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Abstract
Cloud vendors provide ready-to-use distributed DBMS so-
lutions as a service. While the provisioning of a DBMS is
usually fully automated, customers typically still have to
make important design decisions which were traditionally
made by the database administrator such as finding an op-
timal partitioning scheme for a given database schema and
workload. In this paper, we introduce a new learned partition-
ing advisor based on Deep Reinforcement Learning (DRL)
for OLAP-style workloads. The main idea is that a DRL agent
learns the cost tradeoffs of different partitioning schemes
and can thus automate the partitioning decision. In the eval-
uation, we show that our advisor is able to find non-trivial
partitionings for a wide range of workloads and outperforms
more classical approaches for automated partitioning design.
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1 Introduction
Motivation: Providing data solutions as a service is a grow-

ing field in the cloud industry. Cloud platforms such as Ama-
zon Web Services or Microsoft Azure provide multiple ready-
to-use scale-out DBMS solutions for OLAP-style workloads
as a service. Using these services, customers can easily de-
ploy a database, define their database schema, upload their
data and then query the database using a cluster of machines.
While the provisioning is usually fully automated, many
design decisions which were traditionally made by the data-
base administrator remain a manual effort. For example, in
Azure’s Data Warehouse but also in Amazon Redshift cus-
tomers have to choose a partitioning attribute of a table
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to split large tables horizontally across multiple machines.
Partitioning the database can dramatically improve the per-
formance of analytical workloads since data-intensive SQL
queries can be farmed out to multiple machines.
While partitioning a database in an optimal manner is

a non-trivial task it has a significant impact on the over-
all performance. For example, analytical queries typically
involve multiple joins over potentially large tables. If two
tables are co-partitioned on the join attributes they can be
joined locally on each node avoiding costly network trans-
fers. Deciding for complex schemata with many tables and
possible join paths which tables should be co-partitioned is
a non-trivial task since this not only depends on the schema
but also other factors such as table sizes, the query workload
(i.e., which joins are actually important and how often ta-
bles are joined), or hardware characteristics such as network
speed and of course the database implementation itself.
There exists already a larger body of work to automate

the physical design of distributed DBMSs including the data
partitioning [4, 24, 31]. These advisors formalize the problem
as an optimization problem and thus rely on cost models to
estimate the runtime of queries for different partitionings.
However, this approach is unsuitable for a cloud providers:
First, cloud providers typically allow customers to deploy
their DBMS solutions on various hardware platforms which
renders the problem of acquiring exact cost models a chal-
lenge on its own. Secondly, even if the cost model is tuned for
a given hardware platform, optimizer cost estimates are still
often notoriously inaccurate [16] resulting in non-optimal
partitioning designs if existing automated design approaches
are used as we show in our experiments.
Contributions: In this paper, we propose a different route

andmake the case to use Deep Reinforcement Learning (DRL)
to realize a cloud partitioning advisor as a service that can be
used for internal and external DBMS solutions. The advan-
tage for DRL is that a DRL agent learns by trial and error, and
thus they do not rely on the fact that an accurate cost model
is available. Instead, by deploying different partitionings and
observing query runtimes, they learn the tradeoffs for vary-
ing workloads. Once trained, our learned advisor can be
queried to obtain a partitioning for the observed workload.

One could now argue that instead of learning a DRL agent,
we could simply learn a neural cost model that predicts the
runtime for different partitionings and then use an optimiza-
tion procedure similar to [24] to select a suitable partitioning.
Recently, learned cost models have also been used for query
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Figure 1: Overview of DRL-based approach to Learn a Cloud Partitioning Advisor.

optimization [20] or cardinality estimation [13]. The main
reason whywe use DRL for the partitioning problem is that it
inherently addresses the exploitation vs. exploration tradeoff
(i.e., it efficiently navigates the space of possible partitionings
instead of relying, for example, on naïve random sampling
from the space of possible solutions to collect training data).
This is especially important for learned cost models, where
collecting training data can be immensely expensive since a
representative set of queries has to be executed over a po-
tentially large database. In our case, the high training costs
are amplified since we need to run the same set of queries
over a representative set of different partitionings of the
database where repartitioning itself is a costly operation.
The exploration/exploitation behavior of DRL thus helps us
concentrating on “promising” partitionings by exploitation
and repartitioning intelligently if we explore (i.e., we try out
promising partitions in the neighborhood first). This gen-
eral advantage of RL was exploited in the data management
community for similar problems as well [21, 36].

To summarize, we make the following contributions:

(1) We first formalize a framework that translates the par-
titioning problem to a DRL problem.

(2) We present a two-step learning procedure to efficiently
reduce the training time of our DRL agent that first
bootstraps a DRL agent offline (with a simple network-
centric cost model) and then refines the agent online
by actually running real workloads.

(3) Moreover, we propose an extension that makes use
of a committee of DRL agents to improve the adaptiv-
ity of our approach for dynamic workloads. This also
allows us to extend the advisor using an incremental
approach if new queries are added to the workload or
the database schema changes.

(4) In our evaluation, we show that our approach can
handle a variety of different database schemata and
workloads. We also compare our approach to classi-
cal optimization-based approaches and show that our
approach is able to find non-obvious solutions that

outperform classical optimization-based approaches
even if accurate cost estimates would be available.

Outline: The remainder of this paper is organized as fol-
lows: First, in Section 2 we provide an overview of our ap-
proach to use DRL to learn a partitioning advisor. In Section
3, we formalize the partitioning problem as a DRL problem
before we introduce our training procedures in Section 4. We
then explain how to obtain partitionings at inference time
in Section 6, explain optimizations for workload changes in
Section 5 and present the results of our experimental evalua-
tion in Section 7. Finally, we conclude with related work in
Section 8 and a summary in Section 9.

2 Overview
The basic idea of this paper is to train a Reinforcement Learn-
ing (RL) agent for each cloud customer that learns the trade-
offs of using different partitionings for a given database
schema for different workloads. Learning these tradeoffs
is appealing since cost models are known to be notoriously
inaccurate [16] and would thus over- or underestimate the
benefits of certain partitionings. To this end, we propose to
train a DRL agent that learns the tradeoffs of using different
partitionings and thus can be used to suggest a partitioning
for a given customer workload. An overview of our approach
is depicted in Figure 1.

In order to make use of our learned partitioning approach,
the customer only needs to provide the DBMS (schema and
data) and a sample workload that reflects the set of typical
queries in a production workload. Based on this information,
we train a DRL agent in an offline- and online phase (step
1 and 2). After training, the DRL agent can then be used in
the production DBMS to decide which partitionings to de-
ploy by monitoring the actual workload (observed workload).
Changes in the workload might then trigger the DRL agent
to suggest new partitionings that are more suited for a given
workload (without retraining the agent).

In the following, we describe the high-level design of our
training procedure for the DRL agent which is the core contri-
bution of this paper. A detailed discussion about the training
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procedure can be found in Section 4. In general, DRL agents
learn by interacting with an environment by choosing ac-
tions and observing rewards which they seek to maximize.
In our setup, the environment is the DBMS which the agent
manipulates with actions that change the partitioning of
individual tables. During the training phase, the agent learns
to minimize the runtime of a given workload consisting of
a mix of representative queries. In the training phase, the
agents thus learns the effects of different partitionings on
individual query latencies.
Naïvely, we could train the agent on the customer data-

base directly but this would require a high effort to collect
the training data. For instance, repartitioning a large data-
base table can take several minutes to complete. During the
training phase the agent requires several of these actions
to learn the effects. We therefore separate the training pro-
cess into two phases: (1) offline and (2) online training. In
the offline training phase, the agent solely interacts with a
“simulation” of the customer database. Since the network is
typically the bottleneck of distributed joins, we developed a
simple yet generic cost model focused on the network over-
head required to answer a query given a certain partitioning.
In combination with the metadata (schema and table sizes)
about the customer database, we can estimate the query costs
given a partitioning in our simulation. These estimates are
used as rewards for the agent. Though not precise, this boot-
straps the agent and enables it to already find a reasonable
partitioning given a production workload (i.e., a mix of SQL
queries). In our experiment, we show that a DRL agent using
this approach is already able to find partitionings that are on
par with traditional optimization-based partitioning advisors
that rely on DBMS internal cost models.

In an optional online training phase, the agent then does
not just interact with a simulation but with a real database.
However, instead of using the complete database we only
use a sample of the data to speed-up this step of the training
phase. The benefit of this phase is that it does not depend
on the accuracy of our simple network-centric cost model
anymore. Instead, we can simply measure the runtimes of
queries on the sampled database to compute the rewards
of the agent. Consequently, the agent learns the effects of
partitionings more accurately.
Once the training is completed, we finally use the agent

to make actual partitioning decisions. As input, it requires a
workload, i.e. which queries were submitted in a certain time
window. Based on this workload, the agent suggests parti-
tionings which we deploy on the actual customer database.
In many cases, the agent can be used directly to suggest an
optimized partitioning without any further training. How-
ever, in case the database schema changes or completely new
classes of queries occur in a workload our advisor needs to

be retrained. In order to optimize for this case, we provide an
incremental training procedure that we discuss in Section 5.

3 Partitioning as a DRL Problem
As discussed before, in this paper we use DRL to tackle the
partitioning problem of databases. While DRL is typically
used for sequential decision making, it has successfully been
applied to solve classical combinatorial optimization prob-
lems [5, 12, 26] as well. The intuition of this paper is similar
since the partitioning problem is indeed a combinatorial op-
timization problem. The main reason why RL has proven to
be beneficial when applied to optimization problems is that
it efficiently tackles the exploitation vs. exploration tradeoff
(i.e., it more efficiently navigates the space of possible solu-
tions instead of relying, for example, on naïve greedy search).
This is especially important in our domain where collecting
training data can be extremely expensive since a represen-
tative set of queries has to be executed over a potentially
large database. We now discuss the required background on
Deep Reinforcement Learning (DRL) before we show how
the partitioning problem can be formulated as a DRL prob-
lem including how we featurize the DBMS schema and a SQL
workload.

3.1 Background on DRL
In Reinforcement Learning (RL), an agent interacts with an
environment by choosing actions. Specifically, at each dis-
crete time step t , the agent observes a state st . By choosing
an action a ∈ A, it transitions to a new state st+1 and obtains
a reward rt . Mathematically, this can be modeled as Markov
decision process. The way the agent picks the actions de-
pending on the state is called policy π . The goal of the agent
is to maximize the rewards over time. However, the greedy
policy, i.e. selecting the action with the highest immediate
reward, might not be the best strategy. Instead, the agent
might select an action that enables higher rewards in the fu-
ture. Consequently, when selecting actions the agent should
always keep the long-term rewards in mind [34].

One approach to solving this problem is Q-learning. With
the Q-function, the expected discounted future rewards are
approximated as follows if we pick actiona at state s :Q(s,a) =
E
(∑∞

t=0 rt (st ,at )γ
t |s0 = s,a0 = a

)
. In Q-learning, the rewards

are discounted with a factor γ < 1 to account for a higher
degree of uncertainty for future states. The Q-function is
learned during training. Note that if the approximation is
good enough we can choose an optimal action for a state s
as argmaxa∈AQ(s,a).
During training we also have to select random actions

such that there is a tradeoff between exploration and ex-
ploitation what we have learned so far. Usually, exploration
is realized by picking a random action with probability ϵ .
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This probability is decreased over time [34] by multiplication
with a factor called epsilon decay.

There are different ways of realizing the Q-function. For
Deep Q-learning [23] (or Deep Reinforcement Learning), a
neural networkQθ (s,a)withweightsθ is used for the approx-
imation. Having observed a state st and an action at , the cor-
responding immediate reward rt and the future state st+1 the
network is updated via Stochastic Gradient Descent (SGD)
and the squared error loss (rt + γ argmaxa∈AQ(st+1,at ) −
Q(st ,at ))

2. The intuition is that the expected discounted fu-
ture rewards when selecting action at in step t should be the
immediate reward rt together with the maximum expected
discounted future rewards when selecting the best action a in
the next step t+1 discounted byγ , i.e. argmaxa∈AQ(st+1,at ).

3.2 Problem Modeling
In order to formulate the partitioning problem as a DRL
problem we model the database and the workload as state
and possible changes in the partitioning as actions. Rewards
correspond to the gain in performance for a given workload.
During training, the agent thus learns the impact of different
partitionings on the workload. Figure 2 shows an example
of our encoding for a simple database with three tables and
a workload with two queries.

Partitioning State: The most important part of the state is
to model a partitioning for a given database. For simplicity,
we assume that only one partitioning scheme is used (e.g.,
hash-partitioning) that horizontally splits a table into a fixed
number of shards (which is equal to the number of nodes
in the database cluster). Moreover, replicated tables are also
copied to all nodes in the cluster. In fact, these are the parti-
tioning / replication options supported by the two DBMSs we
used in our evaluation. However, in general our approach can
easily be extended to more complex partitioning schemes as
well. Following the assumptions that a table Ti can either be
replicated or alternatively partitioned by one of its attributes
ai1,ai2, . . . ,ain , we can encode the state as a binary vector us-
ing an one-hot encoding s(Ti ) =

(
ri ,ai1,ai2, . . . ,ain

)
,where

ri encodes whether a table is replicated and the remaining
bits indicate whether an attribute is used for partitioning.
For instance, if the part table in Figure 2a is replicated, its
state vector is (r3,a31) = (1, 0) whereas the customer table
is partitioned by the attribute a21 and the resulting vector is
(r2,a21) = (0, 1) (as shown in in Figure 2b).
To reduce the exploration of sub-optimal partitionings,

we further extend the state representation making it ex-
plicit which tables are co-partitioned, i.e., the partitioning
attributes of the tables match their join attributes. For in-
stance, if the customer and lineorder table in Figure 2 are
partitioned by the attributes lo_custkey and c_custkey re-
spectively, we can join them locally on each node without

shuffling. To explicitly encode co-partitioning we introduce
the concept of edges; i.e., if an edge between a pair of join
attributes air and ajs of the corresponding tables Ti and
Tj is activated, it guarantees co-partitioning. For instance,
since the edge e1 in Figure 2b is active the customer and
lineorder tables are co-partitioned. The fixed set of possi-
ble edges E can easily be extracted from the given schema
and workload (i.e., all possible join paths). Since every edge
can either be active or inactive, the edge states can be repre-
sented as a fixed-size binary vector. To represent the features
for the partitioning of a database with multiple tables as
input for our Q-Network, we append the state vectors of all
tables. For instance, the edge vectors and individual table
vectors of Figure 2b are appended in Figure 2c and fed into
the Q-network. Since this input is of fixed length, we are able
to use a feed-forward neural network to predict the Q-value.

Workload State:Moreover, we need to model the workload
as part of the state since for the same database schema, dif-
ferent workloads result in different partitioning strategies
that should be selected. Formally, a workload is a set of SQL
queriesQ1,Q2, . . . ,Qn . One way to model the workload is to
encode each query using different one hot encoded vectors,
i.e., one vector for the set of tables, join predicates, where
conditions etc., similar to [13, 33]. However, this modeling
approach assumes that only queries of a typical pattern occur
(e.g., queries without nesting) and thus this approach is not
suited for our approach since a partitioning advisor should
be trained on arbitrary workloads where the query patterns
are not known in advance and complex queries involving
nested queries and complex predicate conditions appear.
Encoding nested queries with the featurization as pro-

posed in [13, 33] would be in general possible but result in
an overly complex encoding with many more input vectors
and a neural network structure which requires an extensive
training. However, a more complex encoding is still only
able to represent a fixed class of queries. Moreover, more
complex encodings typically require orders of magnitude
more training data.
We thus take a different route to featurize the workload

based on the observation that OLAP workloads are typically
composed of complex but recurring queries. We assume that
a representative set of possible queries qi in a workload of
queries Q is known in advance which is not uncommon in
OLAP workloads. To encode a specific workload, we use a
vector where an entry encodes the current normalized fre-
quency fi of a query qi : s(Q) =

(
f1, . . . , fm

)
. That way, the

input state can represent different query mixes. For example,
since the query q2 occurs twice as often as the query q1 the
frequency vector becomes (0.5, 1) in Figure 2b.

Moreover, completely new queries can be supported in our
state encoding without the need to train a new DRL agent
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Figure 2: State Representation of Simplified SSB Schema and Workload.

from scratch. One case that we typically see in analytical
workloads is that the same query is used with different pa-
rameter values resulting in different selectivities. In order
to support this case, we bucketize queries into classes with
different selectivity ranges and use different entries in s(Q);
i.e., one for each bucket. That way, if a query is used with
a new set of parameter values, it is supported by finding
the corresponding entry in s(Q) and increasing the query
frequency fi . For supporting completely new SQL queries
and not just new parameter values of existing queries in the
workload, we provide entries in s(Q) that are initially set to
0 (i.e., no query of this type occurs in the workload) and use
those entries for new queries if they occur. We support this
case in our approach by using a committee of DRL agents
that we can extend incrementally. As we show in our experi-
ment in Section 7, the time required for this is only a small
fraction of the original training time.

Actions:A small state space is essential to applyQ-learning
because we have to compute the Q-values for all possible
actions to decide which action to execute in a state. We de-
signed the actions to affect at most the partitioning of a
single table. More precisely, we support two types of actions:
(1) partitioning a table by an attribute or (2) replicate a ta-
ble. During training, the RL agent can only select one of
these actions at each step. This reduces the repartitioning
costs during training since similar partitionings are observed
successively.

In addition, we provide an action for (de-)activating edges
as a short-cut to change the partitioning. Intuitively, activat-
ing an edge co-partitions two tables while the de-activation
of edges allows follow-up actions to choose a new strategy
(e.g., replication discussed above). It is important that the set
of edges to be activated is conflict-free. For this, we solely
allow to activate an edge if there are no two edges which
require a table Ti to be partitioned by different attributes air
and air ′ . For example, edge e2 cannot be activated in Figure

2 because e1 is already active. First, the conflicting edge e1
would have to be deactivated.

An action a is encoded similarly to the partitioning and
workload state: we use appended one-hot encoded vectors to
capture the information required for an action, i.e., the kind
of action (replicate, partition, (de-) activate an edge etc.), the
affected table and attribute as well as the (de-)activated edge.
Both the state s and an action a are then used as input for
the neural network to predict the Q-value Q(s,a).

Rewards: The overall goal of the learned advisor is to find
a partitioning that minimizes the runtime for the workload
mix (queries and their frequencies) modeled as part of the
input state. This objective has to be minimized by the DRL
agent and can be used as a reward. Estimates of the sim-
ple network-centric cost model cm(P ,qi ) for the queries qi
given a partitioning P are used for the offline training and ac-
tual runtimes cr (P ,qi ) for the online training. Since the DRL
agents seeks to maximize the reward, we use negative costs
in the reward definition resulting in r = −

∑m
j=1 fjc(P ,qj ).

We decided to exclude the costs of repartitioning the data-
base as rewards into our learning procedure since we aim for
setups where we expect that repartitioning does not happen
that often and can be executed in the background especially
for OLAP workloads and thus does not have a negative effect
on the actual workload execution. In case repartitionings
should be used more frequently, these cost should be in-
cluded into the rewards to prefer repartitionings that can be
applied with less cost.

4 Training Procedure
In the following, we discuss the details of the offline and
the online phase of our DRL-based training procedure. At
the end of this section, we further discuss optimizations of
our approach that allow us to provide a higher accuracy for
changing workloads (i.e., if the frequency of queries change)
and to incrementally add new unseen queries (and tables).
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4.1 Phase 1: Offline Training
For training a partitioning advisor, the DRL agent interacts
with the state reflecting the current partitioning by selecting
different actions and observing rewards as described before
in Section 3. During the offline training phase, the database
partitioning is simulated and the runtimes are estimated us-
ing our network-centric cost model cm(P ,qi ) approximating
computation and network transfer costs of a given query qi
for a partitioning strategy P . In particular, similar to an opti-
mizer the cost model enumerates different join orderings. For
each individual join in the plan, it estimates the optimal join
strategy (symmetric repartitioning join, symmetric reparti-
tioning join, broadcast single table or co-located join) and
the resulting network and computation costs. The sum of the
costs is finally returned as cost estimate for the query. In our
experiments, we show that based on this simple network-
centric cost model, we can already train an DRL agent that
is able to suggest reasonable partitionings.
Using our simple network-centric cost model as well as

the state/action representation introduced before, we can
train the DRL agent as described in Algorithm 1. The training
is divided into sequences of states and actions of length tmax
called episodes. The selected actions change the partitioning
used for the cost estimation cm(P ,qi ). Similar to typical RL
implementations, the DRL agent returns to the state s0 at the
end of every episode. To guarantee that the DRL agent can
find a suitable partitioning we have to make sure that it can
reach any other partitioning within tmax steps starting from
the initial partitioning s0. Since for every table we need just
one action to partition it by any attribute or to replicate it,
any state can be reachedwithin at most |T | actions (where |T |
denotes the number of tables in the schema). Hence, we need
to set tmax ≥ |T |. However, as tmax influences the training
time it is also a hyperparameter and can similarly be tuned.

4.2 Phase 2: Online Training
In contrast to offline training, the idea of online training
is to deploy the partitionings Pi on a database cluster and
measure the true runtimes cr (Pi ,qi ) to compute the reward.
However, the naïve approach is way too expensive to be used
in practice. Imagine for example that we need 1200 episodes
for training each having tmax = 100 steps. Assume we have
just a few queries and a small schema such that the total
workload takes around 20 minutes and the repartitioning
takes another 20 minutes on average. If we simply executed
every action, i.e., we repartition the tables and measure the
workload runtimes on a cluster, we would end up with a
runtime of (20mins + 20mins) ∗ 1200 ∗ 100 ≈ 9years.
Therefore, online training is intended to (only) serve as

refinement in addition to offline training. This has no effect
if we use the same degree of exploration, i.e. if we choose

Algorithm 1 Offline Training
1: Randomly initialize Q-network Qθ
2: Randomly initialize target network Qθ ′

3: for e in 0, 1, . . . , emax do ▷ Episodes
4: Reset to state s0
5: for t in 0, 1, . . . , tmax do ▷ Steps in Episode
6: Choose at = argmaxa Qθ (st+1,a) with

probability 1 − ε, otherwise random action
7: Execute action at (i.e., simulate what the next

state st+1 and partitioning Pt+1 would be)
8: Compute reward with cost model cm :

rt =
∑m
j=1 fjcm (Pt+1,qj )

9: Store transition (st ,at , rt , st+1) in B
10: Sample minibatch (si ,ai , ri , si+1) from B
11: Train Q-network with SGD and loss∑b

i=1(ri + γ argmaxa∈AQθ ′(si+1,a) −Qθ (si ,ai ))
2

12: Decrease ε
13: Update weights of target model: θ ′ = (1 − τ )θ ′ + τθ

random actions with the same probabilities 1 − ε . Note that
ε is multiplied with a certain factor called epsilon decay after
every episode to decrease it over time. For online training,
we start with the ε value that we would reach after 600
episodes (i.e. half of the usual amount of episodes) in the
offline phase. This already significantly reduces the training
costs as we will show in our experiments. However, this does
not suffice to effectively reduce the time of the online phase
in practice. We therefore use further optimizations which
aim to minimize the online training time of the DRL agent
as discussed next.

Sampling: Instead of using all tuples of a database, we just
use a sample for every table. This speeds up both the run-
time of the queries and the time needed to repartition or
replicate any table. In addition, we found it useful not to
use the runtimes of a query cr (P ,qi ) directly but to multiply
this with a certain factor for every query. The intuition is
that some queries scale better than others on the full dataset.
Hence, runtime improvements of queries that scale better
and thus also run fast on the full dataset should weigh lower
than improvements of queries which are very slow on the
full dataset. To this end, we measure the runtimes of each
query qi for the partitioning Poffline found in the offline phase
once for the full dataset cfull(Poffline,qi ) and once for the sam-
ple csample(Poffline,qi ). Afterwards, we scale the costs for each
query qi with the corresponding factor Si =

cfull (Poffline,qi )
csample(Poffline,qi )

.

One question is how many tuples have to be sampled per
table, i.e. how the sampling rate is chosen. Higher sampling
rates result in a longer runtime of the online phase since
both the query runtimes as well the repartitioning times will
increase. In contrast, smaller sampling rates might lead to
suboptimal partitionings. This can happen if partitionings
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P ′ have shorter weighted runtimes Sicsample(P
′,qi ) on the

sample than a superior partitioning P∗ for the full dataset. We
can account for these cases by selecting several partitionings
P1, . . . , Pn and measure their runtime both for the sample
and for the full dataset. If partitionings with shorter weighted
runtimes on the sample also lead to shorter runtimes on the
full dataset size the sampling rate is sufficient. If not, the
sample size has to be increased. As a simple heuristic one
can empirically determine a threshold below which table
sizes should not fall below after sampling. This guarantees
that tables have a certain minimum size. If this threshold
is large enough, optimal partitionings on the samples will
also be optimal on the full dataset with high probability. A
cloud provider could empirically determine this threshold
for every database and hardware setup.

Query Runtime Caching: If the DRL agent visits two states
si and sj during training which have the same corresponding
partitioning P , the runtimes do not have to be measured
twice. Hence, we can cache query runtimes to faster com-
pute recurring reward values. Additionally, if the partition-
ings of the states si and sj differ only for a certain set of
tables {Ti1,Ti2, . . . ,Tin} we only have to measure the run-
times of queries qi that contain at least one of these tables.
In particular, the runtime of every query qi containing the
tables {Ti1,Ti2, . . . ,Tin} depends only on the states of these
tables, i.e. s(Ti1), s(Ti2), . . . , s(Tin). Hence, for every query we
can maintain a table containing the different state combina-
tions s(Ti1), s(Ti2), . . . , s(Tin) and the runtime of the query
on the sample dataset. In summary, when visiting a new
state we examine the state of every table s(Ti ); i.e. whether
it is replicated or hash-partitioned by a certain attribute,
and run only the queries qi for which we do not have a
runtime entry for the state combination of relevant tables
s(Ti1), s(Ti2), . . . , s(Tin).

Lazy Repartitioning: The approach of lazy repartitioning
is to keep track of the partitioning deployed on the database
Pactual and the partitioning Pt of the state st the agent is cur-
rently at. Every time the agent chooses an action and we
reach a new state we first check which queries {qj1, . . . ,qjn}
have to be executed on the database. Especially in later
phases of training this will be significantly fewer queries
than the full set Q since many runtimes will be in the Query
Runtime Cache. For this set we determine the set of tables
{Ti1, . . . ,Tim} which are contained in these queries. Only if
Pactual and Pt do not match for one of the tables, we actually
repartition the table.
Timeouts: The idea of this optimization is that a parti-

tioning where a single query exceeds a certain time limit
cannot be optimal. Hence, we can safely abort the query
execution and move on with training. Recall that the re-
ward for a partitioning P for online training is defined to be

r = −
∑m

j=1 fjSjcsample(P ,qj ).We can similarly compute the
(online) reward roffline of the partitioning Poffline found in the
offline phase. If a query qi takes longer than −roffline/(Si · fi )
we can safely abort it since the corresponding partitioning
will definitely result in a lower reward. If we are aware of a
partitioning with an even higher reward r ′, the timeout can
further be reduced to −r ′/(Si · fi ).

5 Optimizations for Workload Changes
In the following, we discuss two enhancements for training
the partitioning advisor: (1) using a committee of experts
rather than a single agent to further increase the capacity
for workloads with many tables and queries, (2) using incre-
mental training to adjust a learned advisor if new queries
occur in the workload.
Committee of Experts: The main goal of our approach is

to train a DRL agent just once such that it generalizes over
different workload mixes (i.e., different query frequencies).
If the workload mix changes, we want to use inference of
the trained DRL agent and obtain a new partitioning that
works better for the new workload mix.

A more advanced approach enabling more accurate results
for a wide variety of workloads (i.e., large query sets) is not
to train only a single RL agent to suggest partitionings for all
possible frequency vectors but to use several expert models
for subsets of all possibleworkloadmixes. Usingmoremodels
allows experts to specialize on certain aspects of the problem
and moreover increases the overall capacity of the model.
The related ensemble approach is a common optimization
in machine learning to optimize the model performance.
The question is how the workload space can be partitioned
efficiently into different expert models. In the following, we
explain our approach called DRL subspace experts.

The main idea of DRL subspace experts is to first obtain so
called reference partitionings P̃1, · · · P̃n which are optimized
for certain workloads. To find these, we use the inference
procedure of the naïve model (i.e., the RL agent which was
trained for the whole workload space) and ask this agent for
the optimal partitioning usingm frequency vectors where
one queryqi is over-represented: f1, . . . , fi−1, fi , fi+1, . . . , fm
with fj = flow for j ∈ {0, 1, . . . , i − 1, i + 1, . . . ,m} and
fi = fhiдh . The main intuition is that individual queries
might favor opposing partitioning strategies that we aim to
simulate by “extreme” frequency vectors. Since many queries
share the same reference partitioning, the number of distinct
partitionings n is much smaller than the number of queries
m (i.e., n << m). The distinct partitionings resulting from
this step is the set of reference partitionings P̃1, · · · P̃n .
For example, for a given workload with 10 queries we

would sample 10 frequency vectors each representing a work-
load were one query is over-represented. We then use these
to obtain the reference partitionings from a naïve model
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with only one agent. Based on these 10 frequency vectors,
we might end up having just three different reference parti-
tions P̃1, P̃2 and P̃3.
Once we determined the reference partitionings, we can

separate the workload space, i.e. the set of different frequency
vectors. We say that a frequency vector (f1, . . . , fm) belongs
to the frequency subspace of one of these reference partition-
ings P̃i if P̃i = argmaxP̃ ∈{P̃1, · · ·P̃n } −

∑m
j=1 fjSjcsample(P̃ ,qj ),

i.e., if the reward of the naïve RL agent is the maximum
among P̃1, · · · P̃n for this frequency vector. Afterwards, we
then train one DRL agent for each of these subspaces. The
resulting DRL agents can be considered experts for their
frequency subspace. For each of the frequency subspaces the
training is similar to training the DRL agent for the naïve
approach. The only difference is that the DRL agents are
only trained for frequencies of their dedicated subspace. One
problem is how to sample more frequency vectors from the
same subspace. To obtain frequency vectors for different
subspaces, we sample frequencies uniformly and assign each
frequency vector to the DRL agent for the respective refer-
ence partitioning P̃i .

An important aspect is that the training of these subspace
expert models does typically not require any actual execu-
tion of queries on the database cluster since we can reuse
query runtimes in the Query Runtime Cache of the naïve
approach. When training the subspace expert models, how-
ever, we might encounter partitionings that were not seen
when training the naïve model. For these cases, we have no
entries in the Query Runtime Cache and the queries need to
be actually executed. However, these cases are rare since the
naïve agent visits all optimal or near-optimal partitionings
with high probabilities already.

Incremental Training:A final interesting aspect of our on-
line approach is that we can easily support new queries by
incremental training. The main idea is that if new queries are
added to a workload, we do not have to train a new model
from scratch. Instead, we add new inputs representing the
query frequencies to the input state of the naïve model and
retrain it only with frequency vectors that include the new
queries. Again, the Query Runtime Cache can be reused and
we only require actual runtimes for the new queries. After-
wards the naïve model can be used again to obtain the new
reference partitionings. Only if a new reference partition-
ing is found, we have to train a new expert agent for that
subspace. Otherwise, it is sufficient to refine the existing
subspace experts with the cached query runtimes.

6 Model Inference
Having trained the learned partitioning advisor, we now de-
scribe how it can be used to suggest a partitioning. This can
either be the case if an initial partitioning of the database

should be suggested or the workload changes. We first as-
sume that only one DRL agent is trained before we explain
how the inference works if a committee of experts is used.

Inference with one DRL agent:We assume that a frequency
vector is given that represents the current workload mix. The
intuition is to fully exploit the knowledge of the trained agent
by always selecting the partitioning action with maximum
expected future rewards, i.e. the highest Q-value.

When applying the inference procedure, we always start
with the same initial state s0 also used during training. From
the initial state s0,we iteratively choose the action that maxi-
mizes the Q-function, i.e., at = argmaxa Qθ (st+1,a). For this,
we enumerate all possible actions in that state and evalu-
ate the neural network for each action. Since we designed
the action space to be small, this is very efficient. Every
time we choose an action, this changes the state s and thus
the partitioning. Note that we do not have to deploy ev-
ery state in this sequence. Instead, we use the same simu-
lation that is also used in the offline phase. Consequently,
we execute tmax actions and thus obtain a sequence of ac-
tions (s0,a0, r0, s1, . . . , stmax ,atmax , rtmax). Afterwards, we do
not simply suggest the partitioning represented by the last
state stmax , since the DRL agent tends to oscillate around the
best partitioning P∗ (i.e, the partitioning with the highest
reward is not necessarily represented by the last state). In-
stead, we identify the state st in the sequence above with a
maximum reward and return the corresponding partitioning
P∗.

Inference with a committee of DRL agents: If we want to
obtain a new partitioning when a committee of experts was
trained, we first determine which subspace P̃i of the fre-
quency space the vector belongs to: P̃i = argmaxP̃ ∈{P̃1, · · ·P̃n }
−
∑m

j=1 fjSjcsample(P̃ ,qj ). The DRL agent is selected by choos-
ing the DRL agent for the reference partitioning with the
lowest estimated runtime (which is the same procedure we
use when training the expert models). Afterwards, we use the
inference procedure discussed before with the corresponding
expert model for P̃i .

7 Experimental Evaluation
In the following, we evaluate the benefits of using learned
partitioning advisors for databases with schemas of varying
complexity. We study the following aspects of our approach:

(1) Performance after Offline Training. In the first ex-
periment (Section 7.2), we validate that DRL agents
that are trained purely offline find partitionings out-
performing typical heuristics and are competitive with
those found by state-of-the-art partitioning advisors.

(2) Improvement due toOnlineTraining. Furthermore,
if additionally trained online, the DRL agent clearly
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outperforms state-of-the-art systems and finds non-
obvious partitionings with superior runtime as we
demonstrate in our second experiment (Section 7.3).
We moreover study the isolated runtime savings of our
suggested optimizations of the online phase.

(3) Adaptivity to Data andWorkload. Another benefit
of our approach is the flexibility w.r.t. changes in the
workload (Section 7.4). Hence, in the third experiment
we first show that the committee of experts can suggest
partitionings that improve over the naïve model for
changing workloads. Furthermore, we examine the
additional training time required if new queries are
added to a workload and the effect of database updates.

(4) Other Learned Approaches. We empirically vali-
date that using DRL for the partitioning problem is
superior to learning a neural cost model (Section 7.5)
which is minimized for a given workload to find suit-
able partitionings.

(5) Adaptivity to Hardware Characteristics. Finally,
in the last experiment (Section 7.6) we show that our
agent can also adapt to changes in the deployment (i.e.,
if hardware characteristics change) which is not trivial
with existing approaches.

7.1 Workloads, Setup and Baselines
For the experiments, we used different databases and work-
loads that we explain in the following. Moreover, we also
discuss the learning setup that we used for training the par-
titioning advisors as well as the baselines.
Data and Workloads:We evaluated the partitioning ad-

visor on three different database schemas and workloads
varying in complexity: (1) As the simplest case, we used the
Star Schema Benchmark (SSB) and its workload [25]. SSB
is based on TPC-H and re-organizes the database in a pure
star schema with 5 tables (1 fact and 4 dimension tables) and
13 queries. (2) The second database and workload we used
was TPC-DS [3]. TPC-DS comes with a much more complex
schema of 24 tables (7 fact and 17 dimensions tables) and 99
queries (including complex nested queries). For Postgres-XL,
which is one of the systems used in the evaluation, only
60 of the 99 queries could be executed due to restrictions
in which queries it supports. (3) In cloud data warehouses
such as Amazon Redshift, customers are not required to
use a star schema but can design an arbitrary schema for
their database. To test how well our learned advisor can
cope with more complex schemata which are not based on a
star-schema, we additionally used the TPC-CH benchmark
[11], which is the combination of the schema of the TPC-C
benchmark with analytical queries of the TPC-H schema
(adopted for the TPC-C schema). Originally, the TPC-CH
benchmark combines analytical queries and transactions in

Parameter Value
Learning Rate 5 · 10−4
τ (Target network update) 10−3
Optimizer Adam
Experience Replay Buffer Size 10000
Batch Size for Experience Replay 32
Epsilon Decay 0.997
tmax (Max Stepsize) 100
Episodes 600/1200
Network Layout 128-64
γ (Reward Discount) 0.99

Table 1: Hyperparameters used for DRL training.

a mixed workload. For the purpose of this paper, we only
used the analytical queries to represent the workload in our
evaluation. Furthermore, in the standard version of TPC-CH
all tables can be co-partitioned by the warehouse-id. While
our DRL agents also propose this solution when using the
original TPC-CH schema, we do not think that such a trivial
solution is realistic for many real-world schemata. Hence,
we further added complexity and decided to restrict possi-
ble partitionings such that tables cannot be partitioned by
warehouse-id only. For all benchmarks (SSB, TPC-DS, and
TPC-CH), we used the scaling factor SF=100.

Setup: The partitionings for different analytical schemas
were evaluated on two database systems. To show that our
learned approach is in general applicable to both disk-based
and memory-based distributed databases, we used Postgres-
XL 10R1.1 (a popular open-source distributed disk-based data-
base) [2] and System-X (a commercial distributed in-memory
database). For running the databases in a distributed setup,
we used CloudLab [1], a scientific infrastructure for cloud
computing research. For our experiments, we provisioned
clusters of different sizes ranging from 4 to 6 nodes. Each
node was configured to use 128GB of DDR4 main memory,
two Intel Xeon Silver 4114 10-core CPUs and a 10Gbps in-
terconnect. The partitioning advisor is built using neural
networks implemented in Keras. In particular, the neural net-
work to approximate the Q-functions used 2 hidden layers
with 128 and 64 neurons, respectively. We used the standard
ReLU activation function in every layer and a linear function
for the output (to represent the Q-value) which is a common
combination for DRL. An overview of all hyperparameters
which we found to work best for training can be seen in Ta-
ble 1. The only hyperparameter we changed for the different
databases was the amount of episodes we used to train the
model. Since SSB has a significantly lower amount of tables
and queries we only trained the DRL agents for 600 episodes
instead of 1200 episodes for TPC-DS and TPC-CH.

Baselines: Previous approaches typically use the optimizer
cost estimates or heuristics to optimize the partitioning de-
sign [4, 24, 31]. We additionally compared the partitionings
found by our approaches to heuristics that are typically used
by a database administrator [35]. For both simple and more
complex star schemata (SSB and TPC-DS) this means that
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usually fact tables are co-partitioned with either the most fre-
quently joined dimension table (Heuristic (a)) or the largest
dimension table (Heuristic (b)). For themore complex schema
TPC-CH, we either naïvely replicated small tables and parti-
tioned larger tables by primary key (Heuristic (a)) or greedily
co-partitioned the largest pairs of tables while still replicating
smaller tables (Heuristic (b)).
Automated partition designers [4, 24, 31] usually make

use of the optimizer cost estimates, i.e. they enumerate dif-
ferent physical designs, let the optimizer estimate the costs
for all queries in the workload and choose the partitioning
candidate with minimal costs. While several optimizations
exist that make the integration of the optimization and the
database cost estimation tighter (e.g., Nehme et al. [24] make
use of the MEMO data structure in Microsoft SQL server),
they still suggest the partitioning with minimal query op-
timizer cost estimates. As a second baseline, we thus im-
plemented a similar optimization algorithm enumerating
candidate solutions and minimizing the optimizer cost esti-
mates for Postgres-XL. However, for System-X this was not
possible because the optimizer cost estimates are not acces-
sible. Cloud providers offering multiple commercial DBMS
systems face similar problems and thus this approach is not
available for System-X.

7.2 Exp. 1: Offline Training
For each database mentioned before in the setup, we trained
a dedicated DRL agent with offline training, i.e. using our
simple network-centric cost model. We report the averaged
total runtime of all queries for five runs for the partitionings
suggested by our advisor and the baselines in Figure 3.

Results for SSB: For the SSB benchmark, the two heuristics
co-partition the fact table with either the most frequently
joined dimension table (Date) or the largest dimension table
(Customer). The optimizer predicts minimal costs when par-
titioning the lineorder table by primary key and replicating
all dimension tables. Our learned advisor also suggests to
co-partition the fact table with the largest dimension table
for Postgres-XL (same as Heuristic (b)). For System-X our
learned advisor additionally suggests to partition the Part
dimension table by its primary key leading to a minimal
runtime improvement.
Results for TPC-DS: For TPC-DS, which is a more com-

plex schema composed of several fact tables with shared
dimensions, the DRL agents finds superior solutions that are
non-obvious. Here, the improvements are more significant
reducing the runtime over Heuristic (a) by approximately
50%. For both Postgres-XL and System-X, the DRL agents
propose to co-partition the fact tables with a medium-sized
dimension table, i.e. Item. This has the advantage that lo-
cal joins are possible if two fact tables are joined, e.g. the
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Figure 3: Offline RL vs. Baselines.
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Figure 4: Online RL vs. Baselines.

fact tables for StoreSales and StoreReturns. Moreover,
for System-X the Customer table is co-partitioned with the
CustomerAddress table allowing local joins. In contrast, the
partitioning with the minimal optimizer costs for Postgres-
XL leads to a suboptimal partitioning. This is due to the high
query complexity resulting in erroneous cost estimates.
Results for TPC-CH:As discussed before, TPC-CH uses a

significantly more complex schema than SSB and TPC-DS
since it is not similar to a star schema.While Heuristic (b) has
better runtimes than Heuristic (a) on Postgres-XL, Heuris-
tic (a) outperforms Heuristic (b) on System-X. This counter-
intuitive result is due to the fact that partitioning a table by
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Optimizations Training Time Speedup
None 4621h -
+ Runtime Cache 1160.4h 4.0
+ Lazy Repartitioning 60h 19.3
+ Timeouts 33.4h 1.8
+ Offline Phase 13.3h 2.5

Table 2: Training Time Reduction of Optimizations.

district-id (as Heuristic (b) does) results in skewed parti-
tion sizes in System-X. Compared to the two heuristics, the
DRL-agent proposes improved partitionings. For Postgres-XL
it proposes to co-partition the Customer, Order, NewOrder
and additionally the Orderline table by district-id but
to replicate the Stock table. This avoids that Orderline has
to be shuffled over the network for a join. For System-X,
the DRL agent additionally partitioned the Stock table but
also used a compound key combining warehouse-id and
district-id to mitigate the skew (which was reflected in
the simple network-centric cost model).

7.3 Exp. 2: Online Training
In this experiment we evaluate whether DRL agents trained
online are superior over purely offline-trained agents. We fo-
cus on the most complex schema, i.e. TPC-CH, and Postgres-
XL to analyze the additional online phase that leverages
actual runtimes instead of cost estimates. For the online train-
ing we refine the DRL agent that was already bootstrapped
with our simple network-centric cost model offline.

The runtime of the benchmark queries using the suggested
partitionings on the full TPC-CH database are shown in
Figure 4a. The partitioning suggested by the online-trained
agent is 20% superior to the partitioning of the offline-trained
agent. The online-trained DRL agent suggests a new parti-
tioning where the NewOrder, Order and Orderline table are
co-partitioned by Order-Id and the Customer table is repli-
cated in addition. Interestingly, this partitioning has higher
costs according to our simple network-centric cost model.
However, the online phase is not affected by the inaccuracy
of our simple network-centric cost model and was thus able
to improve over the offline-trained agent.
If executed naïvely, the online training phase is time-

consuming. We thus want to examine the effect of different
optimizations. For this experiment, wewere only running the
training with all optimizations (except timeouts) activated.
By keeping track of the queries that would be executed twice
without Runtime Caching, as well as how often a table would
be repartitioned without Lazy Repartitioning and how much
time could be saved with a particular Timeout, we could
determine the savings of the optimizations. As we can see
in Table 2 every optimization significantly reduces the run-
time and the largest improvement can be obtained with Lazy
Repartitioning. The last optimization compares the training
time of an agent that was bootstrapped in an offline phase
with a randomly initialized agent.

The online-phase with all optimizations and for a model
that was bootstrapped offline took 13.3 hours. We believe
that a training time of several hours is acceptable since the
model has to be trained only once for different workload
mixes and can afterwards be used as a partitioning advisor if
the workload changes (as we show in the next experiment).
Moreover, especially in cloud setups, we can easily clone the
instances. Hence, setting up a similar cluster to retrain the
agent for several hours to obtain a refined model should be
feasible considering that customers usually have one cluster
provisioned all the time to do analytics. The cloning is espe-
cially efficient for our setup since we do not have to clone
the entire data but only a sample of each table.

7.4 Exp. 3: Adaptivity to Data & Workload
The following experiments validate the adaptivity of a DRL
agent to changing data and workloads. We first demonstrate
that our approach can still find optimal partitionings without
additional training even if the data and the mix of queries
changes. Moreover, in a last experiment we examine the
additional training time required if completely new queries
are added to the workload.

Exp. 3a: Changing Data: First, we evaluated how robust the
trained RL agent is if the data changes. In this experiment,
we use the TPC-CH schema as before and train the RL advi-
sor on the full database (100%). Afterwards, we update the
DBMS and bulk load up to 60 % of new data into the TPC-CH
schema. We use the bulk update procedure of TPC-H and
transform the data to the TPC-CH schema since our main
focus is on warehousing and the TPC-CH benchmark does
not support bulk updates. Figure 4b shows the results of
using our online-trained RL advisor (without any retraining)
compared to all other baselines. The large deterioration of
the “minimal optimizer” baseline in the measurement is due
to different query plans chosen by the PGXL optimizer after
updates are applied. As we can see, the partitioning found by
the RL advisor constantly performs best even for relatively
large update rates of up to 60%. However, if the database
significantly changes, we need to retrain our advisor (which
is not needed in this experiment though). A helpful indicator
to decide when retraining is needed might be a change of the
query plan. Moreover, there exists a huge body of work in
ML to detect drifts in training data (which is related to this
problem). Developing techniques to robustly detect when to
retrain is an interesting avenue for future work though.
Exp. 3b: Changing Workload Mix: In this experiment we

show that our learned advisor finds optimal partitionings for
different query mixes. To this end, we trained an DRL agent
with the naïve approach for different workload frequencies
for the TPC-CH schema. Moreover, we additionally trained
a committee of experts for the subspace experts approach as
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Figure 6: Training Time of Additional Training (rela-
tive to Full Retraining) with 25% and 75% Quantiles.

described in Section 5. In any case, the advisor only has to
be trained once and generalizes to different workloads as we
will show in this experiments. For the naïve model and the
committee of experts, we both used an online training phase
on Postgres-XL. Note that we can apply all optimizations
for the online training as well. Moreover, we can reuse the
Query Runtime Cache of the previous experiments if we
train multiple experts.

After training both approaches, we report the percentage
of correct partitionings for two different workloads clusters
in Figure 5. Each cluster is a set of different frequency vectors
(i.e., workload mixes): for cluster A the frequencies were sam-
pled uniformly and for cluster B queries joining the Stock
and the Item tables are more likely to occur. If the partition-
ing found by either approach is best for the respective cluster,
we say that the approach has found the optimal partitioning
for this workload mix. We compare the naïve approach and
the subspace experts approach with two heuristics. Heuris-
tic (a) always chooses the optimal partitioning found after
online training in the previous Section. Heuristic (b) always
chooses a partitioning where the Stock and Item tables are
co-partitioned. The results are given in Figure 5. As we can
see, the accuracy can significantly be improved when using
subspace experts outperforming all other approaches. We
conclude that is beneficial to divide the problem of finding an
optimal partitioning for a given workload into subproblems
which are then solved by the dedicated expert model. This is
due to the well known technique of using ensembles of ML
models to improve the performance.

Exp. 3c: New Queries: In our formulation of the problem we
decided not to encode the complex nested queries typically
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Figure 7: RL vs. Neural Baselines.

occurring in OLAP-workloads to avoid an overly complex
neural network architecture requiring too much training
data. Instead, we represent the workload as frequencies of a
representative set of queries. Once trained, our learned par-
titioning advisor can suggest partitionings for any of those
workloads. However, if completely new queries occur that
have a significant impact on the workload runtime and do
not have a similar query in the set of representative queries
we need incremental training, i.e. we train the agent for
workloads where these new queries occur which is signifi-
cantly faster than training a new agent from scratch. In this
experiment, we evaluate the additional training overhead if
such new queries are introduced. In particular, it proves that
additional training is much cheaper than training the agent
from scratch if new queries occur.
We again trained a committee of experts for TPC-CH on

top of Postgres-XL as the underlying database. However,
in contrast to the previous experiment, we first randomly
removed a fraction of the queries of the TPC-CH benchmark.
We then retrained the advisor for the additional queries and
calculated, with the help of already measured runtimes, how
long such an additional training takes on average if part of
the workload is not known initially.

Figure 6 shows the time for incremental training relative
to the time required to train an DRL agent from scratch,
depending on how many additional TPC-CH queries were
added after the initial training. As we can see, the overhead
of incremental training is much lower than training a par-
titioning advisor from scratch. This is because, similar to
exploiting a bootstrapped DRL agent using the offline phase,
we can start with a lower ε-value in the incremental train-
ing of the new naïve model resulting in fewer explorations.
In addition, incremental training can also make use of the
Query Runtime Cache, which keeps actual query execution
to a minimum as many queries are already known.

7.5 Exp. 4: Other Learned Approaches
An alternative to using RL is to learn an ML model to predict
the costs of a partitioning and use a classical optimization
procedure to select the best partitioning for a given work-
load. Recently, learned cost models have been used for query
optimization [20] or cardinality estimation [13]. For instance,
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[20] iteratively choose optimal query plans according to their
neural cost model. In the following, we explain how we im-
plemented the neural cost model for partitioning.
Similar to our offline phase, we first use an offline boot-

strapping step where the neural cost model is trained using
runtime estimates based on our simple network-centric cost
model. We use 100k workload/partitioning pairs for the of-
fline phase since this is equivalent to the number of work-
load/partitioning pairs that our RL agent sees in its offline
phase. Afterwards, analogous to our online training, we then
run a workload mix on a real DBMS to improve the neural
cost model using actual runtimes.

For the online training, we use multiple iterations, where
we repartition the database to minimize the current cost
model in every iteration. We then retrain the neural cost
model with the runtimes collected on the partitionings ob-
served during the iteration and then start the next iteration
(i.e., sample a new workload and again minimize the cost
model). To be fair, we allow the same overall training time
for both approaches in the online phase (RL and the neural
cost models) and also enable all optimizations we also use for
our RL agent (e.g., runtime caching etc.). To simulate a more
exploration-driven variant in contrast to the exploitation-
driven variant above which selects the best partitioning in
each iteration, we also implemented a variant that starts with
a random partitioning in every iteration.
To show the efficiency we compare the runtime of the

partitioning schemes suggested by the online-trained neural
cost models, our online-trained RL agent and the RL agent
that was only trained offline. In this experiment, we use the
same workload (i.e., TPC-CH) as in Exp. 2. As a result, we
can see in Figure 7a that the online-trained neural cost mod-
els (i.e., both the exploitation- and the exploration-driven
variant) improve the offline-trained RL agent by only 6%
while our online-trained RL shows an improvement of 20%
compared to the offline-trained RL agent. Moreover, we also
tested howwell the neural cost model generalizes to new (un-
seen) workloads by using the same setup as in Exp. 3 where
we sample new workloads uniformly. As we can see in Fig-
ure 7b the online-trained neural cost model only finds the
optimal partitioning in 5% of the cases (vs. 91% for online-RL)
for workload A and 7% of the cases (vs. 82% for online-RL)
for workload B.

We investigated why the neural cost model approach does
not perform as well as our RL agent in both experiments
above. The reason is that our RL agent observed three times
as many different partitionings as the learned cost model in
the same training time. This effectively means that our RL
agent explores partitionings with a lower average runtime
and shows that the exploration/exploitation strategy of our
RL agent actually leads to amore efficient navigation through
the solution space.
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Figure 8: Adaptivity to Deployment.

7.6 Exp. 5: Adaptivity to Deployment
Another advantage of using an DRL agent as partitioning ad-
visor is that it can adapt the partitioning for different deploy-
ments which is an important scenario for cloud providers
that allow customers to migrate their cluster to a new set of
virtual machines with different characteristics. For showing
the adaptivity of our learned advisor, we created a simple
microbenchmark to empirically validate this. It consists of
three relations A, B and C where A is a fact table and B and C
are dimension tables. The relation sizes are inspired by the
relation sizes of the Lineorder, Order and Partsupp table
of the TPC-H benchmark. The workload consists of just two
queries joining the fact table A with one of the dimension
tables B or C with selectivities between 2% and 5%.
In the optimal partitioning, table A and C have to be co-

partitioned because C is significantly larger than B. Depend-
ing on the network bandwidth, however, it might be optimal
to either partition or replicate table B. For example, for a
high-bandwidth network it might be beneficial to partition
B, say, on its primary key. When joined with table A the scan
of table B can be distributed among all cluster nodes (if the
table is partitioned) and the remaining tuples have to be
shuffled over the network. If table B, however, is replicated
we do not have to send tuples over the network for the join
but the scan is also not distributed across nodes. Hence, the
question whether or not partitioning is beneficial depends
on the speed of the network compared to the scan speed of
the table. As network costs are more significant if one does
not need costly disk accesses we decided to use System-X
for the evaluation which is an in-memory database.

To show the effect, we used two different hardware deploy-
ments for System-X. One time, we used the usual 10 Gbps
interconnect, one time we only used 0.6 Gbps interconnects.
This is also the bandwidth offered for the basic deployment
of Amazon Redshift. We trained one DRL agent on the full
dataset (approx. 100 GB) for the two hardware deployments.
In Figure 8 the effects of partitioning or replicating table B
can be seen for both the slow and the fast network. In the
Figure, we use the slowest approach of both as reference and
show the speed-up of the others (i.e., higher is better). As
we can see, for the slow network it is optimal to replicate
table B, while for the fast network it is better to partition it.
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We repeated the experiment on less powerful hardware
(nodes with a 32-core AMD 7452 CPU and 128GB ECC Mem-
ory (8x 16 GB 3200MT/s RDIMMs)) in Figure 8b. In this case,
the benefit of replicating table B is less significant for the
slow network since the scan costs are more dominant. How-
ever, in all cases the DRL agent (after retraining the model
on the hardware setup) suggests the optimal solution.

8 Related Work
Partitioning for OLTP and OLAP:Many approaches focus

on transactional workloads [6, 7, 10, 28, 29]. In general, these
approaches partition the data such that distributed trans-
actions across nodes occur less frequently. For example,
SCHISM [7] defines a graph consisting of tuples as nodes
and transactions as edges and uses a min-cut to partition the
tuples. Pavlo et al. [28] developed an alternative approach
that is also capable of stored procedure routing and repli-
cated secondary indexes. Fetai et al. focus especially on cloud
environments [10]. For OLAP-workloads Eadon et al. [9] pro-
posed REF-partitioning, i.e., to co-partition chains of tables
linked via foreign key relationships. Since this technique can
be exploited if a system supports hash-partitioning by any
attribute most partitioning advisors and also our technique
indirectly make use of REF-partitioning. Zamanian et al. [35]
extend this approach such that even more locality can be
obtained but at the cost of higher replication. For this, the
database has to support predicate-based reference partition-
ing. In contrast, [19] iteratively improves the partitioning
and relies on hyper-partitioning and hyperjoins. However,
these features are currently not supported by Postgres-XL
or System-X and could thus not be evaluated.
Automated Database Design:Automatic design advisors

are an active area of research [4, 24, 30, 31, 31, 37]. However,
many of these approaches [31, 37] focus only on single-node
systems while only a few advisors for distributed databases
are specialized on partitioning design [4, 24, 31]. These ap-
proaches, however, rely only on the cost model of the op-
timizer which is often inaccurate [16]. As in query opti-
mization, this can result in wrong decisions [17] since the
benefit of some query plans (partitionings) is over- or under-
estimated. Different from these approaches we developed a
simple network-centric cost model and a dedicated online
phase that is able to cope with inaccuracies of the cost model.

Even worse, some databases do not provide access to the
cost estimates of the query optimizer at all such as System-X
in our experiments. However, even databases offering cost
estimates for query plans might not be suited for automated
cost-based partitioning design since they do not provide a
what-if mode for partitioning, i.e. the partitioning has to
be actually deployed to obtain an estimate. This was the
motivation for us to develop a simple network-centric cost
model for partitionings to be used in the offline phase.

Another approach [30] optimizes both analytical and trans-
actional workloads by partially allocating already partitioned
tables in an optimal manner to minimize runtime or max-
imize throughput. Different from this approach, which is
only focusing on the allocation, in this paper we provide a
new solution to find a partitioning scheme which is an or-
thogonal problem to data allocation. Furthermore, the paper
relies on an allocation heuristic which cannot take the ac-
tual execution cost into account. Marcus et al. [22] fragment
tables and decide on replication and placement based on the
how often they are queried. This strategy results in a custom
partitioning scheme that is not supported by many databases
and hence inapplicable for an automatic cloud partitioning
advisor like ours. Moreover, it does not minimize network
costs by leveraging local joins.

Recently, many approaches suggest to use machine learn-
ing to automate database administration and tuning [14, 27]
and improve internal database components like join order-
ing [15] or cardinality estimation [13]. In particular, DRL
[23, 32] was often used to tackle data management problems.
For example Li et al. [18] focus on the scheduling problem
for distributed stream data processing systems, Durand et al.
[8] optimize the physical table layout or Zhang et al. [36] au-
tomate database configuration tuning. Different from those
papers, we focus on data partitioning in distributed databases
which was not yet considered.

9 Conclusion and Future Work
In this paper, we introduced a new approach for learning a
cloud partitioning advisor based on DRL. The main idea is
that a DRL agent learns its decisions based on experience by
monitoring the rewards for different workloads and partition-
ing schemes. The agent is first bootstrapped using a simple
network-centric cost model to make the training phase more
efficient and afterwards refined with actual runtimes. In the
evaluation, we showed that our approach is not only able to
find partitionings that outperform existing approaches for
automated partitioning design but that it can also adjust to
different workloads and new queries. In the future, we plan
to combine our approach with systems that predict future
workloads to pro-actively re-partition the database as well
as to decide whether the costs for repartitioning pay off in
the long run.
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