

Workload Models for Autonomic Database Management Systems

Pat Martin
School of Computing
Queen’s University

Kingston, ON Canada K7L 3N6
martin@cs.queensu.ca

Said Elnaffar
College of IT

UAE University
Al-Ain, UAE

elnaffar@uaeu.ac.ae

Ted Wasserman
IBM Silicon Valley Laboratory

555 Bailey Avenue
San Jose, California USA 95141

tedwas@us.ibm.com

Abstract
Autonomic computing is a promising approach to the

problem of effectively managing large complex software
systems such as database management systems (DBMSs).
In order to be self-managing, an autonomic DBMS
(ADBMS) must understand key aspects of its workload,
including composition, frequency patterns, intensity and
resource requirements. It must therefore use and maintain
different characterizations, or models, of the workload to
support its various kinds of decision-making. Our research
into various aspects of ADBMSs has led us to develop a
number of different workload models. In this paper, we
examine the importance of workload models to ADBMSs.
We discuss the types of workload models needed by
ADBMSs and describe examples from our research. We
then outline the requirements for an infrastructure to
develop and maintain the workload models needed by an
ADBMS.

1. Introduction

 As consumers demand more functionality and greater

sophistication from Database Management Systems
(DBMSs), vendors have been quick to deliver. However,
the desire to include complex data types, the ability to
store very large objects, and the emergence of diverse and
varying workloads are factors that have led to
unmanageable complexity. It is no longer feasible for
database administrators to manually configure and tune
these systems.

One approach to this management problem is an
autonomic DBMS (ADBMS) that is capable of
automatically managing its resources to maintain
acceptable performance in the face of changing conditions
[2][4]. An ADBMS must be able to perform typical
configuration and tuning tasks including determining
appropriate allocations for main memory areas such as the
buffer pools and the sort heap, mapping database objects
to buffer pools and adjusting the many DBMS
configuration parameters to maintain acceptable
performance.

In order to be able to manage its own performance, an
ADBMS must be self-aware. A number of definitions of
self-awareness exist in the literature [15]. For ADBMSs,
self-awareness means that the system is able to formally
model the consumption of its resources under the various
demands caused by the workload components.
Specifically, an ADBMS must be aware of several aspects
of its workload, including composition, frequency patterns
and intensity, and must maintain different models of the
workload to support its various kinds of decision-making.

Our research in ADBMSs has led us to develop a
number of different workload models. These models fall
into two categories. The first category includes
exploratory models, which provide a compact and
summarized representation of the workload using
unsupervised learning techniques. Discovering
homogenous classes of database queries using clustering
techniques is an example of exploratory model that can be
used for tasks such as capacity planning. Exploratory
models can also be useful for discovering the existence of
periodic pattern in the workload. An autonomic DBMS
can exploit such a pattern by predicting changes so that it
can proactively tune its resources accordingly. The second
category includes confirmatory models, which are used to
ascertain that some significant property of the workload is
occurring at some point in time using supervised learning
techniques. Detecting interesting workload properties (e.g.,
identifying the dominant type of the workload) using
confirmatory models (e.g., classification) help the
ADBMS be reactively adaptive to on-line events that may
threaten its performance or the security of its data.

In this paper we argue that there is a need for multiple
workload models of different types in ADBMSs. We
identify the types of models required in an ADBMS and
then examine sample workload models of each type. We
discuss the properties of these models and propose
requirements for a framework to effectively create,
maintain and use the models. The remainder of the paper is
structured as follows. Section 2 reviews related work in
the area of ADBMSs. Section 3 describes the workload
models used in an ADBMS and outlines some example
models.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Section 4 discusses the problem of maintaining the
workload models used by an ADBMS. Section 5 presents
our conclusions.

2. Related work

 An ADBMS system can be viewed as a feedback

control loop as shown in Figure 1 [11], controlled by an
Autonomic Manager. The autonomic manager oversees
the monitoring of the DBMS (the Managed Element), and
by analyzing the collected statistics in light of known
policies and/or goals, it determines whether the
performance is satisfactory. If necessary, a plan for
reconfiguration is generated and executed.

Figure 1. Autonomic DBMS [11]

ADBMSs, and autonomic systems in general, have
received a great deal of attention both in the academic and
the commercial worlds [2][4]. Self-tuning concepts have
been applied to problems such as index selection [18],
materialized view selection [1] and memory management
[3][13]. Chaudhuri and Weikum [4] cite the need for self-
tuning systems as an important reason to rethink current
DBMS architectures.

3. Workload models and ADBMSs

 Autonomic computing, as we explained earlier, is

viewed as a promising approach to dealing with the
increasing complexity of managing today’s information
systems. A system is considered to be autonomic if it
possesses several capabilities, namely if it is self-
configuring, self-optimizing, self-healing and self-
protecting [11]. An understanding of the workload
presented to a system is necessary to provide these
capabilities.

A self-configuring ADBMS automatically adjusts to
changes in its environment and to the set of components
making up the system based on high-level policies. It must
understand the composition and intensity of its workload
in order to make the appropriate adjustments. For example,
changes to the amount of resources available to an
ADBMS from the underlying platform, or the removal of a
component, may force the ADBMS to redistribute the load

among its remaining components or to alter how
individual requests are scheduled based on the requests’
priorities and resource demands. A self-configuring
ADBMS must have an exploratory model of the workload
available to make its adjustments.

A self-optimizing ADBMS continually seeks to
improve its performance or efficiency. It must understand
the composition, intensity and priorities of the workload
and be able to recognize shifts in the workload in order to
effectively allocate resources. For example, to maintain
acceptable levels of performance when the workload
changes from mainly (On-Line Transaction Processing)
OLTP requests to mainly Decision Support System (DSS)
requests, an ADBMS must reallocate memory resources
from the buffer area to the sort heap where joins are
performed. A self-optimizing ADBMS would use
confirmatory models to recognize workload shifts through
value changes or trends in indicator properties. It may also
use an exploratory model during the analysis and planning
tasks (see Figure 1) to estimate the impact of possible
changes on the system’s performance.

A self-healing ADBMS automatically detects,
diagnoses and repairs problems. It must understand the
normal patterns and levels in the workload in order to
detect possible sources of faults. For example, the system
may tend to fail when the intensity of the workload
exceeds certain levels. A confirmatory model of
transaction arrival rates could be used to detect a high load
that could cause failures. A self-healing ADBMS may also
use an exploratory model during the analysis and planning
tasks to predict the impact of potential repairs to the
system.

A self-protecting ADBMS automatically defends itself
against malicious attacks. It must therefore understand the
normal patterns and levels in the workload in order to
detect possible security threats from outside sources. The
ADBMS could maintain confirmatory models for
properties such as transaction arrival rates and connection
requests that indicate possible denial of service attacks
when the workload exceeds certain thresholds in the
models.

3.1. Exploratory workload models

 We find that exploratory workload models are

required for the analysis and planning tasks of an
ADBMS. The tasks typically incorporate a model of the
system that is used to estimate the impact of possible
plans. These system models use an exploratory model of
the workload as input to the plan evaluation.

A sample or log of the actual workload of a system
could be used as input to the system models but this is
problematic for at least two reasons. First, in the case of a
new system, the workload may not yet be known. Second,
analysis and planning are performed on-line so using the
real workload may make the analysis too complex to be
practical.

Managed Element

Monitor

Analyze Plan

Execute
Knowledge

Autonomic Manager

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Some types of exploratory models (e.g., time-series
analysis) can reveal interesting patterns in the workload
shifts of the ADBMS as explained by Elnaffar et al. [8].
Other exploratory models, such as clustering, can
summarize the characteristics of resource demands in a
small number of classes such as “light I/O queries” and
“heavy CPU queries” [5][19][22].

Compact exploratory models can be constructed
following a general methodology by Menascé et. al. [14]
for constructing resource-oriented workload
characterizations. The key steps in the process involve
identifying appropriate characterization parameters that
differentiate workload components and partitioning the
workload into classes. Partitioning can be performed using
clustering techniques from data mining.

In our work on sizing new database systems [20] we
developed an exploratory model of DSS workloads. The
ultimate goal of the sizing process is to arrive at a first
estimate of a hardware configuration that will satisfy the
performance demands, cost constraints, and functional
requirements of an application. This can be a complicated
task because of the wide variety of processor, disk,
network and memory technologies that are available.
Further, determining the quantity of each resource needed
and predicting how the different components interact with
each other under a specific workload are not trivial tasks.

In constructing our exploratory workload model for
DSS workloads we used the 22 queries of the TPC-H
benchmark [16], which was designed to simulate the type
of resource activity commonly found in DSS applications,
as our representative workload. The model represents the
resource demands of different classes of queries typically
found in DSS workloads. These demands are then used as
input to determine an appropriate hardware configuration.

For our analysis, we monitored several performance-
oriented parameters for each individual query, including
response time, average CPU utilization, the average rate of
random I/O, and the average rate of sequential I/O. The
input data for our analysis were obtained from six pre-
audited TPC-H benchmark runs on IBM’s DB2 Universal
Database (DB2) Version 8 [10].

Raw data were monitored and collected using standard
operating system performance monitoring tools, which
were configured to sample the desired parameters at five
second intervals. We used a combination of Singular
Value Decomposition (SVD) [9] and SemiDiscrete
Decomposition (SDD) [12] to partition our workload. Both
techniques are examples of unsupervised data mining,
where the goal is to discover structured information in the
dataset without knowing or providing hints as to what that
structure might look like. SVD and SDD were jointly
applied to our dataset by using both decompositions,
truncating the SVD at k = 3, plotting the points
corresponding to queries, and labeling each point
according to its location in the top few levels of the SDD
decomposition.

Figure 2. Clustering analysis of TPC-H data

The results of our analysis, which are summarized in
Figure 2, identified four clusters. Cluster C2 represents
simple queries that are generally IO-bound in nature and
have a small number of tables being joined. Cluster C3
represents long-running, large and complex queries with a
large number of tables (5+) being joined. Queries in this
group also exhibit high sequential and random IO usage.
Cluster C4 represents short-running, trivial complexity
queries with a varying number of tables (3-8) being joined.
Finally, Cluster C1 represents medium-complexity queries
with a smaller number of tables (1-5) being joined and
exhibiting high CPU utilization.

3.2. Confirmatory Workload Models

We can see from the previous discussion that
confirmatory workload models are used in the analysis
tasks performed by an ADBMS to detect the existence of
specific conditions within the state of the ADBMS or its
performance. Confirmatory models are often used in
conjunction with one or more threshold values that trigger
specific responses during the analysis tasks. Each
confirmatory model focuses on either a single parameter or
a small number of related parameters.

Our work on self-optimization has involved the
development of several confirmatory workload models
[7][21]. For example, the recognition of the workload type,
specifically whether it is OLTP or DSS, is an important
criterion for tuning because effective resource allocations
to components such as the buffer area, sort heap and log
buffer vary substantially depending on the type of the
workload. A self-optimizing ADBMS could therefore
detect shifts in the type of the workload and then reallocate
resources on the fly in order to improve performance. The
confirmatory model we built in this case is a decision-tree
classifier that, for a given window of execution, assesses
the degree to which the workload processed in the window
is like an OLTP workload or like a DSS workload. Based
on this assessment, appropriate tuning strategies can be
adopted.

C1

C4
C

2

C3

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Figure 3. Classifying DBMS workloads

Our approach, which is shown in Figure 3, viewed the
problem of classifying DBMS workloads as a machine-
learning problem in which the DBMS must learn how to
recognize the type of the workload mix. We chose to base
our analysis on dynamic data collected by DBMS
performance monitors because the dynamic data includes
frequency information that is not available from static
sources, it captures the variability of the workload over
time, and it is easier to analyze than SQL statements or
access plans. We first analyzed attributes available from
performance snapshots with respect to their suitability for
differentiating between DSS and OLTP and derived a set
of attributes to be used in our classification process. We
next built a model (or classifier) to describe a
predetermined set of data classes. The model was
constructed by analyzing a training set of data objects.
Each object was described by attributes, including a class
label attribute that identified the class of the object as
either OLTP or DSS. The data objects needed to build the
classifier are performance snapshots taken during the
execution of the database workload. Each snapshot reflects
the workload behavior at some time during the execution.
The learned model was represented in the form of a
decision tree embodying the rules that can be used to
categorize future data objects.

We considered the following list of candidate attributes
for the workload snapshots: Ratio of Queries vs.
Insert/Update/Delete statements, #Pages Read, #Rows
Selected, Throughput, Number of Locks Held, Ratio of
Using Indexes vs. Data Tables, Number of Sorts, Average
Sort Time, Logging, Hit Ratio (%), and # Pages Scanned.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Querie
sR

atio

Page
sR

ea
d

Row
sS

electe
d

Thro
ug

hput

 Locks
Held

 In
dexR

atio
 Sorts

 SortT
ime

 Lo
gging

 H itR
atio

PgScan
ned

R
at
io

DSS
OLTP

 Figure 4. Candidate attributes for snapshots

We considered the Browsing and Ordering profiles
defined in the TPC-W benchmark [17] as examples of
DSS and OLTP workloads, respectively. Figure 4 shows
the relative values, with the DSS values normalized to 1,
for a set of candidate attributes. The values were derived
from experiments with the TPC-W workloads on DB2 and
all were easily obtained with the DB2 Snapshot Monitor.
We eventually eliminated Throughput and Hit Ratio from
the snapshot because Throughput was dependent on the
current system utilization and Hit Ratio was strongly
affected by the DBMS configuration, which can include
buffer pool sizes and the assignment of database objects to
these pools.

The remaining attributes were not equally system-
independent. Therefore we grouped the attributes into
three classes based on their degrees of system-dependence
and assigned different weights to each class of attribute to
reflect their significance to the classification process.
Queries Ratio, Pages Read, Rows Selected, Pages
Scanned, and Logging were the least sensitive to changes
in the system configuration and so were the most
significant to classification. Number of Sorts and Ratio of
Using Indexes were somewhat vulnerable to configuration
changes that were likely to occur infrequently, such as
changing the current available set of indexes or views in
the database schema. Sort Time and Number of Locks Held
were the most sensitive to changes in the system
configuration and hence were the least significant to
classification. The classification model (decision tree)
created for the TPC-W Browsing and Ordering profiles is
shown in Figure 5.

Workload Classifier
(Rules)

Raw

DSS Snapshots

Label as DSS
and Process

CCllaassssiiff iiccaattiioonn
AAllggoorriitthhmm

G
au

ge

A
ttr

ib
ut

es

time

DDSSSS MMiixx

Raw
S h

OLTP Snapshots

Label as OLTP
and Process

A
ttr

ib
ut

es

G
au

ge

time

OLTP Mix

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

 Figure 5: Workload classifier

4. Maintaining Workload Models

 The effective creation and maintenance of workload

models will be key to the viability of ADBMSs. Workload
model maintenance involves the Knowledge Base,
Monitoring and Analysis components of the autonomic
manager (see Figure 1). The Knowledge Base stores
descriptions of the models and performance data collected
by the Monitoring component. The Analysis component
includes statistical analysis, data mining and machine
learning techniques, such as those described above, to
create and update the workload models.

Workload models, like the workloads they represent,
are not static and will have to change over time. The
maintenance approach can be either on-line or off-line. An
off-line approach will periodically regenerate the model
off-line and then replace the current version of the model
with the new version. The disadvantage of an off-line
approach is that data collected from the Monitoring
component to maintain the model will have to be stored by
the ADBMS until it is needed. An on-line approach to
maintaining the workload models will, on the other hand,
perform incremental maintenance. It will therefore have
smaller storage requirements than an off-line approach but
runs the risk of more interference with the applications
running on the ADBMS. On-line versions of popular
clustering and classification algorithms are being studied
in the field of data stream mining [6] and will be of great
use in ADBMSs.

Monitoring is a double-edged sword for ADBMSs. On
the one hand, maintaining the workload models can
require continuous and comprehensive monitoring to
provide up-to-date data. On the other hand, monitoring
may have a negative impact on applications’ performance
and should be restricted. We therefore need more
unobtrusive monitoring and selective techniques that make
effective use of limited monitoring. Piggybacking is an
example of an unobtrusive technique that provides
monitoring on top of execution of query plans [23].

In our own research we have observed two general
properties that have an impact on selective monitoring.
First, we can identify specific patterns or cycles within a
workload that can allow us to predict changes in a
workload. Second, an autonomic manager typically makes
management decisions in response to changes experienced
by its managed element. We have found that changes in
the workload are predictable and can be discovered by
analyzing historical data [8]. We can therefore build a
prediction model of the workload behaviour and perform
selective monitoring guided by the prediction model.

5. Conclusions

Autonomic computing is a promising approach to

managing complex systems like DBMSs. An autonomic
DBMS, however, must understand several key aspects of
its workload, including composition, frequency patterns
and intensity, and must maintain different
characterizations, or models, of the workload to support its
various kinds of decision-making.

In this paper, we examine the different uses of
workload models in an ADBMS and classify workload
models as either exploratory or confirmatory. Exploratory
models provide a compact representation of the workload
as a whole. They are primarily used as input to prediction
models in the analysis and planning tasks carried out by an
ADBMS. Confirmatory models are typically used to detect
certain conditions and so trigger specific actions in the
analysis task. We describe examples of both types of
models from our own research in ADBMSs.

We argue that techniques to effectively store and
maintain workload models are critical to the viability of
ADBMSs. We envision an infrastructure that builds upon
the notion of an autonomic element (e.g., ADBMS) so that
the workload models are stored and maintained by the
autonomic manager. Several issues must be addressed in
providing this infrastructure. The first issue is how to
describe and store the workload models. We have
developed particular methods for each model but a general
solution is required. The second issue is how to provide
effective and efficient monitoring of the managed element.
An approach we are studying is to develop prediction
models that highlight important events in the behaviour of
the workload and so focus the use of monitoring around
these events. The third issue is how to perform effective
incremental maintenance of the models. We need methods
by which recent data can be used to incrementally
improve our models and thus avoid the need for storing
potentially large amounts of data in order to periodically
recreate the models from scratch. We believe that data
stream mining is a promising source for these methods.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Acknowledgements

The authors thank other members of the Database
Systems Research Lab, specifically Wendy Powley, Xilin
Cui, Xiaoyi Xu, and Hamzeh Zawawy. They also thank
David Skillicorn and their collaborators at IBM,
specifically Berni Schiefer, Sam Lightstone, Haider Rizvi
and Randy Horman. Finally, the authors gratefully
acknowledge the support of IBM Canada Ltd., the
National Science and Engineering Council of Canada
(NSERC) and Communication and Information
Technology Ontario (CITO).

References

[1] S. Agrawal, S. Chaudhuri and V. Narasayya. “Automated
Selection of Materialized Views and Indexes,” Proc. of 26th Int.
Conf. on Very Large Databases, Cairo, Egypt, September 2000.
[2] P. Bernstein, M. Brodie and S.Ceri, et al., “The Asilomar
Report on Database Research,” ACM SIGMOD Record, Vol 27,
No. 4, pp. 74-80, Dec. 1998.
[3] K. Brown, M. Carey and M. Livny, “Goal Oriented Buffer
Management Revisited,” ACM SIGMOD Record, Vol 25 No. 2,
pp. 353 – 364, June 1996.
[4] S. Chaudhuri, G. Weikum, “Rethinking Database System
Architecture: Towards a Self-Tuning RISC-Style Database
System,” Proc. of 26th Int. Conf. on Very Large Databases,
Cairo, Egypt, pp 1-10, Sept. 2000.
[5] X. Cui, P. Martin and W. Powley, “A Study of Capacity
Planning for DBMS and OLAP Workloads”, Proc. of the
Computer Measurement Group’s 2003 International Conference,
Dallas TX, December 2003.
[6] P. Domingos and G. Hulten. “Catching Up with the Data:
Research Issues in mining Stream Data”, Proc. Of 2001 ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, Santa Barbara CA, May 2001.
[7] S. Elanffar, P. Martin and R. Horman, “Automatically
Classifying DBMS Workloads” Proc of 11th International
Conference on Information and Knowledge Management
(CIKM), November 2002.
[8] S. Elnaffar and P. Martin, “An Intelligent Framework for
Predicting Shifts in the Workloads of Autonomic Database
Management Systems”, Proc of 2004 IEEE International
Conference on Advances in Intelligent Systems – Theory and
Applications, Luxembourg, November 2004.
[9] G.H. Golub and C.F. van Loan, Matrix Computations,
Johns Hopkins University Press, 3rd edition, 1996.
[10] IBM, DB2 Universal Database,
http://www.software.ibm.com/data/db2/udb.
[11] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing” IEEE Computer, Vol. 36, No. 1, pp. 41-50, Jan.
2003.
[12] T.G. Kolda and D.P. O'Leary. "Computation and uses of
the semidiscrete matrix decomposition", ACM Transactions on
Information Processing, 1999.
[13] P. Martin, W. Powley, M. Zheng and K. Romanufa.

Experimental Study of a Self-Tuning Algorithm for DBMS
Buffer Pools. Journal of Database Management 16(2), pp. 1 –
20, 2005.

[14] D. Menascé, V.A.F. Almeida, and L. Dowdy. Capacity
Planning and Performance Modeling: From Mainframes to
Client-Server Systems, Prentice Hall, 1994
[15] M. Mowbray and A. Bronstein. “What kind of self-aware
systems does the Grid need?”, HP Laboratories Bristol, HPL-
2002-266 (R.1), February, 2005.
[16] Transaction Processing Performance Council, TPC
Benchmark H Standard Specification, Revision 2.1.0
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.
[17] Transaction Processing Performance Council, TPC
Benchmark W (Web Commerce) Standard Specification Revision
1.7, October 2001.
[18] G. Valentin, M. Zuliani, D. Zilio, G. Lohman and A.
Skelly. “DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes,” Proceedings of Int. Conf. on Data
Engineering, San Diego, California, pp. 101-110, February 2000.
[19] T. Wasserman, P. Martin and H. Rizvi, “Sizing DB2 UDB
Servers for Business Intelligence Workloads”, Proc. of IBM
Centre for Advanced Studies Conference (CASCON 2004),
Toronto ON, pp. 135 – 149, October 2004.
[20] T. Wasserman, P. Martin, D. Skillicorn and H. Rizvi,
“Using a Characterization of Business Intelligence Workloads for
Sizing New Database Systems”, Proc of ACM Seventh
International Workshop on Data Warehousing and OLAP
(DOLAP 2004), Washington D.C., pp. 7 – 13, November 2004.
[21] X. Xu, P. Martin and W. Powley, “Configuring Buffer
Pools DB2 UDB”, Proc. of IBM Centre for Advanced Studies
Conference (CASCON 2002), Toronto ON, pp. 171 – 182,
October 2002.
[22] H. Zawawy, P. Martin and H. Hassanein, “Capacity
Planning for DB2 UDB”, Proc. of IBM Centre for Advanced
Studies Conference (CASCON 2002), Toronto ON, pp. 89 – 97,
October 2002.
[23] Q. Zhu, B. Dunkel, W. Lau, S. Chen and B. Schiefer,
“Piggyback Statistics Collection for Query Optimization:
Towards a Self-Maintaining Database Management System”, The
Computer Journal, Vol.47, No.2, pp. 221 – 243, 2004.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

