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Abstract—Optimal configuration is vital for a DataBase Man-
agement System (DBMS) to achieve high performance. There is
no one-size-fits-all configuration that works for different work-
loads since each workload has varying patterns with different
resource requirements. There is a relationship between configu-
ration, workload, and system performance. If a configuration
cannot adapt to the dynamic changes of a workload, there
could be a significant degradation in the overall performance
of DBMS unless a sophisticated administrator is continuously
re-configuring the DBMS. In this tutorial, we focus on au-
tonomous workload-aware performance tuning, which is expected
to automatically and continuously tune the configuration as
the workload changes. We survey three research directions,
including 1) workload classification, 2) workload forecasting, and
3) workload-based tuning. While the first two topics address
the issue of obtaining accurate workload information, the third
one tackles the problem of how to properly use the workload
information to optimize performance. We also identify research
challenges and open problems, and give real-world examples
about leveraging workload information for database tuning in
commercial products (e.g., Amazon Redshift). We will demon-
strate workload-aware performance tuning in Amazon Redshift
in the presentation.

Index Terms—Workload, Classification, Forecasting, Au-
tonomous, DBMS, Tuning

I. MOTIVATION

Database configurations, such as physical and logical design
as well as resource allocation (e.g., CPU, memory and IO
resources), are vital for DBMSs to achieve high performance.
However, the rapid growth in data and the high complexity
of time-varying workloads make the configuration tasks ex-
tremely challenging, especially when organizations are moving
their DBMSs to managed services in cloud environments. An
ideal solution is the autonomous DBMS which is expected
to automatically and constantly tune itself by adapting to
workload changes [1].

The behavior of an autonomous DBMS can be described
using the following formula which demonstrates a mechanism
for workload-aware performance tuning [2]:

f : configuration× workload→ performance (1)

where the configuration consists of the hardware setup, soft-
ware setup, database physical and logical design, etc, the
workload features include workload types, workload shifts,
workload patterns (e.g., periodic pattern and arrival patterns),
and the performance is measured by one of the metrics (re-
sponse time, throughput, reliability, etc.) or their combination.

However, there are (at least) three significant challenges
on the way to workload-aware performance tuning for an au-
tonomous DBMS: (i) Workload’s diversity and heterogene-
ity: A DBMS may have a large number of instances and each
instance might encompass various types of workload. Differ-
ent types have different features, for instance, transactional
workloads are comprised of short-running transactions which
modify few records while analytical workloads are usually
long-running read-only queries which process considerable
amount of data [3]. (ii) Workload’s dynamic characteristics:
As new users and applications appear ever more frequently,
workload size and patterns may constantly evolve over time.
For example, the database might be extended with more users,
thereby adding a large number of queries to the workload
in an unpredictable way. The performance of a DBMS could
rapidly degrade when previously tuned configurations cannot
match the requirements of incoming queries. (iii) Workload’s
complex influence on performance: It is difficult to quantify
the amount of hardware resources for changing workloads and
decide how much performance is compromised for a given
workload [4]. Moreover, searching the optimal configuration
for a given workload is usually an NP-Hard problem as the
solution lies in high-dimensional and continuous space.

Table I summarizes the categories and literature on
workload-aware performance tuning for an autonomous
DBMS. There are three major topics: (i) Workload Classifi-
cation, (ii) Workload Forecasting, and (iii) Workload Tuning.
The goal is to enable the DBMSs to continuously and au-
tomatically adjust databases’ configurations by analyzing the
evolving workload and making optimal decisions for identified
workload types. In this tutorial, we will first provide an
overview and motivating examples of workload-aware perfor-
mance tuning for autonomous DBMSs. Next, we will intro-
duce the different categories to classify workloads, workload
forecasting, and workload-aware tuning methods by presenting
the essential characteristics of each category. Finally, we will
highlight real-world applications and systems for workload-
aware tuning and identify research challenges.

To the best of our knowledge, this is the first tutorial
to discuss the state-of-the-art research and industrial trends
in the context of workload-aware performance tuning for
autonomous DBMSs. The previous tutorials only focus on
one aspect of database tuning (e.g., adaptive replication and
partitioning [33], parameter tuning [34]) regardless of the
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TABLE I
AN OVERVIEW OF MAIN RESEARCH CATEGORIES AND LITERATURE ON

WORKLOAD-AWARE PERFORMANCE TUNING

Category Literature

Workload
Classification

Unsupervised learning [5], [6]
Supervised learning [7], [8]
Experiment-driven [9], [10]
Reasoning [11], [12]

Workload
Forecasting

Machine learning [13]–[15]
Time-series analysis [8], [16]–[18]
Stochastic process modeling [19]–[22]

Workload-based
Tuning

Machine learning [23]–[25]
Reinforcement learning [26]–[28]
Rule-based [29], [30]
Cost modeling [31], [32]

workload information. This tutorial, on the other hand, focuses
on how to obtain the workload information and tune a DBMS
based on the estimated workloads.

II. TUTORIAL CONTENTS

The tutorial is organized in a sequence of six sections,
whose contents are summarized as follows.

A. Section I: Motivation and background

At the beginning of this tutorial, we will review the chal-
lenges of autonomous database tuning, especially from the
high complexity of time-varying workloads in cloud envi-
ronments. An autonomous DBMS needs to tune itself based
on the dynamic workload information to obtain an optimal
performance.

B. Section II: Workload Classification

The first and key step towards an autonomous DBMS
is the ability to accurately classify the workloads because
the workload types are an important criterion for database
performance tuning. The types of workloads may include
Online Analytical Processing (OLAP), Online Transactional
Processing (OLTP), Decision Support System (DSS), Business
Intelligence (BI), and even hybrid and interactive workloads
(e.g., mixed fast transactions and complex analytical queries
that run concurrently and interact with each other [35]).

The existing classification methods can be divided into the
following four groups: (i) Unsupervised learning: The aim
of this method is grouping the workload into general classes
by exploiting some metrics (e.g., distance function, resource
usage) to measure the similarity between the workloads. Ex-
amples are clustering [5] [24] and SemiDiscrete Decomposi-
tion [6]. (ii) Supervised learning: Workload classification can
be solved by machine learning models, such as Classification
& Regression Tree [7], and Decision Tree Induction [8].
(iii) Experiment-driven: This approach utilizes experimental
techniques, such as planning experiments [9] and experimental
sampling [10], to recognize workload type and reconfigure
resources accordingly. (iv) Reasoning: The workload classi-
fication can also be solved through reasoning with existing

solutions that are stored in the case-base repository. This
approach is called Case-Based Reasoning (CBR) [11] [12]
which can adapt new cases and does not require retraining
of data.

C. Section III: Workload Forecasting

Database workloads in the real-world usually change dy-
namically. To be totally autonomous, the DBMSs must be
capable of handling the dynamic workloads by predicting
the workload changes based on the historical data [13]. The
estimated workload characteristics and changes may consist
of: (i) expected arrival rate of queries, (ii) running time
of each query, (iii) structural and periodic patterns, (iv)
workload shifts, (v) the next transaction or query, (vi)
memory usage of each query, etc.

The existing approaches can be divided into the following
three categories of approaches can be applied to predict the
above characteristics:

• Machine learning: The workload prediction could be
posed as a classification or regression problem in which
data-driven methods predict the workload changes di-
rectly from observed data. Representative models are
Ensemble Learning [13], Deep Q-Network [14], and
LSTM-based auto-encoder [15].

• Time-series analysis: Both the short- and long-term
workloads can be seen as a time sequence, whose fu-
ture values and periods can be estimated by time-series
analysis techniques which may be broken down into two
main areas:
– Time domain analysis uses techniques such as Sparse

Periodic Auto-Regression (SPAR) [16], Moving Aver-
ages (MA), Polynomial Regression (PR) [8], and Auto
Regressive Integrated Moving Average(ARIMA) [17].

– Frequency domain analysis utilizes methods such as
Discrete Fourier Transform (DFT) and Interval Analy-
sis [18] to transfer the workload series into a frequency
domain to find some complex periodic patterns.

• Stochastic process modeling: Different from the time-
series analysis, random process models focus on the prob-
ability properties of workload, such as Markov properties
[19]–[22].

D. Section IV: Workload-based Tuning and Scheduling

1) Workload-based Tuning: Optimal database physical and
logical design, as well as resource allocation, are affected
heavily by the dynamic changes of workloads [20] [36]. This
is because there is a certain relationship between database
(physical/logical) states, workloads, and database resources.
Given workload types and changes, a model is then needed
to decide the tuning actions. Two critical problems must be
solved: 1) how to extract and utilize the workload information,
and 2) how to find the optimal tuning actions (e.g., what sort
of indexes are the most effective and how much amount of
hardware resource is needed for future workloads).

The existing methods can be divided into the following four
categories: (i) Machine learning: These approaches utilize
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machine learning models to encode the query information and
make tuning decisions. Examples are Deep Neural Network
[23], Feedforward Neural Network [24], and Pairwise Deep
Neural Network [25]. (ii) Reinforcement learning: Tuning
the database configurations is natural to address by reinforce-
ment learning methods, such as Deep Q-learning [26], Deep
Deterministic Policy Gradient [27], and Double-State Deep
Deterministic Policy Gradient [28]. Those methods are adap-
tive to dynamic workload changes. (iii) Rule-based: Based
on the domain knowledge of database engines or experiences
of human experts, the conversion rules modelling [29] and
hierarchy of rules [30] are introduced to determine the resource
demands or optimal physical design of the workloads. (iv)
Cost modeling: These approaches build accurate prediction
models to evaluates the expected execution cost of different
configurations. Representative works include [31] and [32].

The corresponding tuning tasks consist of two main aspects:
(i) Database design. Based on the workload changes, the
databases need to evolve the physical design, such as indexes,
materialized views, partitioning, and storage to achieve the
optimal performance. Sometimes the databases also have to re-
design the schema according to the workload information. (ii)
Resource provisioning. In order to support a new workload
not yet deployed in a production environment, the database
must estimate the needed hardware resources, including CPU,
RAM, Disk I/O, buffer pool size and page size, etc.

2) Workload Scheduling: Workload scheduling which aims
at determining the execution order of queries, is also a critical
and challenge task. It can have a significant impact on query
performance and resource utilization. The current techniques
about workload scheduling include machine learning-based,
such as SmartQueue [37], and reasoning-based, like Qshuffler
[11].

E. Section V: Real-World Applications

Workload-aware performance tuning is widely used in
cloud databases like Amazon Redshift [38]. Redshift trains
prediction models on each cluster so that the decisions are
optimal for the workload served by that cluster. To have a
better prediction quality and account for drift, the underlying
models are refreshed periodically. The models predict the
query execution time and memory usage for each query in
the workload. With this knowledge, the workload manager
(WLM) [39] makes scheduling and resource allocation de-
cisions wisely. For example, WLM assigns the right amount
of memory to queries to fully utilize resources and schedules
short-running queries before longer queries in terms of the
execution time. In addition, when long running queries with
large amount of resource usage block incoming short queries,
WLM will preempt the long running queries to make room
for short queries. Further more, when the workload is heavy
and the current cluster resources are fully utilized, WLM will
automatically scale queries out to new clusters.

Amazon Redshift also makes decisions for optimal physical
data organization by monitoring query patterns. The distribu-
tion key advisor uses combinatorial optimization techniques

to recommend optimal data distribution to minimize network
communication among nodes of a cluster.

F. Section VI: Open Problems

In this section, we will summarize some open problems that
must be addressed to ensure the effectiveness of workload-
aware tuning:

1) Robust workload classification and forecasting: How
to realize robust classifiers and predictors for problematic
workloads (e.g., the noisy workload patterns).

2) Tuning with inaccurate workload information: How to
enhance the performance even in spite of the fact that the
workload prediction may be inaccurate.

3) Online update of tuning models: How to effectively
retrain and update the models for new data after deploying
them in the real industrial environment (e.g., in the cloud).

III. TUTORIAL ORGANIZATION

The tutorial is planned for 3 hours and is divided into the
following parts:
Motivation (5’). We motivate the need for workload-aware
performance tuning with several applications/scenarios.
Workload classification (30’). We introduce key approaches
of workload classification and compare the differences be-
tween the various categories.
Workload forecasting (30’). We show how the workload
forecasting methods can be used to predict various parameters.
Workload-aware tuning and scheduling (60’). We sum-
marize the key approaches to workload-based tuning and
workload scheduling.
Real application and demonstration (30’). We discuss some
real applications of workload-aware performance tuning and
give a demo to show the pipeline of workload-aware tuning.
Open problems (15’). We conclude with a discussion of open
problems and challenges for workload-aware tuning.
Summary (10’). We summarize this tutorial and give our
critical thoughts to workload-aware tuning.

IV. GOALS OF THE TUTORIAL

A. Learning Outcomes

The main learning outcomes of this tutorial includes: (1)
Motivation and background of workload-aware tuning. (2) An
overview of workload-aware tuning approaches with respect to
workload classification, workload forecasting, and workload-
based tuning. (3) Comparison of features, strengths, and
applications of these three topics of workload-aware tuning.
(4) A take-away message for achieving workload-aware au-
tonomous DBMS and a discussion of research challenges and
open problems. (5) A real-world hands-on demonstration of
workload-aware tuning.

B. Intended Audience

This tutorial is intended for a broad scope of audience
ranging from database systems researchers to industry prac-
titioners, with a focus on automatic database tuning. Basic
knowledge in database workload and configuration is sufficient
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to follow this tutorial. Some background in machine learning
and reinforcement learning techniques would be useful.

V. TUTORIAL PRESENTERS

Zhengtong Yan is a doctoral student at the University of
Helsinki. His research topics include multi-model autonomous
databases and cross-model query optimization.

Jiaheng Lu is a professor at the University of Helsinki. His
main research interests lie in the database systems specifically
in the challenge of efficient data processing from real-life,
massive data repositories and the Web. He has written four
books on Hadoop and NoSQL databases, and more than 100
papers published in SIGMOD, VLDB, TODS, and TKDE, etc.

Naresh Chainani is a senior software development manager
at Amazon Web Services (AWS) working on query processing,
query performance, distributed systems, and workload man-
agement. He is passionate about building high-performance
databases that are easy to use and has multiple papers and
patents.

Chunbin Lin is a software engineer at Amazon Web
Services (AWS) and he is working on AWS Redshift. He
completed his Ph.D. in computer science at the University
of California, San Diego (UCSD). His research interests are
distributed database management and big query analytics. He
has more than 30 papers published in SIGMOD, VLDB,
VLDB J, and TODS, etc.
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