

Although for metric spaces there exist constant factor 
approximation algorithms [4,12] for the Minimum k-Median 
problem, Lin & Vitter [22] showed that the Minimum k-Median 
problem with arbitrary costs does not have a constant factor 
approximation algorithm.  

3. ARCHITECTURE OF SOLUTION 
In this section, we outline the architecture of the solution we have 
implemented for the WCOMP problem presented in Section 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An overview of the architecture is shown in Figure 3. We take as 
input a workload W and a constraint ∆∆∆∆, and produce as output a 
compressed workload W’. A key part of our architecture is the 
Search module (described in Section 4) that finds the compressed 
workload W’. WCOMP requires us to find the smallest 
(cardinality) subset of the given workload W that satisfies the 
given constraint. For this optimization problem, we consider two 
algorithms (besides random sampling). As described earlier, our 
search module is designed such that the algorithms consult a 
Distance function (described in Section 5), but make no 
assumptions about properties of the Distance function – in other 
words the Distance function can return arbitrary values. The 
Distance function serves as the basis for estimating the loss in 
quality due to workload compression and is application specific. 
It must be designed carefully since the quality of the compressed 
workload depends critically on the accuracy and efficiency of the 
Distance function. Efficiency in computing the Distance function 
is crucial since the function can be invoked many times for a large 
workload by the Search component. The accuracy of the Distance 
function is also important since overestimation of the loss in 
quality achieves less compression of the workload than ideally 
possible, whereas underestimation can cause an unacceptable 
result when the compressed workload is used. In Section 5, we 
illustrate how we make the above trade-off of efficiency vs. 
accuracy in designing the Distance functions for each of the two 
applications: index selection and AQP.  

Table 1. Applying WCOMP to different applications 

Problem Minimum k-Median: Given a complete graph G (V, 
E), costs C(u,v) ∈  N (the set of natural numbers), ∀  u, v ∈  V, 
an integer k, and a number s. Does there exist a set of medians 
V’⊆  V of size k such that the sum of the distances from each 
vertex to its nearest median is less than s, i.e., Σu ∈  V-V’ minv∈ V’  

{ C(u,v) } < s? ♦  

Figure 3. Architecture of solution for WCOMP 
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Recall from Section 2.1 that we associate a weight wi with each 
statement qi in the workload, which reflects the relative 
importance of that statement. The weight of a statement can 
significantly influence the result of the application. For example 
in index selection, higher the weight of a statement, the more 
likely it is that the indexes that are suitable for that statement are 
part of the final result. When a statement is discarded by workload 
compression, the obvious solution is to add the weight of the 
discarded statement to the “closest” statement (as defined by the 
Distance function) in the compressed workload. However, as 
illustrated by the following example for index selection, simply 
adding the weight can be inappropriate.  

Example 3:  Problem with simple addition of weights 
Consider a workload W with the following queries:  
Q1: SELECT * FROM persons WHERE age < 10.   
Q2: SELECT * FROM persons WHERE age < 20. 
Q3: SELECT * FROM persons WHERE income < 20000 
Assume the weights of these queries in W are all 1. Suppose the 
compressed workload is {Q2, Q3}. Using the obvious solution, 
since Q2 is the closest retained query to Q1, the adjusted weights 
of these queries is 2 and 1 respectively.  However, from the 
queries, it is clear that the presence of an index on column age 
would result in more benefit for Q1 as compared to Q2. Thus, the 
compressed workload has been biased against selecting an index 
on column age. ♦  

Therefore, in our architecture, we include a post-processing step 
called Adjust Weights (described in Section 6) that uses the 
application specific AdjustWeight (qi,qj) function to adjust the 
weight of each statement in the compressed workload. Note that 
for certain applications, the obvious solution of simply adding 
weights to the nearest retained statement may be appropriate. 
Finally, an interesting issue worth investigating is whether 
adjusting of weights during the search step itself can lead to better 
workload compression.  

We believe that the architecture described in this section is 
general enough to handle workload compression for a broad class 
of applications beyond those discussed in this paper. 

4. SEARCH STRATEGY  
As described in Section 3, the search component is responsible for 
finding a subset of W of smallest cardinality satisfying the 
constraint that the loss is quality is less than the given ∆∆∆∆. In this 
section, we then present and compare two search algorithms 
(besides random sampling) for solving WCOMP. The first 
algorithm is based on the K-Mediod clustering algorithm and the 
second is a new greedy algorithm. In Section 7, we present a 
detailed experimental comparison of the algorithms presented in 
this section. 

Based on the hardness result in Section 2.3, we do not expect a 
polynomial time algorithm that computes an optimal solution to 
WCOMP when the Distance function can return arbitrary values. 
We have therefore designed our solutions to WCOMP to leverage 
well-known and efficient heuristic search algorithms. We note 
however, that for specific Distance functions, the problem 
WCOMP may be solvable in polynomial time, and alternative 
search algorithms customized for that application may be 
appropriate. 

4.1 K-Mediod Algorithm 
The Minimum k-Median problem referred to in Section 2.3, is in 
fact a clustering problem. Our first algorithm therefore adapts the 
well known K-Mediod clustering algorithm [19]. We use the K-
Mediod algorithm as a building block for constructing an 
algorithm for WCOMP by performing binary search on the size of 
the workload W. The pseudo code for our overall search 
algorithm WC-KMED, and the modified K-Mediod algorithm 
KMED are presented in Figure 4 and Figure 5 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We mention a few important properties of algorithm KMED 
(Figure 5). First, it can be shown that the algorithm will terminate 
in a finite number of iterations of Steps 2-3. Second, the solution 
obtained by this algorithm is (at least) a local optimum. Third, the 
running time of KMED depends primarily on the number of 
invocations of the Distance function. As we can see from the 
pseudo code, KMED performs O((|W|-k)*k + k*(|W|/k)2) 
invocations of Distance function assuming each cluster on average 
contains the same number of statements. Note that since the 
algorithm WC-KMED (Figure 4) performs a binary search over 
the range 0..|W|, it invokes KMED at most log2|W| times. WC-
KMED produces a solution that is a local optimum. 

4.2 All-Pairs Greedy Algorithm 
Unlike the WC-KMED algorithm that does not invoke the 
Distance function on every pair of statements in W, the WC-ALL-
PAIRS algorithm does look at the Distance of each pair 
statements in the workload. Our goal in proposing this algorithm 

Input: Workload W, Constraint ∆∆∆∆ 
Output: Compressed workload W’ 
1. Let Min_k = 0, Max_k = |W|, W’ = W 
2. While (Min_k  Max_k) 
3.    k = (Min_k + Max_k)/2 
4.    Let WTemp = KMED(W, k) 
5.    Let D be the weighted sum of distances from each     
statement in W to the closest statement in WTemp as 
determined by the Distance function. 
6.    If D  ∆∆∆∆, W’ = WTemp, Max_k = k - 1 
7.    Else Min_k = k + 1 
8.    End If 
9. End While 
10. Return W’ 

Figure 4. Algorithm WC-KMED 

Input: Workload W, k 
Output: Workload W’ of size k 
1. Pick k statements s1..sk from W at random. Each 

statement chosen forms the “seed” of  a cluster.  
2. For each statement e ∈  W, assign it to the cluster that 

contains the seed closest to e, as determined by the 
Distance function. 

3. For each cluster C, re-compute the seed for that cluster 
as the “median” statement within the cluster, i.e., the 
statement e ∈  C such that Σv∈ C Distance (v, e) is the 
smallest. 

4. Repeat steps 2-3 until convergence, i.e., until the same 
clusters are obtained in some two iterations. 

Figure 5. Algorithm KMED 



was to investigate how the computing of all Distances would 
impact the quality of workload compression. Once the pair-wise 
distances are computed, the WC-ALL-PAIRS algorithm adopts a 
greedy approach that discards the next “best” statement from W 
until it is unable to discard any more statements without violating 
the given constraint ∆∆∆∆. The pseudocode is given in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At each step the algorithm maintains three sets, Keep, Prune and 
Candidates. Keep consists of statements which are definitely 
going to be retained in the compressed workload W’. Prune 
consists of the statements which are currently not in W’ and 
Candidates consists of the statements whose outcome hasn’t yet 
been decided. In each iteration of the While loop in Step 3, for 
each statement in Candidates, we compute the distance to the 
closest statement (as defined by the Distance function) that hasn’t 
been pruned (Step 4).  The statement for which this value is the 
smallest (Step 5) is considered next for pruning. Prior to actually 
pruning this statement however, we verify that removal of this 
statement does not violate the constraint ∆∆∆∆, since this statement 
may have been the closest statement to one or more statements 
that had been pruned previously. This check is performed in Step 
6. At the end of the algorithm, the statements in the sets 
Candidates and Keep constitute the compressed workload W’.  

Algorithm WC-ALL-PAIRS performs O(|W|2) computations of 
the Distance function since in the first execution of Step 4 all pair-
wise invocations of Distance are performed. Thus, we expect WC-
KMED to scale better with workload size compared to WC-ALL-
PAIRS. Also, unlike WC-KMED, WC-ALL-PAIRS cannot 
guarantee that the solution obtained is a local optimum for the 
problem WCOMP.  

While WC-KMED is based on a well-known algorithm for 
solving the k-Median problem, in our experiments  (see Section 7) 
we found that WC-ALL-PAIRS often achieves more compression 
than WC-KMED for WCOMP. Intuitively, WC-ALL-PAIRS does 
better when the workload has many small clusters and the intra-

cluster distances are small relative to inter-cluster distances.  
Analyzing and understanding the relative strengths of these 
algorithms is part of our ongoing work. We are exploring 
opportunities to combine these two algorithms to obtain even 
better compression, e.g., by running WC-KMED using the output 
of WC-ALL-PAIRS as the seed.  

4.3 Random Sampling 
An obvious technique for improving the scalability of an 
application that consumes a workload W is to use sampling to 
select a subset W’ of W. The simplest of these schemes is uniform 
random sampling, where each statement in W has an equal 
probability of being selected. However, this approach can result in 
poor quality workload compression due to the following 
problems: (a) Uniform sampling ignores valuable information 
about statements in the workload and therefore misses opportunity 
for more compression. (b) When the sampling fraction is small, 
certain small “clusters” of important statements may be altogether 
discarded and never make it into the compressed workload. This 
follows from a well known statistical result [8]. In our 
experiments, we therefore considered a stratified sampling based 
algorithm (which we refer to as WC-PARTSAMP), which 
partitions the workload into strata and then samples uniformly 
within each stratum. The partitioning scheme used is described in 
Section 5. One issue with applying sampling is how much (i.e., 
what fraction of W) to sample? We start with a sampling fraction 
f0 and verify if the constraint ∆∆∆∆ is satisfied for that sample – note 
that this step requires invoking the Distance function. If not, we 
repeat the process by increasing the sampling fraction by a factor 
m > 1 and sampling an additional set of statements. We terminate 
when we find a sample that satisfies the constraint.  

5. DISTANCE FUNCTION 
As described in the previous section, a key component of our 
solution to WCOMP is the computation of Distance (qi, qj) for any 
pair of statements qi, qj in the given workload W. Recall that the 
function Distance (qi, qj) measures the expected loss in quality of 
the result of the application on workload {qi} if the workload {qj} 
is provided as input to the application. A judicious trade-off 
between accurate and efficient computation of the Distance 
function is crucial for ensuring the success of workload 
compression. Accuracy is important since overestimation of 
Distance (qi, qj) results in less workload compression than 
possible, while underestimation of Distance (qi, qj) can result in 
poor quality of the result of the application when the compressed 
workload is used. Efficiency of computing Distance is important 
since the search algorithms for workload compression (see 
Section 4) may invoke the Distance function many times for 
different pairs of statements.  

An exact method for computing Distance (qi, qj) is: (i) run the 
application on workload {qi} and compute the quality of the result 
for {qi}, (ii) run the application on {qj} and compute the quality 
of the result for {qi} and (iii) take the difference in quality 
between Steps (i) and (ii). However, for most applications such a 
method is inefficient since it requires running the application, and 
hence negates the very purpose of workload compression. Thus, 
the challenge of developing an appropriate Distance function for 
an application is to estimate this loss in quality efficiently. In this 
section, we first present two guidelines that we followed in 
developing Distance functions for the two applications described 

Input: Workload W, Constraint ∆∆∆∆ 
Output: Compressed workload W’ 
1. Let the sets Candidates = W, Keep = {}, Prune = {} 
2. Let Total-Dist = 0 
3. While (Total-Dist < ∆∆∆∆) 
4.    For each statement qi ∈  Candidates, compute di = 

min(i ≠ j , qj ∈  Candidates ∪  Keep) (wi . Distance (qi, qj)) 
5.    Let qmin be the statement with the minimum distance   

dmin computed in Step 4. 
6.    If (dmin + Total-Dist < ∆∆∆∆)  
                Move qmin from Candidates to Prune 
   Old-Dist = Total-Dist 
                Total-Dist = Σi mink   (wi. Distance (qi, qk)) where  

           qi  ∈  Prune and qk∈  Candidates ∪   Keep 
                 If (Total-Dist > ∆∆∆∆) 
          Move qmin from Prune to Keep,  

         Total-Dist = Old-Dist 
                 EndIf 
7.    Else Break 
8.    EndIf 
9. End While 
10. Return W’ = Candidates ∪  Keep 

Figure 6. Algorithm WC-ALL-PAIRS. 



in Section 2.1: index selection and approximate answering of 
aggregation queries (AQP). We believe that these guidelines are 
more broadly applicable in the context of other applications as 
well. We then present the specific Distance functions we have 
developed for the above two applications.  

Our first guideline is driven by the requirement that the 
computation of Distance function be efficient. We therefore 
identify a core set of information about each statement in the 
workload that can be derived with low overhead and rely only this 
information for computing Distance. For example, in our 
implementation of Distance function for both applications, we 
limit ourselves to information that can be derived from the SQL 
parser and a selectivity estimation module. This information 
includes: (a) Type of the statement, (SELECT, INSERT, 
UPDATE, DELETE) (b) Structure of the query, e.g., tables 
referenced, projection columns, selection and join predicates etc. 
(c) For selection predicates, the selectivity of the predicate 
(computed by using selectivity estimation module based on 
available statistics in the database) (d) If available, the (estimated) 
cost of executing the statement is available. This cost information 
can be obtained either via one invocation of the query optimizer 
(e.g., in Microsoft SQL Server using the Showplan interface, or in 
IDB DB2 using the EXPLAIN mode) or from previously recorded 
information about the actual execution time of the statement.  

Our second guideline is to leverage the technique of logically 
partitioning the workload. The idea is that for any two queries qi, 
qj belonging to different partitions, Distance(qi, qj) between the 
two queries is ∞. Partitioning can be incorporated within the 
Distance (qi, qj) function by generating a “signature” for each 
statement and returning ∞ if the two signatures are not identical. 
Thus, each statement with a distinct signature belongs to a 
different logical partition. As a simple example, in the index 
selection application, when two statements reference disjoint sets 
of tables, it is reasonable to separate them into different partitions 
since indexes that are useful for one statement cannot be useful 
for the other. There are two benefits of partitioning the workload. 
First, it provides a way to ensure that at least a minimum number 
of statements (i.e., at least one statement per partition) will be 
retained in the compressed workload. Second, since the signature 
of a query can typically be computed very efficiently compared to 
the more careful analysis that goes into the rest of the Distance 
function, partitioning serves as a “shortcut” that reduces the 
computational overhead of invoking the Distance function. 
Finally, we note that the signature to be used to partition the 
workload is application dependent, and is therefore incorporated 
into the Distance function. 

5.1 Distance Function for Index Selection 
For simplicity of exposition, in this section we assume that the 
workload W consists of SELECT, INSERT, UPDATE, DELETE 
statements, where the SELECT statements are limited to single-
block Select, Project, Join (SPJ) queries with Group-By, 
Aggregation and Order-By. We first present the Distance function 
for queries (i.e., SELECT statements) and briefly mention the 
extensions for handling updates. For index selection, the Distance 
(qi, qj) function measures the expected loss of benefit for {qi} if 
the set of indexes recommended for {qj} were used to answer it 
instead of the set of indexes recommended for {qi} itself. Our goal 
is to estimate this expected loss of benefit efficiently without 

actually invoking the index selection application. While more 
sophisticated Distance functions could be designed for index 
selection, we believe that our design captures essential aspects of 
index selection, without making assumptions about the specific 
algorithms used inside the index selection tool. This is backed by 
our experimental results (see Section 7) which show the 
effectiveness of our Distance function for index selection tools on 
two different commercial database systems. 

5.1.1 Partitioning the Workload 
Our first step in the Distance function is to detect if the two 
queries belong to same partition or not. If not, we return 
immediately from the Distance function with a value of ∞. As 
mentioned above, the intuition behind partitioning is to logically 
place queries that are “far apart” into disjoint partitions. In the 
context of index selection, two queries can be considered far 
apart, if there is little or no overlap in the set of indexes that 
would be chosen for each query. Based on this intuition we 
partition the workload on the basis of the tables accessed in each 
query and the join predicates (if any). This is done by generating a 
signature for each query that consists of the table IDs referenced 
in the query and (table, column) IDs accessed in the join 
predicate.  

Example 4: Motivating example for selectivity based partitioning  
Consider the following two queries: 
Q1: SELECT * from persons where age > 80 
Q2: SELECT * from persons where age > 1 ♦  

However, as the above example shows, the simple scheme above 
may still include queries into the same partition that are still “far 
apart”. According to the above scheme, both Q1 and Q2 will be 
assigned to the same partition because they both have the same 
signature. However, note that the queries are still far apart from 
the point of view of indexes that are appropriate for each query. 
Due to the respective selectivities of predicates on age, for Q1, an 
index on column age is likely to be very useful, whereas for Q2 an 
index on column age is likely to be of no use. Motivated by this 
observation, we further split each partition on the basis of 
selectivity information. For a single-table query, we compute the 
joint selectivity of all the predicates. All queries with joint 
selectivity less than or equal to a predetermined selectivity s0 (we 
used a value of s0 = 0.1) are assigned to one partition, and those 
with selectivity exceeding s0 are assigned to a different partition. 
Thus, for single-table queries, we can generate at most two 
partitions. We adopt the straightforward extension of this 
partitioning scheme to the case of multi-table queries. Under this 
scheme, all queries belong to a t-table partition (i.e., a partition 
with queries accessing those t tables) get split into at most 2t 
partitions (some of which may be empty). Although the number of 
such partitions can, in principle, become large, we found in 
practice that over a variety of large workloads (real and synthetic), 
the number of partitions grew very slowly with the number of 
tables.  

5.1.2 Quantifying Distance 
Our approach for computing the Distance function is based on the 
observation that the effectiveness of an index for a query can be 
broadly categorized into one or more of the following 
performance categories: (a) Reduces the number of rows that need 
to scanned from the table, (b) Eliminates the need to access the 



table altogether since the index contains all columns required to 
answer the query (i.e., the index is “covering” for the query) or (c) 
Reduces/eliminates the cost of sorting for some operator in the 
query. Thus, when computing  Distance (qi, qj) we analyze each 
query and classify the columns referenced in the query as: (1) 
Selection columns – contains  all columns that occur in selection 
conditions. Indexes on these columns fall into performance 
category (a) above. (2) Required Columns – contains all columns 
that were referenced in any part of the query (including projection 
columns). Indexes on these columns fall into performance 
category (b) above. (3) Group-By Columns – contains all columns 
that occur in the GROUP BY clause of the query. (4) Order-By 
Columns – contains all columns that occur in the ORDER BY 
clause of the query. Indexes on columns in Category (3) and (4) 
fall into performance category (c) above.  

We then compute four functions Dist-Sel (qi, qj), Dist-Reqd (qi, 
qj), Dist-GB (qi, qj) and Dist-OB (qi, qj). Each of these functions 
captures the loss of benefit for a particular performance category. 
For example, Dist-Sel computes a distance by examining only the 
columns in the Selection category of the queries qi and qj, and 
thereby tries to capture the difference in performance category (a).  
Once each of the functions is computed we define Distance (qi, qj) 
as the maximum of the four values. Intuitively, by considering the 
maximum value, we take the conservative approach of 
considering two queries as “close” only if they are “close” in each 
of these categories. We now briefly describe how each of the 
above four functions is computed, and omit details due to lack of 
space.  

Computing Dist-Sel: Our approach is based on the intuition that 
the column (or sequence of columns) in the predicate with the 
lowest selectivity5 (resp. joint selectivity) is the one that will be 
picked to be indexed by the index selection tool for that query. In 
other words, while considering 1-column indexes, we assume that 
the column with the smallest selectivity will be picked. On the 
other hand, when considering 2-column indexes, we assume that it 
is the sequence of two columns with the two lowest selectivities 
that will be picked. The following example illustrates how Dist-
Sel(qi, qj), is computed.  

 Example 5. Computing Dist-Sel:  
Suppose we have two queries Q1 and 
Q2 referencing a single table T, with 
predicates on columns c1, c2, c3. The 
selectivities of these predicates are 
given by the adjoining table. The best 

1-column index for Q1 is I1 = (c1). On the other hand, the best 1-
column index for Q2 is I2 = (c2). The loss of benefit for Q1 if it is 
pruned and Q2 is retained, is given by difference of cost of 
evaluating Q1 in presence of I2 and cost of evaluating Q1 in 
presence of I1, which is given by (0.3 – 0.1) * Cost ({Q1}, {}) = 
0.2 *  Cost ({Q1}, {}). (Note that Cost ({Q1}, {}) corresponds to a 
scan of the entire table i.e., no indexes are present). The intuition 
is that the presence of index I2 would require scanning 30% of the 
base relation for answering Q1, whereas the presence of index I1 
would require scanning only 10% of it. Examining 2-column 
indexes, we see that the best 2-column index for Q2 is (c2, c3) and 

                                                                 
5 By low selectivity we mean a predicate that selects few records 

from the table. 

the best 2-column index for Q1 is (c1, c3). Therefore, the loss of 
benefit is given by (0.3*0.2 – 0.1*0.2) * Cost ({Q1}, {}) = 0.04* 
Cost ({Q1}, {}). Similarly, for 3-column indexes, we see that the 
loss of benefit is 0. In general, this analysis can similarly be 
extended for up to p-column indexes. We take Dist-Sel (Q1, Q2) 
as the maximum of the numbers computed – in our example, 
0.2*Cost ({Q1}, {}).♦  

Note that in case of multi-table queries, we perform the same 
analysis as in the above example on a per table basis and then take 
a weighted average of the table-wise Dist-Sel (qi, qj) values, the 
weight being the size of the table in pages. We use size of the 
table as weight because for same selectivity value, the amount of 
I/O required to answer the query is proportional to the size of the 
table. 

Computing Dist-Reqd: Dist-Reqd(qi, qj) tries to capture the loss 
of benefit for performance category (b) , i.e., use of covering 
indexes. We present the intuition behind our scheme for single-
table queries. The extension for the multi-table case is similar to 
the extension for Dist-Sel. Intuitively, if qi is pruned away, and 
the required columns of qi are a subset of the required columns of 
qj, then the covering index for qj can be used to answer qi and 
hence Dist-Reqd (qi, qj) is relatively small. However, if the 
required columns of qi are not a subset of the required columns of 
qj, then the covering index chosen for qj will not be useful for 
answering qi Pruning away qi in this case requires scanning the 
entire table for answering qi, and therefore the loss of benefit (i.e., 
Dist-Reqd) is large.  

Computing Dist-GB & Dist-OB: We first discuss Dist-OB (qi, 
qj). We assume the model of no partial sort benefits, i.e., an index 
(c1, c2, c3) is of no use in answering a query with ORDER BY c1, 
c3, c2, even though there is some overlap in the prefix of the index 
and the prefix of the order-by clause. Under this simplifying 
assumption, Dist-OB (qi, qj) is 0 if the ORDER BY clause of qi is 
a leading prefix of the ORDER BY clause of qj. Otherwise Dist-
OB (qi, qj) is equal to the Cost ({qi}, {}). Computation of Dist-GB 
(qi, qj) is done similarly, except that we require that the group-by 
columns of qi to be a subset (rather than a leading prefix) of the 
group-by columns of qj in order for the index chosen for qj to be 
applicable to qi.  

Extensions for updates: If both statements are “pure” updates, 
e.g., of the form INSERT INTO T1 VALUES (…), then we set the 
Distance between such statements to 0, since one statement can be 
safely pruned against the other without any impact on choice of 
indexes so long as the weight of the pruned statement is added to 
the weight of the retained statement. However, in general, an 
UPDATE/INSERT/DELETE statement can have an “update” part 
and a “query” part: e.g., INSERT INTO T1 SELECT * from T2 
WHERE <condition>. Such a statement s can be viewed as (q,u) 
where q is the query part and u is the update part. In this case, we 
define Distance (si, sj) between two such statements as Distance 
(qi, qj)  only if AdjustWeight(qi, qj) is (approximately) equal to 
AdjustWeight(ui, uj) (see Section 4 for the definition of the 
AdjustWeight function), and ∞ otherwise. The reason for this is 
that otherwise we would be biasing the compressed workload 
either towards the query part or towards the update part. We omit 
further details of this procedure due to lack of space.  

 c1 c2 c3 

Q1 0.1 0.3 0.2 

Q2 0.5 0.2 0.4 



5.1.3 Properties of the Distance function 
As noted earlier, properties of the Distance function such as 
symmetry or triangle inequality can save us a (potentially 
significant) number of explicit computations of the function. From 
the definition of the above Distance function, it is clear that it 
does not obey symmetry, i.e., Distance (qi, qj) ≠ Distance (qj, qi).  
It is also easy to construct examples that show that the triangle 
inequality doesn’t hold true for this distance metric, i.e., Distance 
(qi, qj) + Distance (qj, qk) is not necessarily greater than Distance 
(qi, qk) However, as shown by the following Lemma, our Distance 
function for index selection (defined in Section 5.1.2) satisfies the 
following property. 

Lemma 2:  For the Distance function defined in Section 5.1, if 
Distance (qi, qj) = Distance (qj, qi) = 0, then ∀  qk, Distance (qk, qi) 
= Distance (qk, qj). 

Proof: Omitted due to lack of space. 

We can exploit the above Lemma to refine the query signature 
used in partitioning and hence reduce the work done when the 
Distance function is invoked. We omit the details of this 
optimization due to lack of space. In our experiments over real as 
well as synthetic workloads, we found that this optimization saved 
us anywhere between 10%-40% of the Distance computation 
overhead. 

5.2 Distance Function for Approximate 
Answering of Aggregation Queries 
For an overview of the AQP application, we refer the reader to 
Example 2. As explained in the example, the preprocessing step 
consumes a workload W and produces as output samples of one 
or more tables in the database. We assume that the workload 
consists of aggregation queries containing the COUNT/SUM 
aggregates possibly with selections, GROUP BY and foreign-key 
joins. The preprocessing step chooses the sample so as to 
minimize the average relative error of answering queries in W 
over the sample as compared to answering the queries on the full 
table. Note that for GROUP BY queries the relative error is 
averaged over all groups of the query – missing groups are 
assigned a relative error of 1.  

Distance (qi, qj) for AQP therefore attempts to estimate the 
relative error in answering qi if it is pruned but qj is part of the 
compressed workload. As with the Distance function for index 
selection, we leverage the idea of partitioning and return ∞ if qi 
and qj have different signatures. Our signature of a query is 
defined by the subset of tables referenced in the query. If both 
queries belong to the same partition, we analyze them based on 
whether they have selections or GROUP-BY. If both queries are 
pure selection queries, i.e., do not contain GROUP BY, then we 
define Distance (qi, qj) as the fraction of records selected by qi that 
are not selected by qj. The intuition behind this definition is that 
the error in answering a pure selection query qi depends on the 
number of records in the sample that are selected by qi. If qj is 
used to determine the sample, then the error for qi increases as the 
overlap of qi with qj decreases. We note that if the database 
engine supports the DIFFERENCE operator, then this function 
can be estimated by invoking the query optimizer. Otherwise, this 
metric must be estimated based on analysis of selection predicates 
and using selectivity estimates. 

 When one query is a pure selection query and the other is a 
GROUP BY query, we set Distance (qi,qj) = ∞. When both queries 
have GROUP BY columns, Distance (qi, qj) is defined as follows. 
Let G be the set of grouping columns that occur in query qi and let 
G’ be the set of grouping columns that occur in both qi and qj. Let 
D(X) be the number of groups in a query (without selections) that 
contains exactly the grouping columns X. Then Distance (qi, qj) = 
1 – D(G’)/D(G). The intuition is that (i) the error for GROUP BY 
queries is dominated by missing groups, and (ii) the number of 
missing groups is likely to increase as the overlap between the 
grouping columns of qi and qj decreases.  

6. ADJUSTING WEIGHTS 
Recall that we defined a workload as a set of statements where 
each statement has an associated weight wi (Section 2). The 
weight of a statement signifies the importance of the statement in 
the workload, and plays a role in determining the optimization 
function of the application. For example, index selection tools 
typically optimize a weighted function of the (estimated) 
execution cost of statements in the workload. Thus, an index that 
is useful for a query with large weight is more likely to be chosen 
by the tool. In order to prevent statements in the compressed 
workload from having unduly high or low weight relative to other 
statements, it is important that the weights of statements in the 
compressed workload be set appropriately.  

In our architecture (see Figure 3), we address this issue in the 
Adjust Weights module as follows. At the end of the search 
algorithm (see Section 4), we find for every pruned statement qi, 
the statement qj nearest to it in the compressed workload (in terms 
of the Distance function) and adjust the weight of qj. However, as 
illustrated by Example 3 (see Section 3) the naïve approach of 
simply adding the weight of the pruned statement to the nearest 
retained statement can result in poor quality of the compressed 
workload. In our solution, the application specific AdjustWeight 
(qi, qj) function serves the purpose of specifying the amount by 
which the weight of a retained statement qj should be incremented 
if qi is pruned and qj is the closest statement to qi.  

For the index selection problem, we now present an appropriate 
AdjustWeight function. If qi is pruned and its nearest statement is 
qj, then we set the weight of qj in the compressed workload to wj + 
wi * αij/αjj where αij is the benefit that query qi gets from the 
indexes recommended for qj. Due to lack of space, we omit details 
of how αij and αjj can be computed efficiently. Instead, we revisit 
Example 3 and illustrate how our approach solves the problem of 
biasing.  

Example 3 (Continued from Section 3): Suppose the benefits of 
an index on column age for Q1 and Q2 are 50 units and 40 units 
respectively. The actual total benefit from index on column age 
for W is 50*1 + 40*1 = 90 units, whereas for W’, this benefit is 
40*2 = 80 units. Therefore, as pointed out earlier, we have biased 
the workload away from picking an index on column age. Using 
the approach described above, the weight of Q2 in the compressed 
workload would be w2’ =  w2 + w1 * α12/α22 = 1 + 1 * 50/40 = 
2.25. We can now easily verify that the benefit of the index on 
column age for the compressed workload is 2.25 * 40 = 90, which 
is same as the benefit for the original workload.  ♦  



Finally, we note that for the AQP application, we use the default 
AdjustWeight(qi,qj) function, which simply adds the weight of qi 
to qj.  

7. EXPERIMENTS 
In this section, we present an experimental evaluation of our 
solution for workload compression. We demonstrate through 
these experiments that: (1) In the context of the Index Tuning 
Wizard for Microsoft SQL Server 2000, our Distance function for 
index selection produces significant compression of the workload 
while obeying the given quality constraint. (2) The same Distance 
function for index selection works well on another index selection 
tool, viz., IBM DB2’s Index Advisor. (3) The WC-KMED 
algorithm scales better than WC-ALL-PAIRS but the latter can 
achieve significantly more compression. (4) Our framework for 
workload compression can be applied to another application as 
well, viz. AQP, by simply providing an appropriate Distance 
function.  

Setup: All experiments were run on an x86 900 Mhz dual 
processor machine with 512MB RAM and an internal 30GB hard 
drive running Microsoft Windows 2000 Server. We tested our 
solution on several databases and workloads, including real and 
synthetic schemas and workloads. We present results on two 
benchmark workloads (TPC-H [25] and APB [3]), two real 
workloads (Real-1 and Real-2) used within our corporation, and 
several synthetic workloads. The database for Real-1 is about 
600MB and contains about 90% update statements, whereas Real-
2 workload contains decision support queries against a 500 MB 
database. All the synthetic databases conform to the TPC-H  
schema and were generated using a synthetic data generation 
program [24]. The size of the synthetic databases were 1GB. The 
synthetic workloads were generated using a query generation 
program, which has the ability to vary a number of parameters 
including number of joins, number of group-by columns, number 
of order-by columns, number of selection conditions in a query, 
and percentage of update statements in the workload.  

Evaluation Metrics: For the index selection application, we use 
the following metrics to evaluate the workload compression 
solution: (a) Percentage of queries pruned by workload 
compression (b) Percentage reduction in total tuning time, i.e., 
sum of running time of index selection tool on the compressed 
workload and time spent in compressing the workload as 
compared to running the tool on the original workload. (c) 
Percentage loss in quality of the solution produced by the index 
selection application. We use the percentage change in the 
optimizer-estimated cost of the original workload as the metric of 
quality. We obtain this by running the index selection tool on both 
the original workload as well as the compressed workload, 
implementing the recommendations and calculating the optimizer 
estimated running time of the original workload for both the 
cases. In the following experiments, we specify the constraint (∆∆∆∆) 
on loss in quality to be 10% of the cost of the original workload 
W on the current database. For the AQP application, we measured 
loss in quality due to workload compression as follows. We report 
the difference in the average relative error of queries in W when 
the entire workload is used in the preprocessing phase (see 
Section 2.1) and the average relative error of queries in W, when 
the compressed workload is used in the preprocessing phase.  

7.1 Effectiveness of Distance Function for 
Index Selection Tool on Microsoft SQL Server 
We first evaluate our Distance function (see Section 5.1) for index 
selection against the Index Tuning Wizard for Microsoft SQL 
Server. Figure 7 shows the results of workload compression for 
the two real workloads and the two benchmark workloads. We 
fixed the search strategy to WC-KMED. We see that a large 
percentage of the queries (between 50%-90%) were pruned in 
three of the workloads and about 20% of the queries were pruned 
in the Real-2 workload. In each of these cases, the total time to 
run the Index Tuning Wizard was also significantly reduced due 
to workload compression, which shows that the workload 
compression step itself added little overhead. From the figure, we 
also see that the maximum loss in quality due to workload 
compression was less than 11%. This shows that our Distance 
function does a reasonable job of estimating the loss of quality.  
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Figure 8 shows the results of workload compression for index 
selection on the four kinds of synthetic workloads described 
earlier (each of size 300 queries), including a workload with 30% 
update statements. For each of these workloads, we once again see 
significant reduction in workload size as well as total tuning time 
while the loss in quality is very small (< 8%). Overall, this 
experiment illustrates the effectiveness of our Distance function 
for index selection. 

7.2 Comparison of Search Strategies 
In our next experiment, we compare the quality and scalability of 
the three search strategies presented in Section 4: WC-KMED, 
WC-ALL-PAIRS, and WC-PARTSAMP when applied to the 
index selection problem. Figure 9 shows the total compression 
achieved (as a percentage of the workload size) for each of the 
search strategies as the workload size is increased. The workload 
was a synthetic workload consisting of SPJ queries with Group-

Figure 8. Results on Synthetic Workloads 

Figure 7. Results on Real and Benchmark Workloads



By and Order-By.  We see that WC-ALL-PAIRS achieves the 
most compression among the three strategies (see Section 4.2 for 
a qualitative comparison with WC-KMED). We see that not 
surprisingly WC-PARTSAMP (which we found was superior to 
uniform sampling) has the least compression – significantly less 
than WC-ALL-PAIRS and WC-KMED.  
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Figure 10 shows the total reduction in tuning time as the workload 
size is varied (same data points as in Figure 9). Here we see that 
WC-ALL-PAIRS and WC-KMED significantly outperform WC-
PARTSAMP due to the superior compression achieved by these 
algorithms. The reason that WC-KMED shows similar reduction 
in running time to WC-ALL-PAIRS despite achieving less 
compression (Figure 9) is that the time for workload compression 
using WC-KMED is significantly less than when using WC-ALL-
PAIRS. Figure 11 shows the reason for this – the total number of 
Distance function computations scales significantly better for 
WC-KMED as compared to WC-ALL-PAIRS. 

Overall, this experiment emphasizes the fact that by ignoring 
workload information during compression, a sampling based 
approach loses out on the amount and quality of compression 
compared to both WC-ALL-PAIRS and WC-KMED. 

7.3 Evaluation on Index Selection Tool for 
IBM DB2 
The goal of our next experiment is to evaluate whether the 
Distance function we developed for index selection (see Section 
5.1) works effectively when used for another index selection tool. 
We therefore used the Index Advisor for IBM DB2 to tune the 
original and compressed workloads respectively for the Real-2 
workload. We then compared the execution time of the original 
workload when indexes recommended for the original workload 
were present to the execution time of the original workload when 
indexes recommended for the compressed workload were present. 
The workload compression achieved is 25%, and the loss in 
quality (i.e. increase in execution time) for this workload was only 
1%. This experiment demonstrates that our Distance function is 
robust in the sense that it is not dependent on the specific 
implementation of the index selection tool.  
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7.4 Evaluation for Approximate Aggregation 
Query Answering Application  
Our final experiment illustrates the generality of our framework 
for workload compression and shows that it can be applied to 
other applications with only a modest effort that is required in 
providing an appropriate Distance function for the application. 
We evaluate the effectiveness of our solution for the AQP 
application (see Section 2.1 for more details on the application 
and Section 5.2 for the Distance function). We experimented with 
two workloads: the Real-2 workload and a synthetic workload of 
100 aggregation queries on the TPC-H 1GB database. For this 
application the quality of the result is measured by the average 
relative error (see Section 2.1) of queries in the workload. We see 
from Figure 12 that we achieve significant workload compression 
and reduction in preprocessing time. At the same time the loss in 
quality (i.e., increase in average relative error of queries) is small.  

8. RELATED WORK 
There have been several papers that have applied sampling in the 
area of databases e.g., [18,20]. However, unlike our paper, these 
studies focus on the problem of sampling data and not the 
workload. Random sampling, has also been studied extensively in 
the statistics literature [8]. A key difference between our 
techniques and random sampling is that random sampling ignores 

Figure 10. Search Algorithms: Total Reduction in 
Tuning Time 

Figure 9. Search Algorithms: Compression Achieved

Figure 11. Search Algorithms: Number of Distance 
Computations 

Figure 12. Results for Approximate Answering of 
Aggregation Queries application. 



interaction among the objects being sampled (which is the 
primary source of its efficiency). In contrast, our technique 
focuses on achieving compression while taking into account 
interactions among statements via use of the Distance function. As 
shown by our experimental evaluation, this aspect is crucial for 
achieving significantly better quality of workload compression. In 
principle, our techniques are complementary to sampling, and the 
two techniques can be combined. 

Our work also has strong similarity to the problem of 
clustering [19] which has been studied in the context of machine 
learning and data mining. Indeed as we have shown, our problem 
is equivalent to the well-known Minimum k-Median clustering 
problem. Also, a large class of work e.g., [4,12] on clustering has 
focused on cases when the points are in a metric space, i.e., 
distance function is symmetric and satisfies the triangle inequality. 
A key novelty of our work is applying clustering techniques in a 
principled manner in the context of workloads. Moreover, since 
we cannot assume that our distance functions satisfy metric 
spaces, we adapt well-known heuristic approaches to clustering to 
solve workload compression. Finally, there is a large body of 
work on query equivalence e.g., [5,11], which is also 
complementary to our work. These techniques may be useful in 
deriving distance functions for specific applications. One form of 
equivalence that can be exploited (and is application independent) 
is when two queries are semantically identical, i.e., they return the 
same result. Of course, applying these techniques is not free of 
cost could require significant computational effort. 
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