
Compressing SQL Workloads
Surajit Chaudhuri
Microsoft Research
One Microsoft Way

Redmond WA 98052
+1(425) 703-1938

surajitc@microsoft.com

Ashish Kumar Gupta*
University of Washington, Seattle

114, Sieg Hall, Box 352350
Seattle, WA 98125
+1(206) 616-1853

akgupta@cs.washington.edu

Vivek Narasayya
Microsoft Research
One Microsoft Way

Redmond WA 98052
+1(425) 703-2616

viveknar@microsoft.com

ABSTRACT
Recently several important relational database tasks such as index
selection, histogram tuning, approximate query processing, and
statistics selection have recognized the importance of leveraging
workloads. Often these tasks are presented with large workloads,
i.e., a set of SQL DML statements, as input. A key factor
affecting the scalability of such tasks is the size of the
workload. In this paper, we present the novel problem of
workload compression which helps improve the scalability of
such tasks. We present a principled solution to this challenging
problem. Our solution is broadly applicable to a variety of
workload-driven tasks, while allowing for incorporation of task
specific knowledge. We have implemented this solution and our
experiments illustrate its effectiveness in the context of two
workload-driven tasks: index selection and approximate query
processing.

1. INTRODUCTION
Information on how a database system is used can be important in
performance tuning and management of the system. In the context
of relational databases, one specific form of usage information is
the workload, which is typically a set of SQL statements. Over the
past few years, database practitioners and vendors have
recognized the opportunity to tune and manage various aspects of
database systems by analyzing workload information. Several
workload-driven tasks have emerged recently for solving
problems such as histogram tuning [1,7,15], improving query
optimization [23], index selection [13,21], approximate answering
of aggregation queries [2,9,10,17], and statistics selection [14].
We use the term application in this paper to generically refer to
such workload-driven tasks.

A key factor affecting the scalability of these applications is the
size of the workload, i.e., the number of SQL statements in the
workload. In many cases, the workload consumed by the
application is gathered using mechanisms in modern DBMSs that
allow recording of SQL statements that execute on the server. In
order to capture a representative collection of statements that

execute against the system, the user of the application, such as a
database administrator – could collect as the workload a log of
SQL statements over a sufficiently large window of time (e.g., a
day or week). Consequently, workloads tend to be large in size.
Moreover, these applications often perform detailed analysis of
queries in the workload and their inter-relationships, and hence
their running time can be affected significantly as the workload
size increases.

It is therefore natural to ask whether these applications can be
sped up significantly by finding a substitute workload of smaller
size (which we refer to as the compressed workload) as input,
while qualitatively not degrading the result of the application. In
other words, the result of the application when run on the
compressed workload should be identical (or close) to the result
when it is run on the original workload. It is crucial that this
compressed workload be found efficiently, since otherwise the
very purpose of the exercise is defeated. In this paper, we
formalize the above question as the novel problem of workload
compression. To the best of our knowledge, this is the first paper
to study the problem of workload compression in the context of
SQL workloads. We believe that this problem, and the solution
we present in this paper can be applied to a variety of applications
on relational databases.

An obvious solution to the workload compression problem is to
use uniform random sampling to pick a smaller subset of the
original workload. While this strategy is efficient, we have
observed that it is not an effective method for workload
compression. The key reason for the poor compression achieved
by uniform random sampling is that it is oblivious to the
application for which the workload is being used, and hence
ignores potentially valuable information about the statements in
the workload. Thus, we seek a solution that can exploit
application knowledge to obtain significantly better workload
compression as compared to uniform random sampling.

Our approach for incorporating application knowledge into the
solution is via the use of a Distance function that quantitatively
measures the “difference” between pairs of SQL statements with
respect to the application. In our framework, we allow the
Distance function to take on arbitrary values – e.g., unlike
Euclidean distances, we do not impose restrictions that the
function be symmetric or satisfy the triangle inequality. We have
found this generality to be crucial in the two applications that we
discuss in this paper.

Workload compression is a computationally difficult
combinatorial optimization problem. In fact, we show via a
reduction from the well known Minimum k-Median problem [16]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD 2002, June 4-6, 2002, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06…$5.00.

* Work done while author was visiting Microsoft Research

that the workload compression problem is NP-Hard. In this paper,
we present two algorithms for solving workload compression. Our
first algorithm adapts a well-known and efficient solution to the
Minimum k-Median problem. We also present an alternative
greedy algorithm which we have found gives better compression
in the two applications to which we have applied and compared
these algorithms. Understanding the relative strengths of these
two algorithms, and characterizing their effectiveness for different
kinds of SQL workloads is an interesting issue that requires
further study, and is part of our ongoing work. An important
characteristic of both these algorithms is that they are application
independent, and can therefore be used for a variety of
applications by specifying an appropriate Distance function. We
show the generality of our framework by applying and
demonstrating its effectiveness for two different applications:
index selection, and approximate answering of aggregation
queries. We have designed and implemented Distance functions
for these two applications and experimentally evaluated our
solution in the context of (a) two commercial index selection
tools: Index Tuning Wizard for Microsoft SQL Server [13] and
the Index Advisor for IBM DB2 [21], (b) as well as a tool for
approximate answering of aggregation queries [10]. These results
show the superior quality of our approach compared to sampling.
Moreover, we observe significant improvement in the scalability
of both these applications due to workload compression.

This work was done in the context of the AutoAdmin [6] project
at Microsoft Research. The goal of this project is to automate the
challenging task of tuning a database system by exploiting
information about the workload faced by the system. The rest of
the paper is organized as follows. In Section 2, we formally define
the workload compression problem and analyze its complexity.
We present the framework of our solution in Section 3, and the
search algorithms for solving the optimization problem in Section
4. In Section 5, we describe the application specific part of our
solution, namely the Distance function, for both the above
applications. Section 6 describes how we determine the relative
importance of statements in the compressed workload. Section 7
contains a thorough experimental evaluation of our solution. We
review related work in Section 8.

2. PROBLEM STATEMENT
In this section, we provide a formal statement of the workload
compression problem and analyze its complexity. We begin with a
general version of the workload compression problem.

2.1 General Workload Compression Problem
For the purposes of this paper, we define a workload as a set of
SQL DML statements. Thus W = {q1, …, qi, …} where qi is a
SQL DML statement (i.e., SELECT, UPDATE, INSERT,
DELETE). We associate a weight wi (a real number) with
statement qi. We present workload compression as a technique for
improving the scalability of an application A that consumes a
workload W as input and produces a result R (Figure 1). Instead
of passing W as input to the application, our objective is to first
perform workload compression on W to obtain a compressed
workload W’, and then pass W’ as input to the application,
thereby obtaining result R’. Such use of workload compression is
meaningful only if the following two criteria hold:

Efficiency criterion: The total running time, i.e., time taken for
workload compression plus the running time of the application, is
less than the running time of the application on the original
workload. This condition imposes the requirements that the
workload compression algorithm itself is efficient and that it finds
a W’ such that the running time of the application on W’ is less
than the running time of the application on W.

Quality criterion: Informally, this condition requires that the
quality of the result R’ is “close enough” to the quality of the
result R. More formally, let A be an application and FA be a
function that quantitatively evaluates the result of the application
with respect to the given workload W, i.e., FA(W,R) returns a real
number that measures the quality of result R. Then this condition
ensures that values FA(W,R) and FA(W,R’) are close enough.
Note that the exact definition of the function FA is application
dependent.

The generalized workload compression problem can be stated as:

We note that in the above formulation, W’ need not be a subset of
W, i.e., W’ may contain statements not present in W. We now
illustrate how workload compression can be applied in the context
of two applications that consume a workload as input. For each
example, we specify the result R of the application, and the
evaluation function F.

Example 1: Workload Compression for Index Selection
Selecting the right set of indexes is crucial for the performance of
a database system. Automatically selecting appropriate indexes for
a database is an important task since it reduces the burden on
database administrators, and hence the total cost of managing the
database. Recently, several major commercial database systems
[13,21] have developed tools to automate this task. An index
selection tool takes as input a workload W and a database, and
produces as output R a set of indexes appropriate for the given
workload. To evaluate the quality of the result R, these tools
typically use as FA (where A = index selection), the query
optimizer estimated execution time of statements in W if the result
R is implemented (i.e., if the set of indexes R is materialized in
the database). Thus, e.g., specifying δδδδ = 0.05 for index selection
implies that we are willing to accept a compressed workload W’
such that the optimizer estimated execution time of statements in

Problem GEN-WCOMP: Let A be an application that takes
as input a workload W and produces a result R. Let FA(W,R)
be a function that quantitatively evaluates R with respect to
W. Given δδδδ, 0 < δδδδ < 1, find the workload W’ that minimizes
the total running time of application A (including time for
finding W’), subject to the quality constraint:
|FA(W,R) – FA(W,R’)|/|FA(W,R)| < δδδδ, where R’ is the result
produced by running A on input W’.

Application
A

W’ Workload
Compression

 W R’

Figure 1. Workload compression

 R Application

A
 W

W when R’ is implemented cannot deviate by more than 5%
compared to the optimizer estimated execution time if R had been
implemented.

Example 2: Workload Compression for Approximate Answering
of Aggregation Queries
The goal of approximate query processing (AQP) is to allow
efficient but approximate answers to ad-hoc queries against large
relational databases. Random sampling is an approach for
approximately answering aggregation queries (e.g., queries
computing SUM or COUNT aggregate expressions). In this
approach, the query is executed on a sample of the data rather of
the entire data, thereby returning approximate answers but
speeding up the query significantly. Recently, several papers
[2,9,10,17] have recognized the importance of using workload
information to pick samples of the data and thereby improve upon
the straightforward approach of uniform random sampling. Thus,
the workload W is analyzed in a preprocessing step and this
information is used to produce as result R, an appropriate set of
samples of one or more tables in the database. These samples are
chosen with the objective of minimizing the average relative
error1 in answering queries in W2 over the sample. The
preprocessing step described above can be expensive if the
workload W is large, and is therefore a suitable application for
workload compression. For example, in the stratified sampling
approach presented in [10] and the weighted sampling technique
presented in [9,17], this preprocessing step requires executing the
queries in W. A commonly used definition of FA is the average
relative error over all queries in W when answered using the
samples. Thus, specifying δ = 0.1, for example, implies that we
are willing to accept a compressed workload W’ that results in a
sample over which the average relative error of queries in W
cannot deviate by more than 10% compared to the case when we
choose the sample based on the original workload W. For the rest
of this paper we refer to the above application as AQP for short.

2.2 Distance-Based Workload Compression
Problem
While the problem GEN-WCOMP is general, it does not appear
to be amenable to efficient solutions for two reasons. First,
statements in the compressed workload W’ need not be a subset
of the statements in W. Thus, the space of possible statements that
need to be considered during workload compression is potentially
much larger. The second reason that makes it hard to solve GEN-
WCOMP efficiently is that exact verification of the constraint on
the loss of quality, |FA(W,R) – FA(W,R’)|/|FA(W,R)| < δδδδ, is
expensive, since computing FA requires running the application A
itself.

In this paper, we therefore consider a simpler version of GEN-
WCOMP called WCOMP that sacrifices some of the generality of
GEN-WCOMP, but is more amenable to efficient solutions. In
particular, WCOMP is obtained by applying the following two
restrictions on GEN-WCOMP: (1) We require W’ to be a subset
of W. (2) The quality constraint is defined in terms of “distances”
between pairs of statements in the workload. We therefore assume

1 Relative error of an aggregation query Q is defined as: |Exact

Answer(Q) – Approximate Answer(Q)|/ |Exact Answer(Q)|
2To be exact, the errors are optimized for a distribution of queries

of which W is an instance.

the availability of an application specific Distance function
between any pair of statements in the workload. DistanceA (qi, qj)
estimates the loss in quality of the result of application A for
statement qi if qi is discarded, but statement qj is present in the
compressed workload – independent of the other statements in the
workload. More precisely, if Ri is the result of the application
when the workload used is {qi} and Rj is the result of the
application when the workload used is {qj}, then ∀ qi, qj ∈ W
DistanceA (qi, qj) estimates the quantity FA({qi}, Rj) – FA({qi}, Ri).
Problem WCOMP can be visualized as shown in Figure 2.

W’ is the compressed workload and W-W’ is the set of statements
in W that have been discarded by workload compression. For
each statement qi ∈ W-W’, we can find the “closest” statement in
W’ as determined by the Distance function. WCOMP requires
that the smallest W’ must be chosen such that if we take a
weighted sum of the distances between each discarded statement
and the retained statement closest to it, that sum should not
exceed a pre-specified value.

We now formulate the problem WCOMP, which is the focus of
this paper:

We make a few observations about WCOMP and the Distance
function. First, observe that unlike in GEN-WCOMP where the
constraint on quality δδδδ is relative, ∆∆∆∆ is specified in absolute terms
and has the same units as the Distance function. Second, we note
that variations of WCOMP are possible by replacing the min in
the quality constraint with other functions such as max or
average. For example, using max makes the worst-case
assumption that loss in quality for qi could be as large as the
distance to the “furthest” statement from it in the compressed
workload. Thus, if we use max, we potentially expect less
degradation in quality of the application, but also less
compression of the workload. Third, WCOMP makes no
assumptions about properties of the Distance function. For
example, it does not require that the Distance function be
symmetric or obey the triangle inequality. In fact, the very
definition of DistanceA (qi, qj) is asymmetric, since it measures the
distance with respect to {qi}. We believe this generality is
important since for the applications of workload compression we

Problem WCOMP: Let A be an application that takes as
input a workload W. Let DistanceA (qi, qj) be a function for
application A that ∀ qi, qj ∈ W, returns an estimate of the
loss in quality for statement qi if it is discarded but qj is
retained in the compressed workload. Given ∆∆∆∆, which is the
limit on the maximum allowable loss in quality, find the
smallest workload W’ ⊆ W, such that Σqi ∈ W – W’ min qj∈ W’
{ wi ⋅DistanceA (qi, qj) } < ∆∆∆∆.

Figure 2. Visualizing WCOMP

q2

q3

qj

.

W-W’
W’

Distance(qi, qj)

q1

q4

qi

.

present in this paper, we found that these properties were not
satisfied (see Section 5). Fourth, as we will show in Section 2.3,
the WCOMP problem is provably hard when the Distance
function can return arbitrary values. Finally, we emphasize that
the exact definition of Distance3 (qi, qj) is application dependent
since it must capture the impact on quality of the result produced
by the application when qi is discarded and statement qj is retained
in the compressed workload. Table 1 summarizes the distance-
based workload compression problem WCOMP for the two
applications of workload compression described in Section 2.1.

Application Meaning of
Distance(qi, qj)

Meaning of ∆∆∆∆

Index
Selection

Estimated increase in
the cost of executing
statement qi if it is
discarded but qj is
retained

Maximum allowable
increase in
(estimated) running
time of the workload
W

Approximate
Answering of
Aggregation
Queries

Increase in the relative
error of answering
query qi, if qi is
discarded but qj is
retained

Maximum allowable
increase in average
relative error of
queries in W

2.3 Hardness of WCOMP
The problem WCOMP, defined in Section 2.2, aims to minimize
the size of the set W’, while satisfying the constraint Σqi ∈ W – W’
min qj∈ W’ { wi ⋅ Distance (qi, qj) } < ∆∆∆∆. We now show that when
the Distance function can generate arbitrary values, WCOMP is
NP-Hard. We will use a reduction from the decision version of the
Minimum k-Median problem which is known to be NP-Complete
[16]. First, we define the decision problem of the Minimum k-
Median problem:

Lemma 1. Problem WCOMP (defined in Section 2.2) is NP-Hard
if the Distance function can return arbitrary values.

Proof: The decision problem for WCOMP is as follows: Let A be
an application that takes as input a workload W. Let Distance (qi,
qj) be a function that quantifies the distance between any pair of
statements qi, qj∈ W. Given an integer k, and a number ∆∆∆∆, does
there exist a workload W’ ⊆ W of size k such that Σqi ∈ W – W’ min

qj∈ W’ (Distance (qi, qj)
4) < ∆∆∆∆.? There is a direct correspondence of

the two problems as follows: V ⇔ W, V’ ⇔ W’, k ⇔ k, Cost ⇔

3 From this point onwards, for notational convenience, we assume

that the subscript A in Distance (qi, qj) is implicit.
4 For this reduction, we assume a workload where the weight of

each statement is 1.

Distance, and s ⇔ ∆∆∆∆. Hence, the decision problem of WCOMP is
NP-Complete. Therefore WCOMP is NP-Hard. ♦

Although for metric spaces there exist constant factor
approximation algorithms [4,12] for the Minimum k-Median
problem, Lin & Vitter [22] showed that the Minimum k-Median
problem with arbitrary costs does not have a constant factor
approximation algorithm.

3. ARCHITECTURE OF SOLUTION
In this section, we outline the architecture of the solution we have
implemented for the WCOMP problem presented in Section 2.

An overview of the architecture is shown in Figure 3. We take as
input a workload W and a constraint ∆∆∆∆, and produce as output a
compressed workload W’. A key part of our architecture is the
Search module (described in Section 4) that finds the compressed
workload W’. WCOMP requires us to find the smallest
(cardinality) subset of the given workload W that satisfies the
given constraint. For this optimization problem, we consider two
algorithms (besides random sampling). As described earlier, our
search module is designed such that the algorithms consult a
Distance function (described in Section 5), but make no
assumptions about properties of the Distance function – in other
words the Distance function can return arbitrary values. The
Distance function serves as the basis for estimating the loss in
quality due to workload compression and is application specific.
It must be designed carefully since the quality of the compressed
workload depends critically on the accuracy and efficiency of the
Distance function. Efficiency in computing the Distance function
is crucial since the function can be invoked many times for a large
workload by the Search component. The accuracy of the Distance
function is also important since overestimation of the loss in
quality achieves less compression of the workload than ideally
possible, whereas underestimation can cause an unacceptable
result when the compressed workload is used. In Section 5, we
illustrate how we make the above trade-off of efficiency vs.
accuracy in designing the Distance functions for each of the two
applications: index selection and AQP.

Table 1. Applying WCOMP to different applications

Problem Minimum k-Median: Given a complete graph G (V,
E), costs C(u,v) ∈ N (the set of natural numbers), ∀ u, v ∈ V,
an integer k, and a number s. Does there exist a set of medians
V’⊆ V of size k such that the sum of the distances from each
vertex to its nearest median is less than s, i.e., Σu ∈ V-V’ minv∈ V’

{ C(u,v) } < s? ♦

Figure 3. Architecture of solution for WCOMP

Workload W ∆∆∆∆

SEARCH

ADJUST
WEIGHTS

W-W’ W’

Distance (qi, qj)

AdjustWeight(qi, qj)

Compressed Workload W’

Recall from Section 2.1 that we associate a weight wi with each
statement qi in the workload, which reflects the relative
importance of that statement. The weight of a statement can
significantly influence the result of the application. For example
in index selection, higher the weight of a statement, the more
likely it is that the indexes that are suitable for that statement are
part of the final result. When a statement is discarded by workload
compression, the obvious solution is to add the weight of the
discarded statement to the “closest” statement (as defined by the
Distance function) in the compressed workload. However, as
illustrated by the following example for index selection, simply
adding the weight can be inappropriate.

Example 3: Problem with simple addition of weights
Consider a workload W with the following queries:
Q1: SELECT * FROM persons WHERE age < 10.
Q2: SELECT * FROM persons WHERE age < 20.
Q3: SELECT * FROM persons WHERE income < 20000
Assume the weights of these queries in W are all 1. Suppose the
compressed workload is {Q2, Q3}. Using the obvious solution,
since Q2 is the closest retained query to Q1, the adjusted weights
of these queries is 2 and 1 respectively. However, from the
queries, it is clear that the presence of an index on column age
would result in more benefit for Q1 as compared to Q2. Thus, the
compressed workload has been biased against selecting an index
on column age. ♦

Therefore, in our architecture, we include a post-processing step
called Adjust Weights (described in Section 6) that uses the
application specific AdjustWeight (qi,qj) function to adjust the
weight of each statement in the compressed workload. Note that
for certain applications, the obvious solution of simply adding
weights to the nearest retained statement may be appropriate.
Finally, an interesting issue worth investigating is whether
adjusting of weights during the search step itself can lead to better
workload compression.

We believe that the architecture described in this section is
general enough to handle workload compression for a broad class
of applications beyond those discussed in this paper.

4. SEARCH STRATEGY
As described in Section 3, the search component is responsible for
finding a subset of W of smallest cardinality satisfying the
constraint that the loss is quality is less than the given ∆∆∆∆. In this
section, we then present and compare two search algorithms
(besides random sampling) for solving WCOMP. The first
algorithm is based on the K-Mediod clustering algorithm and the
second is a new greedy algorithm. In Section 7, we present a
detailed experimental comparison of the algorithms presented in
this section.

Based on the hardness result in Section 2.3, we do not expect a
polynomial time algorithm that computes an optimal solution to
WCOMP when the Distance function can return arbitrary values.
We have therefore designed our solutions to WCOMP to leverage
well-known and efficient heuristic search algorithms. We note
however, that for specific Distance functions, the problem
WCOMP may be solvable in polynomial time, and alternative
search algorithms customized for that application may be
appropriate.

4.1 K-Mediod Algorithm
The Minimum k-Median problem referred to in Section 2.3, is in
fact a clustering problem. Our first algorithm therefore adapts the
well known K-Mediod clustering algorithm [19]. We use the K-
Mediod algorithm as a building block for constructing an
algorithm for WCOMP by performing binary search on the size of
the workload W. The pseudo code for our overall search
algorithm WC-KMED, and the modified K-Mediod algorithm
KMED are presented in Figure 4 and Figure 5 respectively.

We mention a few important properties of algorithm KMED
(Figure 5). First, it can be shown that the algorithm will terminate
in a finite number of iterations of Steps 2-3. Second, the solution
obtained by this algorithm is (at least) a local optimum. Third, the
running time of KMED depends primarily on the number of
invocations of the Distance function. As we can see from the
pseudo code, KMED performs O((|W|-k)*k + k*(|W|/k)2)
invocations of Distance function assuming each cluster on average
contains the same number of statements. Note that since the
algorithm WC-KMED (Figure 4) performs a binary search over
the range 0..|W|, it invokes KMED at most log2|W| times. WC-
KMED produces a solution that is a local optimum.

4.2 All-Pairs Greedy Algorithm
Unlike the WC-KMED algorithm that does not invoke the
Distance function on every pair of statements in W, the WC-ALL-
PAIRS algorithm does look at the Distance of each pair
statements in the workload. Our goal in proposing this algorithm

Input: Workload W, Constraint ∆∆∆∆
Output: Compressed workload W’
1. Let Min_k = 0, Max_k = |W|, W’ = W
2. While (Min_k Max_k)
3. k = (Min_k + Max_k)/2
4. Let WTemp = KMED(W, k)
5. Let D be the weighted sum of distances from each
statement in W to the closest statement in WTemp as
determined by the Distance function.
6. If D ∆∆∆∆, W’ = WTemp, Max_k = k - 1
7. Else Min_k = k + 1
8. End If
9. End While
10. Return W’

Figure 4. Algorithm WC-KMED

Input: Workload W, k
Output: Workload W’ of size k
1. Pick k statements s1..sk from W at random. Each

statement chosen forms the “seed” of a cluster.
2. For each statement e ∈ W, assign it to the cluster that

contains the seed closest to e, as determined by the
Distance function.

3. For each cluster C, re-compute the seed for that cluster
as the “median” statement within the cluster, i.e., the
statement e ∈ C such that Σv∈ C Distance (v, e) is the
smallest.

4. Repeat steps 2-3 until convergence, i.e., until the same
clusters are obtained in some two iterations.

Figure 5. Algorithm KMED

was to investigate how the computing of all Distances would
impact the quality of workload compression. Once the pair-wise
distances are computed, the WC-ALL-PAIRS algorithm adopts a
greedy approach that discards the next “best” statement from W
until it is unable to discard any more statements without violating
the given constraint ∆∆∆∆. The pseudocode is given in Figure 6.

At each step the algorithm maintains three sets, Keep, Prune and
Candidates. Keep consists of statements which are definitely
going to be retained in the compressed workload W’. Prune
consists of the statements which are currently not in W’ and
Candidates consists of the statements whose outcome hasn’t yet
been decided. In each iteration of the While loop in Step 3, for
each statement in Candidates, we compute the distance to the
closest statement (as defined by the Distance function) that hasn’t
been pruned (Step 4). The statement for which this value is the
smallest (Step 5) is considered next for pruning. Prior to actually
pruning this statement however, we verify that removal of this
statement does not violate the constraint ∆∆∆∆, since this statement
may have been the closest statement to one or more statements
that had been pruned previously. This check is performed in Step
6. At the end of the algorithm, the statements in the sets
Candidates and Keep constitute the compressed workload W’.

Algorithm WC-ALL-PAIRS performs O(|W|2) computations of
the Distance function since in the first execution of Step 4 all pair-
wise invocations of Distance are performed. Thus, we expect WC-
KMED to scale better with workload size compared to WC-ALL-
PAIRS. Also, unlike WC-KMED, WC-ALL-PAIRS cannot
guarantee that the solution obtained is a local optimum for the
problem WCOMP.

While WC-KMED is based on a well-known algorithm for
solving the k-Median problem, in our experiments (see Section 7)
we found that WC-ALL-PAIRS often achieves more compression
than WC-KMED for WCOMP. Intuitively, WC-ALL-PAIRS does
better when the workload has many small clusters and the intra-

cluster distances are small relative to inter-cluster distances.
Analyzing and understanding the relative strengths of these
algorithms is part of our ongoing work. We are exploring
opportunities to combine these two algorithms to obtain even
better compression, e.g., by running WC-KMED using the output
of WC-ALL-PAIRS as the seed.

4.3 Random Sampling
An obvious technique for improving the scalability of an
application that consumes a workload W is to use sampling to
select a subset W’ of W. The simplest of these schemes is uniform
random sampling, where each statement in W has an equal
probability of being selected. However, this approach can result in
poor quality workload compression due to the following
problems: (a) Uniform sampling ignores valuable information
about statements in the workload and therefore misses opportunity
for more compression. (b) When the sampling fraction is small,
certain small “clusters” of important statements may be altogether
discarded and never make it into the compressed workload. This
follows from a well known statistical result [8]. In our
experiments, we therefore considered a stratified sampling based
algorithm (which we refer to as WC-PARTSAMP), which
partitions the workload into strata and then samples uniformly
within each stratum. The partitioning scheme used is described in
Section 5. One issue with applying sampling is how much (i.e.,
what fraction of W) to sample? We start with a sampling fraction
f0 and verify if the constraint ∆∆∆∆ is satisfied for that sample – note
that this step requires invoking the Distance function. If not, we
repeat the process by increasing the sampling fraction by a factor
m > 1 and sampling an additional set of statements. We terminate
when we find a sample that satisfies the constraint.

5. DISTANCE FUNCTION
As described in the previous section, a key component of our
solution to WCOMP is the computation of Distance (qi, qj) for any
pair of statements qi, qj in the given workload W. Recall that the
function Distance (qi, qj) measures the expected loss in quality of
the result of the application on workload {qi} if the workload {qj}
is provided as input to the application. A judicious trade-off
between accurate and efficient computation of the Distance
function is crucial for ensuring the success of workload
compression. Accuracy is important since overestimation of
Distance (qi, qj) results in less workload compression than
possible, while underestimation of Distance (qi, qj) can result in
poor quality of the result of the application when the compressed
workload is used. Efficiency of computing Distance is important
since the search algorithms for workload compression (see
Section 4) may invoke the Distance function many times for
different pairs of statements.

An exact method for computing Distance (qi, qj) is: (i) run the
application on workload {qi} and compute the quality of the result
for {qi}, (ii) run the application on {qj} and compute the quality
of the result for {qi} and (iii) take the difference in quality
between Steps (i) and (ii). However, for most applications such a
method is inefficient since it requires running the application, and
hence negates the very purpose of workload compression. Thus,
the challenge of developing an appropriate Distance function for
an application is to estimate this loss in quality efficiently. In this
section, we first present two guidelines that we followed in
developing Distance functions for the two applications described

Input: Workload W, Constraint ∆∆∆∆
Output: Compressed workload W’
1. Let the sets Candidates = W, Keep = {}, Prune = {}
2. Let Total-Dist = 0
3. While (Total-Dist < ∆∆∆∆)
4. For each statement qi ∈ Candidates, compute di =

min(i ≠ j , qj ∈ Candidates ∪ Keep) (wi . Distance (qi, qj))
5. Let qmin be the statement with the minimum distance

dmin computed in Step 4.
6. If (dmin + Total-Dist < ∆∆∆∆)
 Move qmin from Candidates to Prune
 Old-Dist = Total-Dist
 Total-Dist = Σi mink (wi. Distance (qi, qk)) where

 qi ∈ Prune and qk∈ Candidates ∪ Keep
 If (Total-Dist > ∆∆∆∆)
 Move qmin from Prune to Keep,

 Total-Dist = Old-Dist
 EndIf
7. Else Break
8. EndIf
9. End While
10. Return W’ = Candidates ∪ Keep

Figure 6. Algorithm WC-ALL-PAIRS.

in Section 2.1: index selection and approximate answering of
aggregation queries (AQP). We believe that these guidelines are
more broadly applicable in the context of other applications as
well. We then present the specific Distance functions we have
developed for the above two applications.

Our first guideline is driven by the requirement that the
computation of Distance function be efficient. We therefore
identify a core set of information about each statement in the
workload that can be derived with low overhead and rely only this
information for computing Distance. For example, in our
implementation of Distance function for both applications, we
limit ourselves to information that can be derived from the SQL
parser and a selectivity estimation module. This information
includes: (a) Type of the statement, (SELECT, INSERT,
UPDATE, DELETE) (b) Structure of the query, e.g., tables
referenced, projection columns, selection and join predicates etc.
(c) For selection predicates, the selectivity of the predicate
(computed by using selectivity estimation module based on
available statistics in the database) (d) If available, the (estimated)
cost of executing the statement is available. This cost information
can be obtained either via one invocation of the query optimizer
(e.g., in Microsoft SQL Server using the Showplan interface, or in
IDB DB2 using the EXPLAIN mode) or from previously recorded
information about the actual execution time of the statement.

Our second guideline is to leverage the technique of logically
partitioning the workload. The idea is that for any two queries qi,
qj belonging to different partitions, Distance(qi, qj) between the
two queries is ∞. Partitioning can be incorporated within the
Distance (qi, qj) function by generating a “signature” for each
statement and returning ∞ if the two signatures are not identical.
Thus, each statement with a distinct signature belongs to a
different logical partition. As a simple example, in the index
selection application, when two statements reference disjoint sets
of tables, it is reasonable to separate them into different partitions
since indexes that are useful for one statement cannot be useful
for the other. There are two benefits of partitioning the workload.
First, it provides a way to ensure that at least a minimum number
of statements (i.e., at least one statement per partition) will be
retained in the compressed workload. Second, since the signature
of a query can typically be computed very efficiently compared to
the more careful analysis that goes into the rest of the Distance
function, partitioning serves as a “shortcut” that reduces the
computational overhead of invoking the Distance function.
Finally, we note that the signature to be used to partition the
workload is application dependent, and is therefore incorporated
into the Distance function.

5.1 Distance Function for Index Selection
For simplicity of exposition, in this section we assume that the
workload W consists of SELECT, INSERT, UPDATE, DELETE
statements, where the SELECT statements are limited to single-
block Select, Project, Join (SPJ) queries with Group-By,
Aggregation and Order-By. We first present the Distance function
for queries (i.e., SELECT statements) and briefly mention the
extensions for handling updates. For index selection, the Distance
(qi, qj) function measures the expected loss of benefit for {qi} if
the set of indexes recommended for {qj} were used to answer it
instead of the set of indexes recommended for {qi} itself. Our goal
is to estimate this expected loss of benefit efficiently without

actually invoking the index selection application. While more
sophisticated Distance functions could be designed for index
selection, we believe that our design captures essential aspects of
index selection, without making assumptions about the specific
algorithms used inside the index selection tool. This is backed by
our experimental results (see Section 7) which show the
effectiveness of our Distance function for index selection tools on
two different commercial database systems.

5.1.1 Partitioning the Workload
Our first step in the Distance function is to detect if the two
queries belong to same partition or not. If not, we return
immediately from the Distance function with a value of ∞. As
mentioned above, the intuition behind partitioning is to logically
place queries that are “far apart” into disjoint partitions. In the
context of index selection, two queries can be considered far
apart, if there is little or no overlap in the set of indexes that
would be chosen for each query. Based on this intuition we
partition the workload on the basis of the tables accessed in each
query and the join predicates (if any). This is done by generating a
signature for each query that consists of the table IDs referenced
in the query and (table, column) IDs accessed in the join
predicate.

Example 4: Motivating example for selectivity based partitioning
Consider the following two queries:
Q1: SELECT * from persons where age > 80
Q2: SELECT * from persons where age > 1 ♦

However, as the above example shows, the simple scheme above
may still include queries into the same partition that are still “far
apart”. According to the above scheme, both Q1 and Q2 will be
assigned to the same partition because they both have the same
signature. However, note that the queries are still far apart from
the point of view of indexes that are appropriate for each query.
Due to the respective selectivities of predicates on age, for Q1, an
index on column age is likely to be very useful, whereas for Q2 an
index on column age is likely to be of no use. Motivated by this
observation, we further split each partition on the basis of
selectivity information. For a single-table query, we compute the
joint selectivity of all the predicates. All queries with joint
selectivity less than or equal to a predetermined selectivity s0 (we
used a value of s0 = 0.1) are assigned to one partition, and those
with selectivity exceeding s0 are assigned to a different partition.
Thus, for single-table queries, we can generate at most two
partitions. We adopt the straightforward extension of this
partitioning scheme to the case of multi-table queries. Under this
scheme, all queries belong to a t-table partition (i.e., a partition
with queries accessing those t tables) get split into at most 2t
partitions (some of which may be empty). Although the number of
such partitions can, in principle, become large, we found in
practice that over a variety of large workloads (real and synthetic),
the number of partitions grew very slowly with the number of
tables.

5.1.2 Quantifying Distance
Our approach for computing the Distance function is based on the
observation that the effectiveness of an index for a query can be
broadly categorized into one or more of the following
performance categories: (a) Reduces the number of rows that need
to scanned from the table, (b) Eliminates the need to access the

table altogether since the index contains all columns required to
answer the query (i.e., the index is “covering” for the query) or (c)
Reduces/eliminates the cost of sorting for some operator in the
query. Thus, when computing Distance (qi, qj) we analyze each
query and classify the columns referenced in the query as: (1)
Selection columns – contains all columns that occur in selection
conditions. Indexes on these columns fall into performance
category (a) above. (2) Required Columns – contains all columns
that were referenced in any part of the query (including projection
columns). Indexes on these columns fall into performance
category (b) above. (3) Group-By Columns – contains all columns
that occur in the GROUP BY clause of the query. (4) Order-By
Columns – contains all columns that occur in the ORDER BY
clause of the query. Indexes on columns in Category (3) and (4)
fall into performance category (c) above.

We then compute four functions Dist-Sel (qi, qj), Dist-Reqd (qi,
qj), Dist-GB (qi, qj) and Dist-OB (qi, qj). Each of these functions
captures the loss of benefit for a particular performance category.
For example, Dist-Sel computes a distance by examining only the
columns in the Selection category of the queries qi and qj, and
thereby tries to capture the difference in performance category (a).
Once each of the functions is computed we define Distance (qi, qj)
as the maximum of the four values. Intuitively, by considering the
maximum value, we take the conservative approach of
considering two queries as “close” only if they are “close” in each
of these categories. We now briefly describe how each of the
above four functions is computed, and omit details due to lack of
space.

Computing Dist-Sel: Our approach is based on the intuition that
the column (or sequence of columns) in the predicate with the
lowest selectivity5 (resp. joint selectivity) is the one that will be
picked to be indexed by the index selection tool for that query. In
other words, while considering 1-column indexes, we assume that
the column with the smallest selectivity will be picked. On the
other hand, when considering 2-column indexes, we assume that it
is the sequence of two columns with the two lowest selectivities
that will be picked. The following example illustrates how Dist-
Sel(qi, qj), is computed.

 Example 5. Computing Dist-Sel:
Suppose we have two queries Q1 and
Q2 referencing a single table T, with
predicates on columns c1, c2, c3. The
selectivities of these predicates are
given by the adjoining table. The best

1-column index for Q1 is I1 = (c1). On the other hand, the best 1-
column index for Q2 is I2 = (c2). The loss of benefit for Q1 if it is
pruned and Q2 is retained, is given by difference of cost of
evaluating Q1 in presence of I2 and cost of evaluating Q1 in
presence of I1, which is given by (0.3 – 0.1) * Cost ({Q1}, {}) =
0.2 * Cost ({Q1}, {}). (Note that Cost ({Q1}, {}) corresponds to a
scan of the entire table i.e., no indexes are present). The intuition
is that the presence of index I2 would require scanning 30% of the
base relation for answering Q1, whereas the presence of index I1
would require scanning only 10% of it. Examining 2-column
indexes, we see that the best 2-column index for Q2 is (c2, c3) and

5 By low selectivity we mean a predicate that selects few records

from the table.

the best 2-column index for Q1 is (c1, c3). Therefore, the loss of
benefit is given by (0.3*0.2 – 0.1*0.2) * Cost ({Q1}, {}) = 0.04*
Cost ({Q1}, {}). Similarly, for 3-column indexes, we see that the
loss of benefit is 0. In general, this analysis can similarly be
extended for up to p-column indexes. We take Dist-Sel (Q1, Q2)
as the maximum of the numbers computed – in our example,
0.2*Cost ({Q1}, {}).♦

Note that in case of multi-table queries, we perform the same
analysis as in the above example on a per table basis and then take
a weighted average of the table-wise Dist-Sel (qi, qj) values, the
weight being the size of the table in pages. We use size of the
table as weight because for same selectivity value, the amount of
I/O required to answer the query is proportional to the size of the
table.

Computing Dist-Reqd: Dist-Reqd(qi, qj) tries to capture the loss
of benefit for performance category (b) , i.e., use of covering
indexes. We present the intuition behind our scheme for single-
table queries. The extension for the multi-table case is similar to
the extension for Dist-Sel. Intuitively, if qi is pruned away, and
the required columns of qi are a subset of the required columns of
qj, then the covering index for qj can be used to answer qi and
hence Dist-Reqd (qi, qj) is relatively small. However, if the
required columns of qi are not a subset of the required columns of
qj, then the covering index chosen for qj will not be useful for
answering qi Pruning away qi in this case requires scanning the
entire table for answering qi, and therefore the loss of benefit (i.e.,
Dist-Reqd) is large.

Computing Dist-GB & Dist-OB: We first discuss Dist-OB (qi,
qj). We assume the model of no partial sort benefits, i.e., an index
(c1, c2, c3) is of no use in answering a query with ORDER BY c1,
c3, c2, even though there is some overlap in the prefix of the index
and the prefix of the order-by clause. Under this simplifying
assumption, Dist-OB (qi, qj) is 0 if the ORDER BY clause of qi is
a leading prefix of the ORDER BY clause of qj. Otherwise Dist-
OB (qi, qj) is equal to the Cost ({qi}, {}). Computation of Dist-GB
(qi, qj) is done similarly, except that we require that the group-by
columns of qi to be a subset (rather than a leading prefix) of the
group-by columns of qj in order for the index chosen for qj to be
applicable to qi.

Extensions for updates: If both statements are “pure” updates,
e.g., of the form INSERT INTO T1 VALUES (…), then we set the
Distance between such statements to 0, since one statement can be
safely pruned against the other without any impact on choice of
indexes so long as the weight of the pruned statement is added to
the weight of the retained statement. However, in general, an
UPDATE/INSERT/DELETE statement can have an “update” part
and a “query” part: e.g., INSERT INTO T1 SELECT * from T2
WHERE <condition>. Such a statement s can be viewed as (q,u)
where q is the query part and u is the update part. In this case, we
define Distance (si, sj) between two such statements as Distance
(qi, qj) only if AdjustWeight(qi, qj) is (approximately) equal to
AdjustWeight(ui, uj) (see Section 4 for the definition of the
AdjustWeight function), and ∞ otherwise. The reason for this is
that otherwise we would be biasing the compressed workload
either towards the query part or towards the update part. We omit
further details of this procedure due to lack of space.

 c1 c2 c3

Q1 0.1 0.3 0.2

Q2 0.5 0.2 0.4

5.1.3 Properties of the Distance function
As noted earlier, properties of the Distance function such as
symmetry or triangle inequality can save us a (potentially
significant) number of explicit computations of the function. From
the definition of the above Distance function, it is clear that it
does not obey symmetry, i.e., Distance (qi, qj) ≠ Distance (qj, qi).
It is also easy to construct examples that show that the triangle
inequality doesn’t hold true for this distance metric, i.e., Distance
(qi, qj) + Distance (qj, qk) is not necessarily greater than Distance
(qi, qk) However, as shown by the following Lemma, our Distance
function for index selection (defined in Section 5.1.2) satisfies the
following property.

Lemma 2: For the Distance function defined in Section 5.1, if
Distance (qi, qj) = Distance (qj, qi) = 0, then ∀ qk, Distance (qk, qi)
= Distance (qk, qj).

Proof: Omitted due to lack of space.

We can exploit the above Lemma to refine the query signature
used in partitioning and hence reduce the work done when the
Distance function is invoked. We omit the details of this
optimization due to lack of space. In our experiments over real as
well as synthetic workloads, we found that this optimization saved
us anywhere between 10%-40% of the Distance computation
overhead.

5.2 Distance Function for Approximate
Answering of Aggregation Queries
For an overview of the AQP application, we refer the reader to
Example 2. As explained in the example, the preprocessing step
consumes a workload W and produces as output samples of one
or more tables in the database. We assume that the workload
consists of aggregation queries containing the COUNT/SUM
aggregates possibly with selections, GROUP BY and foreign-key
joins. The preprocessing step chooses the sample so as to
minimize the average relative error of answering queries in W
over the sample as compared to answering the queries on the full
table. Note that for GROUP BY queries the relative error is
averaged over all groups of the query – missing groups are
assigned a relative error of 1.

Distance (qi, qj) for AQP therefore attempts to estimate the
relative error in answering qi if it is pruned but qj is part of the
compressed workload. As with the Distance function for index
selection, we leverage the idea of partitioning and return ∞ if qi
and qj have different signatures. Our signature of a query is
defined by the subset of tables referenced in the query. If both
queries belong to the same partition, we analyze them based on
whether they have selections or GROUP-BY. If both queries are
pure selection queries, i.e., do not contain GROUP BY, then we
define Distance (qi, qj) as the fraction of records selected by qi that
are not selected by qj. The intuition behind this definition is that
the error in answering a pure selection query qi depends on the
number of records in the sample that are selected by qi. If qj is
used to determine the sample, then the error for qi increases as the
overlap of qi with qj decreases. We note that if the database
engine supports the DIFFERENCE operator, then this function
can be estimated by invoking the query optimizer. Otherwise, this
metric must be estimated based on analysis of selection predicates
and using selectivity estimates.

 When one query is a pure selection query and the other is a
GROUP BY query, we set Distance (qi,qj) = ∞. When both queries
have GROUP BY columns, Distance (qi, qj) is defined as follows.
Let G be the set of grouping columns that occur in query qi and let
G’ be the set of grouping columns that occur in both qi and qj. Let
D(X) be the number of groups in a query (without selections) that
contains exactly the grouping columns X. Then Distance (qi, qj) =
1 – D(G’)/D(G). The intuition is that (i) the error for GROUP BY
queries is dominated by missing groups, and (ii) the number of
missing groups is likely to increase as the overlap between the
grouping columns of qi and qj decreases.

6. ADJUSTING WEIGHTS
Recall that we defined a workload as a set of statements where
each statement has an associated weight wi (Section 2). The
weight of a statement signifies the importance of the statement in
the workload, and plays a role in determining the optimization
function of the application. For example, index selection tools
typically optimize a weighted function of the (estimated)
execution cost of statements in the workload. Thus, an index that
is useful for a query with large weight is more likely to be chosen
by the tool. In order to prevent statements in the compressed
workload from having unduly high or low weight relative to other
statements, it is important that the weights of statements in the
compressed workload be set appropriately.

In our architecture (see Figure 3), we address this issue in the
Adjust Weights module as follows. At the end of the search
algorithm (see Section 4), we find for every pruned statement qi,
the statement qj nearest to it in the compressed workload (in terms
of the Distance function) and adjust the weight of qj. However, as
illustrated by Example 3 (see Section 3) the naïve approach of
simply adding the weight of the pruned statement to the nearest
retained statement can result in poor quality of the compressed
workload. In our solution, the application specific AdjustWeight
(qi, qj) function serves the purpose of specifying the amount by
which the weight of a retained statement qj should be incremented
if qi is pruned and qj is the closest statement to qi.

For the index selection problem, we now present an appropriate
AdjustWeight function. If qi is pruned and its nearest statement is
qj, then we set the weight of qj in the compressed workload to wj +
wi * αij/αjj where αij is the benefit that query qi gets from the
indexes recommended for qj. Due to lack of space, we omit details
of how αij and αjj can be computed efficiently. Instead, we revisit
Example 3 and illustrate how our approach solves the problem of
biasing.

Example 3 (Continued from Section 3): Suppose the benefits of
an index on column age for Q1 and Q2 are 50 units and 40 units
respectively. The actual total benefit from index on column age
for W is 50*1 + 40*1 = 90 units, whereas for W’, this benefit is
40*2 = 80 units. Therefore, as pointed out earlier, we have biased
the workload away from picking an index on column age. Using
the approach described above, the weight of Q2 in the compressed
workload would be w2’ = w2 + w1 * α12/α22 = 1 + 1 * 50/40 =
2.25. We can now easily verify that the benefit of the index on
column age for the compressed workload is 2.25 * 40 = 90, which
is same as the benefit for the original workload. ♦

Finally, we note that for the AQP application, we use the default
AdjustWeight(qi,qj) function, which simply adds the weight of qi
to qj.

7. EXPERIMENTS
In this section, we present an experimental evaluation of our
solution for workload compression. We demonstrate through
these experiments that: (1) In the context of the Index Tuning
Wizard for Microsoft SQL Server 2000, our Distance function for
index selection produces significant compression of the workload
while obeying the given quality constraint. (2) The same Distance
function for index selection works well on another index selection
tool, viz., IBM DB2’s Index Advisor. (3) The WC-KMED
algorithm scales better than WC-ALL-PAIRS but the latter can
achieve significantly more compression. (4) Our framework for
workload compression can be applied to another application as
well, viz. AQP, by simply providing an appropriate Distance
function.

Setup: All experiments were run on an x86 900 Mhz dual
processor machine with 512MB RAM and an internal 30GB hard
drive running Microsoft Windows 2000 Server. We tested our
solution on several databases and workloads, including real and
synthetic schemas and workloads. We present results on two
benchmark workloads (TPC-H [25] and APB [3]), two real
workloads (Real-1 and Real-2) used within our corporation, and
several synthetic workloads. The database for Real-1 is about
600MB and contains about 90% update statements, whereas Real-
2 workload contains decision support queries against a 500 MB
database. All the synthetic databases conform to the TPC-H
schema and were generated using a synthetic data generation
program [24]. The size of the synthetic databases were 1GB. The
synthetic workloads were generated using a query generation
program, which has the ability to vary a number of parameters
including number of joins, number of group-by columns, number
of order-by columns, number of selection conditions in a query,
and percentage of update statements in the workload.

Evaluation Metrics: For the index selection application, we use
the following metrics to evaluate the workload compression
solution: (a) Percentage of queries pruned by workload
compression (b) Percentage reduction in total tuning time, i.e.,
sum of running time of index selection tool on the compressed
workload and time spent in compressing the workload as
compared to running the tool on the original workload. (c)
Percentage loss in quality of the solution produced by the index
selection application. We use the percentage change in the
optimizer-estimated cost of the original workload as the metric of
quality. We obtain this by running the index selection tool on both
the original workload as well as the compressed workload,
implementing the recommendations and calculating the optimizer
estimated running time of the original workload for both the
cases. In the following experiments, we specify the constraint (∆∆∆∆)
on loss in quality to be 10% of the cost of the original workload
W on the current database. For the AQP application, we measured
loss in quality due to workload compression as follows. We report
the difference in the average relative error of queries in W when
the entire workload is used in the preprocessing phase (see
Section 2.1) and the average relative error of queries in W, when
the compressed workload is used in the preprocessing phase.

7.1 Effectiveness of Distance Function for
Index Selection Tool on Microsoft SQL Server
We first evaluate our Distance function (see Section 5.1) for index
selection against the Index Tuning Wizard for Microsoft SQL
Server. Figure 7 shows the results of workload compression for
the two real workloads and the two benchmark workloads. We
fixed the search strategy to WC-KMED. We see that a large
percentage of the queries (between 50%-90%) were pruned in
three of the workloads and about 20% of the queries were pruned
in the Real-2 workload. In each of these cases, the total time to
run the Index Tuning Wizard was also significantly reduced due
to workload compression, which shows that the workload
compression step itself added little overhead. From the figure, we
also see that the maximum loss in quality due to workload
compression was less than 11%. This shows that our Distance
function does a reasonable job of estimating the loss of quality.

Real Workloads

-100

-80

-60

-40

-20

0

20

40

60

80

100

Queries Pruned Reduction in Tuning Time Loss In Quality

P
er

ce
n

ta
g

e

TPC-H Real-1 APB Real-2

Synthetic Workloads

-40

-20

0

20

40

60

80

100

Queries Pruned Reduction in Tuning
Time

Loss In Quality

P
er

ce
n

ta
g

e

Single Table SPJ SPJ-GB-OB Updates

Figure 8 shows the results of workload compression for index
selection on the four kinds of synthetic workloads described
earlier (each of size 300 queries), including a workload with 30%
update statements. For each of these workloads, we once again see
significant reduction in workload size as well as total tuning time
while the loss in quality is very small (< 8%). Overall, this
experiment illustrates the effectiveness of our Distance function
for index selection.

7.2 Comparison of Search Strategies
In our next experiment, we compare the quality and scalability of
the three search strategies presented in Section 4: WC-KMED,
WC-ALL-PAIRS, and WC-PARTSAMP when applied to the
index selection problem. Figure 9 shows the total compression
achieved (as a percentage of the workload size) for each of the
search strategies as the workload size is increased. The workload
was a synthetic workload consisting of SPJ queries with Group-

Figure 8. Results on Synthetic Workloads

Figure 7. Results on Real and Benchmark Workloads

By and Order-By. We see that WC-ALL-PAIRS achieves the
most compression among the three strategies (see Section 4.2 for
a qualitative comparison with WC-KMED). We see that not
surprisingly WC-PARTSAMP (which we found was superior to
uniform sampling) has the least compression – significantly less
than WC-ALL-PAIRS and WC-KMED.

Percentage of Queries Pruned
vs. Size of the Workload

0
10
20
30
40
50
60
70
80

0 400 800 1200 1600

Size of the Workload

P
er

ce
n

ta
g

e
o

f
Q

u
er

ie
s

P
ru

n
ed

WC-ALL-PAIRS WC-KMED WC-PARTSAMP

Percentage Reduction in Total Tuning Time
vs. Size of the Workload

0
10
20
30
40
50
60
70

0 400 800 1200 1600

Size of the Workload

P
er

ce
n

ta
g

e
R

ed
u

ct
io

n
 in

 T
o

ta
l

T
u

n
in

g
 T

im
e

WC-ALL-PAIRS WC-KMED WC-PARTSAMP

Number of Distance Computations
vs. Size of the Workload

0

50000

100000

150000

200000

250000

0 400 800 1200 1600

Size of the Workload

N
u

m
b

er
 o

f
D

is
ta

n
ce

C
o

m
p

u
ta

ti
o

n
s

WC-ALL-PAIRS WC-KMED WC-PARTSAMP

Figure 10 shows the total reduction in tuning time as the workload
size is varied (same data points as in Figure 9). Here we see that
WC-ALL-PAIRS and WC-KMED significantly outperform WC-
PARTSAMP due to the superior compression achieved by these
algorithms. The reason that WC-KMED shows similar reduction
in running time to WC-ALL-PAIRS despite achieving less
compression (Figure 9) is that the time for workload compression
using WC-KMED is significantly less than when using WC-ALL-
PAIRS. Figure 11 shows the reason for this – the total number of
Distance function computations scales significantly better for
WC-KMED as compared to WC-ALL-PAIRS.

Overall, this experiment emphasizes the fact that by ignoring
workload information during compression, a sampling based
approach loses out on the amount and quality of compression
compared to both WC-ALL-PAIRS and WC-KMED.

7.3 Evaluation on Index Selection Tool for
IBM DB2
The goal of our next experiment is to evaluate whether the
Distance function we developed for index selection (see Section
5.1) works effectively when used for another index selection tool.
We therefore used the Index Advisor for IBM DB2 to tune the
original and compressed workloads respectively for the Real-2
workload. We then compared the execution time of the original
workload when indexes recommended for the original workload
were present to the execution time of the original workload when
indexes recommended for the compressed workload were present.
The workload compression achieved is 25%, and the loss in
quality (i.e. increase in execution time) for this workload was only
1%. This experiment demonstrates that our Distance function is
robust in the sense that it is not dependent on the specific
implementation of the index selection tool.

Real and Synthetic Workload

-100

-80

-60

-40

-20

0

20

40

60

80

100

Queries Pruned Reduction in
Preprocessing Time

Loss In Quality

P
er

ce
n

ta
g

e
TPC-H Real-2

7.4 Evaluation for Approximate Aggregation
Query Answering Application
Our final experiment illustrates the generality of our framework
for workload compression and shows that it can be applied to
other applications with only a modest effort that is required in
providing an appropriate Distance function for the application.
We evaluate the effectiveness of our solution for the AQP
application (see Section 2.1 for more details on the application
and Section 5.2 for the Distance function). We experimented with
two workloads: the Real-2 workload and a synthetic workload of
100 aggregation queries on the TPC-H 1GB database. For this
application the quality of the result is measured by the average
relative error (see Section 2.1) of queries in the workload. We see
from Figure 12 that we achieve significant workload compression
and reduction in preprocessing time. At the same time the loss in
quality (i.e., increase in average relative error of queries) is small.

8. RELATED WORK
There have been several papers that have applied sampling in the
area of databases e.g., [18,20]. However, unlike our paper, these
studies focus on the problem of sampling data and not the
workload. Random sampling, has also been studied extensively in
the statistics literature [8]. A key difference between our
techniques and random sampling is that random sampling ignores

Figure 10. Search Algorithms: Total Reduction in
Tuning Time

Figure 9. Search Algorithms: Compression Achieved

Figure 11. Search Algorithms: Number of Distance
Computations

Figure 12. Results for Approximate Answering of
Aggregation Queries application.

interaction among the objects being sampled (which is the
primary source of its efficiency). In contrast, our technique
focuses on achieving compression while taking into account
interactions among statements via use of the Distance function. As
shown by our experimental evaluation, this aspect is crucial for
achieving significantly better quality of workload compression. In
principle, our techniques are complementary to sampling, and the
two techniques can be combined.

Our work also has strong similarity to the problem of
clustering [19] which has been studied in the context of machine
learning and data mining. Indeed as we have shown, our problem
is equivalent to the well-known Minimum k-Median clustering
problem. Also, a large class of work e.g., [4,12] on clustering has
focused on cases when the points are in a metric space, i.e.,
distance function is symmetric and satisfies the triangle inequality.
A key novelty of our work is applying clustering techniques in a
principled manner in the context of workloads. Moreover, since
we cannot assume that our distance functions satisfy metric
spaces, we adapt well-known heuristic approaches to clustering to
solve workload compression. Finally, there is a large body of
work on query equivalence e.g., [5,11], which is also
complementary to our work. These techniques may be useful in
deriving distance functions for specific applications. One form of
equivalence that can be exploited (and is application independent)
is when two queries are semantically identical, i.e., they return the
same result. Of course, applying these techniques is not free of
cost could require significant computational effort.

9. ACKNOWLEDGMENTS
We would like to thank Gautam Das for important feedback on
the algorithms and proofs in the paper, and Christian König for
his valuable comments and help in experiments.

10. REFERENCES
[1] Aboulnaga, A. and Chaudhuri, S. Self-tuning Histograms:

Building histograms without looking at data. Proceedings of
the ACM SIGMOD, 1999.

[2] Acharya S., Gibbons P.B., and Poosala V. Congressional
Samples for Approximate Answering of Group-By Queries.
Proceedings of the ACM SIGMOD, 2000.

[3] APB-1 OLAP Benchmark, Release II. OLAP Council Nov.
1998. http://www.olapcouncil.org/

[4] Arora, S., Raghavan P., and Rao, S. Approximation schemes
for Euclidean k-medians and related problems. Proceedings
of the 30th Annual Symposium on Theory of Computing,
1998.

[5] Aho, A.V., Sagiv, Y., and Ullman, J.D. Equivalence of
relational expressions. SIAM Journal of Computing, Vol 8,
1979.

[6] AutoAdmin project at Microsoft Research
(http://research.microsoft.com/dmx/AutoAdmin).

[7] Bruno, N., Chaudhuri S., and Gravano, L. STHoles: A
Multidimensional Workload-Aware Histogram. Proceedings
of the ACM SIGMOD, 2001.

[8] Cochran W.G. Sampling Techniques. John Wiley & Sons,
New York, Third Edition 1977.

[9] Chaudhuri, S., Das G., Datar, M., Motwani R., and
Narasayya V. Overcoming Limitation of Sampling for
Aggregation Queries. Proceedings of the 17th Intl.
Conference on Data Engineering, 2001.

[10] Chaudhuri, S., Das G., and Narasayya V. A Robust,
Optimization-Based Approach for Approximate Answering
of Aggregate Queries. Proceedings of the ACM SIGMOD,
2001.

[11] Ceri, S., and Gottlob G. Translating SQL into relational
algebra: Optimization, semantics and equivalence of SQL
queries. IEEE Transactions on Software Engineering, SE 11,
4 1985.

[12] Charikar, M., Guha S., Tardos E., and Shmoys D.B. A
constant-factor approximation algorithm for the k-median
problem. Proceedings of the 31st Annual Symposium on
Theory of Computing, 199`9.

[13] Chaudhuri, S., and Narasayya V. An Efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server. Proceedings
of the 23rd Intl. Conference on Very Large Databases, 1997.

[14] Chaudhuri, S., and Narasayya V. Automating Statistics
Management for Query Optimizers. Proceedings of the 16th
Intl. Conference on Data Engineering, 2000.

[15] Donjerkovic, D., Ioannidis, Y., and Ramakrishnan, R.
Dynamic Histograms: Capturing Evolving Data Sets.
Proceedings of the 16th Intl. Conference on Data
Engineering, 2000.

[16] Garey, M.R., and Johnson, D.S. Computers and
Intractability. A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979.

[17] Ganti, V., Lee M.L., and Ramakrishnan R. ICICLES: Self-
tuning samples for Approximate Query Answering.
Proceedings of the 26rd Intl. Conference on Very Large
Databases, 2000.

[18] Gibbons, P.B., Matias Y., and Poosala V. Fast Incremental
Maintenance of Approximate Histograms. Proceedings of the
17th Intl. Conference on Very Large Databases, 1997.

[19] Han, J., and Kamber M. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[20] Haas P.J., Naughton, J.F., Seshadri S., and Stokes L.
Sampling based estimation of the number of distinct values
of an attribute. Proceedings of the 21st Intl. Conference on
Very Large Databases, 1995.

[21] Lohman G., Skelley A., Valentin G., Zilio D., and Zuliani,
M. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. Proceedings of the 16th Intl.
Conference on Data Engineering, 2000.

[22] Lin, J.-H. and Vitter, J.S. ε-Approximations with minimum
packing constraint violation. Proceedings of the 24th Annual
Symposium on Theory of Computing, 1992.

[23] Stillger, M., Lohman, G.M., Markl, V., and Kandil, M. LEO
– DB2’s learning optimizer. Proceedings of the 27th Intl.
Conference on Very Large Databases, 2001.

[24] Chaudhuri S., and Narasayya V. TPC-D data generation with
skew. Available via anonymous ftp from
ftp.research.microsoft.com/users/viveknar/tpcdskew

[25] TPC Benchmark H. Decision Support. http://www.tpc.org

