
CGPTuner: a Contextual Gaussian Process Bandit Approach for
the Automatic Tuning of IT Configurations Under Varying

Workload Conditions
Stefano Cereda

Stefano Valladares
Paolo Cremonesi

name.surname@polimi.it
Politecnico di Milano

Milan, Italy

Stefano Doni
stefano.doni@akamas.io

Akamas
Milan, Italy

ABSTRACT
Properly selecting the configuration of a database management sys-
tem (DBMS) is essential to increase performance and reduce costs.
However, the task is astonishingly tricky due to a large number
of tunable configuration parameters and their inter-dependencies.
Also, the optimal configuration depends upon the workload to
which the DBMS is exposed. To extract the full potential of a DBMS,
we must also consider the entire IT stack on which the DBMS
is running, comprising layers like the Java virtual machine, the
operating system and the physical machine. Each layer offers a
multitude of parameters that we should take into account. The
available parameters vary as new software versions are released,
making it impractical to rely on historical knowledge bases. We
present a novel tuning approach for the DBMS configuration auto-
tuning that quickly finds a well-performing configuration of an IT
stack and adapts it to workload variations, without having to rely
on a knowledge base. We evaluate the proposed approach using
the Cassandra and MongoDB DBMSs, showing that it adjusts the
suggested configuration to the observed workload and is portable
across different IT applications. We try to minimise the memory
consumption without increasing the response time, showing that
the proposed approach reduces the response time and increases the
memory requirements only under heavy-load conditions, reducing
it again when the load decreases.

PVLDB Reference Format:
Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni.
CGPTuner: a Contextual Gaussian Process Bandit Approach for the
Automatic Tuning of IT Configurations Under Varying Workload
Conditions. PVLDB, 14(8): 1401-1413, 2021.
doi:10.14778/3457390.3457404

1 INTRODUCTION
A modern database management system (DBMS) has hundreds of
tunable configuration parameters that control its behaviour[12]. Se-
lecting the proper configuration is crucial to improve performance
or reduce cost. Manually finding well-performing configurations,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457404

however, can be a daunting task, since the parameters often behave
in counter-intuitive ways and have inter-dependencies. Further-
more, a DBMS sits on top of a complex IT stack which comprises
several layers, like the Java Virtual Machine (JVM) or the Oper-
ating System (OS). Each layer has its tunable parameters, which
affect the final behaviour of the DBMS, as we show in Section 2. To
unlock the full performance potential of a DBMS, we have to tune
the entire IT stack jointly.

Unfortunately, we cannot run an extended search and find the
optimal configuration, which is the best one for our particular
combination of DBMS, OS and hardware. Even if we had an infinite
budget to run this search, we would still find a suboptimal solution
as the optimal configuration depends upon the particular workload
to which the DBMS is exposed.

We could even imagine running an extensive search to find the
optimal IT stack configuration for each particular workload, or at
least a well-performing configuration for each workload. However,
all this knowledge would become obsolete pretty fast, as new soft-
ware versions are released, changing the effects of the parameters.
Furthermore, new software releases also modify the available pa-
rameters, increasing the complexity of reusing old knowledge bases,
which lack information about novel parameters.

In this paper, we propose CGPTuner, an automated configuration
tuner based on Contextual Gaussian Process Bandit Optimisation [16]
(CGPBO), a machine learning optimisation algorithm specifically
developed to deal with tasks with contextual information, just like
the DBMS workload, without having to rely on a knowledge base.
CGPBO is a contextual extension to the Bayesian Optimisation
framework. Bayesian Optimisation has already been successfully
applied to the performance autotuning problem [2, 5, 10, 12, 14].
CGPTuner successfully tunes the configuration of an IT system
while considering multiple layers of the IT stack and the current
workload and, more importantly, it does not rely on a previously
collected knowledge base, since collecting such knowledge bases
becomes practically unfeasible when dealing with many layers.

We evaluate CGPTuner using theMongoDB1 andCassandra [17]2
DBMSs. We use Yahoo! Cloud Serving Benchmark (YCSB) [9]3 to
simulate three different workload patterns. We let CGPTuner con-
trol several configuration parameters of the DBMS, the JVM and the

1https://www.mongodb.com
2https://cassandra.apache.org
3https://ycsb.site/

1401

https://doi.org/10.14778/3457390.3457404
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457404
https://www.mongodb.com
https://cassandra.apache.org
https://ycsb.site/

OS. In all the considered patterns, CGPTuner understands the prob-
lem in less than thirty tuning iterations, adapting the configuration
to the incoming workload.

We start by analysing the autotuning problem in Section 2, then
we explain our tuning algorithm (CGPTuner) in Section 3. In Sec-
tion 4 we go over the evaluation methodology and report and
comment on the obtained results.

2 MOTIVATION AND RELATEDWORK
Tuning a DBMS configuration is very tricky: the tunable parameters
interact in complex ways, live in an enormous search space, and
their effect depends on the workload to which the DBMS is exposed.

However, tuning the DBMS configuration is only a part of the
story. A DBMS sits on top of (at the very least) an Operating
System, which, in turns, has its tunable parameters. To highlight
the effect of these parameters, we ran a series of experiments on the
MongoDB1 and Cassandra2 DBMSs using the YCSB load injector3.
We modified the values of the tunable parameters while measuring
the throughput of the DBMS. The results are reported in Figure 1.

In Figure 1a, we modify the cache size of MongoDB and the
vm.dirty_ratio parameter of the Linux kernel. Correctly setting
the latter parameter gives a significant boost to the performance of
the DBMS: without considering the entire IT stack we would have
lost this improvement. In Figure 1b, we use Cassandra, which is
written in Java. The Java Virtual Machine has its tunable parameters,
here we tune the number of concurrent garbage collection threads
alongside the read_ahead_kb Linux parameter. The read-ahead
has an impressive effect on the performance of Cassandra and
selecting an improper value destroys the performance. In Figure 1c,
we modify the two same parameters, but using a different YCSB
workload. More precisely, wemove from an update-heavy workload
to a read-only workload. The effect of the two parameters is severely
different in the two workload conditions.

These examples motivate the need to consider the entire IT stack
and the current workload when tuning a DBMS. To further increase
the complexity, we could consider other tunable parameters like
the compilation flags of MongoDB, the version of the JVM or the
kind of cloud instance on which to run the experiments. However,
increasing the number of considered layers increases exponentially
the number of parameters and the problem’s complexity.

Notice that, if we were to tune the entire IT stack while looking
only at the DBMS, we might destroy the system’s performance, as
some OS settings that are beneficial to the DBMS could be detri-
mental to other services that are running on the same machine.
However, a proper selection of the target performance metric to be
optimised is sufficient to avoid this problem. As a simple example,
we can consider a single server running a DBMS and a Java backend
application. If we tune the OS so to increase as much as possible
the DBMS performance the backend would suffer, leading to a poor
user experience. On the other hand, if we tune to minimise the
response time of some user-facing services we will convergence
toward configurations that allow both the DBMS and the backend
application to work at their best.

The DBMS autotuning problem has been studied quite a lot.
iTuned [12] works by creating a response surface of the DBMS per-
formance with Gaussian Processes and using this model to select

the next configuration to test. However, a different response sur-
face is built for each workload, without sharing potentially useful
information.

In their seminal paper [27], Van Aken et al. introduced Otter-
Tune: a machine learning solution to the DBMS tuning problem.
OtterTune leverages past experience and collects new information
to tune DBMS configurations: it uses a combination of supervised
and unsupervised machine learning methods to (1) select the most
impactful parameters, (2) map unseen database workloads to pre-
vious workloads from which it can transfer experience, and (3)
recommend parameters settings. The key aspect of OtterTune is
its ability to leverage past experience to speed up the search pro-
cess on new workloads. However, to do so, it requires to have an
extensive collection of previous experiments. To fully leverage the
OtterTune approach, all these experiments should contain all the
available parameters. This might be feasible when considering only
the DBMS, but it gets more and more complex as we consider more
layers of the IT stack since the dimension of the search space grows
exponentially. As an example, in [27] the authors had to collect
“over 30k trials per DBMS” just to bootstrap OtterTune. Even with
very short measurement periods of 5 minutes per trial, this results
in more than three months of computation just to collect the initial
knowledge base. After that, they proceed to run the tuning sessions,
which lasts 60 iterations. Conversely, our tuner does not require
any initial knowledge-gathering, and it is capable of suggesting
well-performing configurations already after 30 iterations. Further-
more, OtterTune is exploring a single layer of the IT stack, whereas
we want to consider as many layers as possible so to extract all the
potential performance. As the number of layers increases, so does
the complexity of collecting a knowledge base.

Furthermore, this abnormous knowledge base should be updated
periodically to reflect changes in hardware components and soft-
ware versions. Different software versions react differently to the
same configurations, and new software versions introduce new tun-
able parameters. To take these parameters into account, one would
have to periodically re-build the knowledge base from scratch.

In short, we would like to tune the entire stack to extract all the
performance, but building a knowledge base on the entire stack
would be too expensive. Thus, our goal is to design a tuning algo-
rithm able to consider the entire IT stack and continuously adapt to
the current workload, but without needing a previously collected
knowledge base. For this reason, we compare our solution only
with tuning methodologies that proceeds in an online fashion and
do not rely on a knowledge base, gathering all their knowledge as
the tuning proceeds. Thus, the tuners are faced with two opposite
requirements, as they need to explore the search space (building
up their knowledge) and, at the same time, they need to be very
good to exploit the (limited) knowledge they have collected up to a
certain point, suggesting configurations which perform well and
we can use as the tuning proceeds. As shown in Section 2, we build
our solution on top of Bayesian Optimisation, which is a technique
specifically designed to handle the exploration-exploitation trade-
off, with strong theoretical guarantees about its convergence and
data-efficiency [21]. We thus compare the proposed solution against
a naive random tuner, OpenTuner [3] and BestConfig [30].

1402

vm.dirty_ratio

20
40

60
80

100 Ca
ch
e S
ize
M
iB

0
5000

10000
15000

20000
25000

Th
ro
ug

hp
ut

[o
ps
/s
ec
]

7000

7500

8000

8500

9000

9500

(a) MongoDB with update-heavy workload

ConcGCThreads

0.0 0.2 0.4 0.6
0.8

1.0 rea
d_
ah
ea
d_
kb

0
200

400
600

800
1000

Th
ro
ug

hp
ut

[o
ps
/s
ec
]

6000

7000

8000

9000

10000

(b) Cassandra with update-heavy workload

ConcGCThreads

0.0 0.2 0.4 0.6 0.8
1.0 rea

d_
ah
ea
d_
kb

0
200

400
600

800
1000

Th
ro
ug

hp
ut

[o
ps
/s
ec
]

12200
12400
12600
12800
13000
13200
13400

(c) Cassandra with read-only workload

Figure 1: Throughput of a DBMS as a function of some of its tunable parameters. In (a) we useMongoDB and vary its cache size
and the vm.dirty_ratio Linux parameter. In (b) we use Cassandra, varying the number of threads for the concurrent garbage
collector of the JVM (expressed as a percentage of the available cores) and the read_ahead_kb parameter of the Linux kernel.
In (c) we repeat the experiment of (b), but using a different YCSB workload.

OpenTuner is a framework for building domain-specific program
autotuners. Its core idea is to avoid focusing on a single search tech-
nique. Instead, it provides several search algorithms (like genetic
algorithms, hill climb and multi-armed bandits) and dynamically
decides which one to use. When tuning a program, OpenTuner
starts by randomly trying different techniques, and, as the tuning
proceeds, it allocates a larger proportion of tests to better perform-
ing techniques. In this way, OpenTuner selects the best-performing
search algorithm for the specific program it is tuning. Nonethe-
less, many works reported that (under the right circumstances) a
simple random search can perform as well as more sophisticated
techniques, and is indeed an effective tool for exploring the space
of the available configurations [1, 6, 8, 15].

BestConfig is an autotuning system for automatically finding
the best configuration setting within a resource limit for a deployed
system under a given application workload and is based on an
iterative sampling strategy.

3 PROPOSED MODEL
In this section, we start by formalising the configuration autotuning
problem, then we describe Bayesian Optimisation and its contextual
extension, and finally we describe the main contribution of this
work: CGPTuner.

The goal of our optimisation process is to find the configuration
vector 𝑥 in the configuration space 𝑋 and apply it to the IT system
so to optimise a certain performance indicator 𝑦 ∈ R. We want to
select 𝑥 by taking into account the particular workload 𝑤⃗ ∈𝑊 to
which the system is exposed, where𝑊 is the space of the possible
workloads and 𝑤⃗ is a description of the workload provided by a
particular workload characterisation methodology. 𝑦 can be any
measurable property of the system (like throughput, response time,
memory consumption or a combination thereof).

Since the workload evolves over time, we want to update the sug-
gested configuration as well. At time 𝑡 , the optimisation algorithm
will suggest a candidate configuration 𝑥𝑡 which is tailored to the
current workload 𝑤⃗𝑡 . Applying 𝑥𝑡 to the system under workload
𝑤⃗𝑡 results in a performance measurement 𝑦𝑡 .

The tuning process works as depicted in Figure 2, and it is re-
peated iteratively as time passes. We start 1 by measuring and
characterising the initial workload 𝑤⃗0. Then, we feed this informa-
tion to the tuner, which has access to the knowledge base (KB) of
previous experiments 2 (which is initially empty) and uses both
the KB and the current workload to suggests a candidate configu-
ration vector 𝑥0. We apply the configuration to the system 3 and
measure the associated performance 𝑦0 4 . At this point, we have
concluded the first iteration of the tuning process, and we store the
obtained information in the KB 5 . Now we iterate the process: we
measure the new workload 𝑤⃗1 1 and consider the previous result
2 to obtain the new configuration 𝑥1 3 , which results in perfor-
mance 𝑦1 4 . Notice that, at iteration 𝑖 , the tuner can exploit all
the information of previous iterations: (𝑥0,...,𝑖−1, 𝑤⃗0,...,𝑖−1, 𝑦0,...,𝑖−1).
However, no other knowledge is required.

In this work, we take for granted the availability of a numerical
description of the workload 𝑤⃗ , which we assume comes from an
external workload characterisation module. As en example, we can
use the workload characterisation provided by Ottertune [27], Pelo-
ton [18] or even a reaction-based characterisation used in compiler
autotuning [7].

3.1 Bayesian Optimisation
Bayesian Optimisation (BO) is a powerful tool that has gained great
popularity in recent years. An extensive review of BO can be found
in [21], here we give just a brief introduction, visually summarized
in Figure 3.

1403

Knowledge
Base

Monitoring
Platform

Tuner DBMS

1 𝑤⃗𝑖

2 (𝑥0,...,𝑖−1,
𝑤⃗0,...,𝑖−1,
𝑦0,...,𝑖−1)

3 𝑥𝑖

4 𝑦𝑖

5 (𝑥𝑖 , 𝑤⃗𝑖 , 𝑦𝑖)

Figure 2: Tuning process and architecture.

Formally we want to optimise an unknown objective function 𝑓 :

𝑥∗ = arg max
𝑥 ∈𝑋

𝑓 (𝑥) (1)

where 𝑓 has no simple closed-form but can be evaluated at any
arbitrary query point 𝑥 in the domain. The evaluation produces
noisy observations𝑦 ∈ R, and usually is quite expensive to perform.
Our goal is to converge toward good points so to optimise 𝑓 quickly.
Moreover, we want to avoid evaluating points that lead to bad func-
tion values. In DBMS terms, we want to find a configuration that
optimises a specific performance indicator, and simultaneously (1)
explore the configuration space to gather knowledge, and (2) exploit
the gathered knowledge so to converge toward well-performing
configurations quickly.

Notice that Equation (1) is equivalent to the DBMS autotuning
problem that we exposed at the beginning of the section, except for
the workload dependence which we are not considering for now.

BO is a sequential model-based approach for solving the optimi-
sation problem of Equation (1). Essentially, we create a surrogate
model of 𝑓 and sequentially refine it as more data are observed.
Using this model, we iteratively compute the value of an acquisition
function 𝑎𝑖 , which is used to select the next point 𝑥𝑖 to evaluate. In-
tuitively, the acquisition function evaluates the utility of candidate
points for the next evaluation of 𝑓 by trading off the exploration of
uncertain regions with the exploitation of promising regions. As
the acquisition function is analytically derived from the surrogate
model, it is straightforward to optimise. Thus, BO has two key in-
gredients: the surrogate model and the acquisition function. In this
work, we focus on Gaussian Processes (GPs) as surrogate models,
which is a popular choice in BO [19, 21, 29]. For the acquisition func-
tion we follow the GP-Hedge approach presented in [13], which,
instead of focusing on a specific acquisition function, adopts a port-
folio of acquisition functions governed by an online multi-armed
bandit strategy. The idea is to compute many different acquisition
functions at each tuning iteration, and progressively select the best
one according to previous performance.

A GP(𝜇0, 𝑘) is a nonparametric model fully characterised by its
prior mean function 𝜇0 : 𝑋 → R and its positive-definite kernel or
covariance function, 𝑘 : 𝑋 ×𝑋 → R. Let 𝐷𝑖 = {(𝑥𝑛, 𝑦𝑛)}𝑖−1

𝑛=0 be the
set of past observations and 𝑥 an arbitrary test point. The random
variable 𝑓 (𝑥) conditioned on observations 𝐷𝑖 follows a normal
distribution with a mean and variance functions that depend on
the prior mean function and the observed data through the kernel.

Unknown function
95% confidence interval
Predicted mean
Observations

EI
next EI
PI
next PI
LCB
next LCB

Figure 3: Bayesian Optimisation. We want to minimise the
unknown function and have already observed 4 points,
which we use to compute the GP predicted mean and un-
certainty. The two values are combined in the acquisition
functions to select the next point to evaluate. Different Ac-
quisition functions select different points.

Essentially, the GP is a regression model that is very good at
predicting the expected value of a point and the uncertainty over
that prediction. In BO, the two quantities are combined by the
acquisition function to drive the search process. The GP prediction
depends on the prior function and the observed data through the
kernel. The prior function controls the GP prediction in unobserved
regions and, thus, can be used to incorporate our prior beliefs about
the optimisation problem. The kernel, instead, controls how much
the observed points affect the prediction in nearby regions and,
thus, governs the predictions in the already explored regions. In
this work, we use a Matérn 5/2 kernel, which is the most widely
used class of kernels in literature [21].

3.2 Contextual Gaussian Process Bandit
Optimisation

Our assumption so far has been that the performance 𝑓 can be
expressed as a function of the configuration 𝑥 only. However, the
performance of a DBMS also depends on others, uncontrolled, vari-
ables; such as the workload 𝑤⃗ to which the application is exposed.

BO has been extended to handle such situations [16]. The key
idea is that there are several correlated functions 𝑓𝑤⃗ (𝑥) that we
want to optimise. Essentially, the data from a workload 𝑤⃗ can
provide information about another workload 𝑤⃗ ′. To capture this,
we define a new kernel function that works over configuration and
workload pairs: 𝑘 ((𝑥, 𝑤⃗), (𝑥 ′, 𝑤⃗ ′)). This new kernel is formalised
as the sum of two kernels defined over the configuration space 𝑋
and the workload space𝑊 , respectively:

𝑘 ((𝑥, 𝑤⃗), (𝑥 ′, 𝑤⃗ ′)) = 𝑘 (𝑥, 𝑥 ′) + 𝑘 (𝑤⃗, 𝑤⃗ ′) (2)

The functions sampled from a GP with a covariance function as
the one above have an additive form made of two components:
𝑓 = 𝑓𝑥 + 𝑓𝑤⃗ . The 𝑓𝑤⃗ component models overall trends among
workloads, while the 𝑓𝑥 models configuration-specific deviation
from this trend. Similarly to what we did for the configuration
kernel, we use a Matérn 5/2 kernel for the workload kernel.

1404

Essentially we are saying that we expect the performance of a
certain configuration-workload pair to be correlated to the perfor-
mance of nearby configurations and workloads. As the two kernels
are combined using a sum operation, we consider two points similar
when they have either a similar configuration or a similar workload.
By multiplying the kernels, we would instead consider two points
as similar when they have both a similar configuration and a similar
workload. We will explore these two possibilities in Section 4.5. In
other terms, by using this kernel we are enlarging the GP space
with the workload characterisation component, but, when optimis-
ing the AF, we only optimise the configuration subspace. What
we obtain is a suggested configuration which is tailored for the
current workload, and this configuration is selected by leveraging
all the configurations we have tested in the past, even on different
workloads.

3.3 Matching Prior Functions to Workloads
Bayesian Optimisation is, as the name suggests, a Bayesian tech-
nique. Nonetheless, it is often used just as an optimisation technique,
without giving the proper attention to the Bayesian component.

As we explained above, BO works by iteratively suggesting
points that optimise an acquisition function, which is computed
starting from the value predicted by a regressionmodel and from the
prediction uncertainty. However, the regression model is a Gauss-
ian Process, which derives its predictions (or posterior distribution)
by combining the observed values with a prior distribution.

In other terms, when we ask the GP to predict the value of a
configuration which is very different from any previously observed
one, it will resort to the prior distribution. In most of the imple-
mentations, the prior distribution is a zero mean, unitary variance
normal distribution. If we are trying to maximise the throughput
of a DBMS, the GP will predict that any unknown configuration
will likely destroy the DBMS performance. This impacts heavily on
BO, which will avoid the exploration of uncertain regions.

To easily obtain a relevant prior distribution, it is common to
standardise the observed data. The majority of the available BO
implementations start by evaluating a small set of randomly selected
configurations, and use the collected information to initialise the GP
and to standardise future data. In this way, the GP will reasonably
predict that, by picking a random configuration, we will likely
obtain a performance value equal to the average value that we
obtained by evaluating some randomly-selected configurations.

When taking into consideration different workloads, however, it
becomes crucial to standardise each point by taking into account
the relevant workload, and not just the initial one observed during
the initialisation phase. To normalise performance values, we use
a modified version of the Normalized Performance Improvement
(NPI) [4]:

𝑁𝑃𝐼˜ (𝑥, 𝑤⃗) = 𝑓 (𝑥0, 𝑤⃗) − 𝑓 (𝑥, 𝑤⃗)
𝑓 (𝑥0, 𝑤⃗) − 𝑓 (𝑥+𝑤⃗ , 𝑤⃗)

(3)

where 𝑥 is the configuration we are evaluating, 𝑥0 is the vendor
default configuration, and 𝑤⃗ is the workload on which we are eval-
uating 𝑥 . 𝑓 (𝑥, 𝑤⃗) is the performance measurement obtained by the
configuration 𝑥 under the workload 𝑤⃗ and 𝑥+𝑤⃗𝑖

is the best configura-
tion we have found so far during the tuning of workload 𝑤⃗ . Clearly,
𝑥+𝑤⃗ changes as we go on with the optimisation and discover better

configurations. For this reason, we need to re-normalise past values
at each iteration. Therefore, 𝑁𝑃𝐼˜ (𝑥, 𝑤⃗) measures the optimality of
the configuration 𝑥 for the workload 𝑤⃗ . A 𝑁𝑃𝐼˜ of 0 means that,
under workload 𝑤⃗ , the configuration 𝑥 is performing exactly like
the baseline, whereas a 𝑁𝑃𝐼˜ of 1 means that configuration 𝑥 is the
best one that we have found so far for workload 𝑤⃗ .

As we have assumed to have an external workload characterisa-
tion module, we also assume that it can cluster the workloads and
provide us with the performance value of the baseline configuration
for any given workload. Notice that this is easily obtained when
a historical knowledge base is available (such as in [27]). On the
other hand, when we do not have any previous information, we
can collect this information by evaluating a handful of configu-
rations. In some deployments, we could obtain this measurement
using a control group (i.e., a deployment running with the baseline
configuration and receiving a replica of the actual workload).

In conclusion, we report in Algorithm 1 the pseudocode of CG-
PTuner, the algorithm that we propose for the automatic tuning
of DBMS configurations. Notice that we do not provide a stopping
criterion, as we imagine the tuning process to keep optimising the
system in an online way. In this way, the tuner takes care of adapt-
ing the configuration to the incoming workload. Since CGPTuner is
a BO technique, it will converge towards optimum configurations
once they are found. The strong theoretical guarantees of BO allow
the tuning process to go on indefinitely, adapting configurations to
new workloads and quickly converging toward optimal solutions
by correctly balancing exploration and exploitation [16, 21, 26].
Nonetheless, adding a stopping criterion is trivial, such as limit-
ing the number of iterations or stopping when no improvement is
observed for a certain number of iterations.

4 EXPERIMENTAL EVALUATION
In this section, we describe the experiments we conduct to evaluate
the proposed approach. We use the MongoDB 4.0.3 and Cassandra
3.11.4 DBMSs. We run the experiments on Amazon EC24 using two
instances: the first one running YCSB 0.15.0 as a load generator
and deployed on a c5.large EC2 instance with 2 vCPUs and 4GB
RAM, the second one running a DBMS and deployed on an i3.xlarge
instance with 4 vCPUs, 30GB RAM and an NVMe SSD storage.

We select a set of interesting parameters to tune, including differ-
ent layers of the IT stack. We use 15 parameters for MongoDB and
24 for Cassandra, reported in Tables 1 and 2. We manually selected
the parameters, trying to collect data from different components of
the stack. We started from a bigger set of parameters and then kept
only those for which we observed some variation in the DBMS re-
sponse time after an initial sampling over the parameters, hence the
different OS parameters for the DBMSs. When using CGPTuner in
a real setting, one can automatically select the tunable parameters
using available methodologies [11].

For both Cassandra and MongoDB we select three workloads
from the YCSB default ones: (a) update heavy with a 50/50 mix in
read and write operations, (b) read mostly with a 95/5 reads/write
mix and (c) read-only. All the workloads use a Zipfian distribu-
tion. We also vary the number of YCSB threads from 10 to 90. We

4https://aws.amazon.com/ec2/

1405

https://aws.amazon.com/ec2/

Algorithm 1: CGPTuner.
input :A number 𝑛 of starting random configurations
for 𝑖 ← 0 to 𝑛 do

measure current workload 𝑤⃗𝑖 ;
select a random configuration 𝑥𝑖 ;
apply 𝑥𝑖 to the system under test;
measure performance score 𝑦𝑖 ;
store 𝑥𝑖 , 𝑤⃗𝑖 , 𝑦𝑖 in the KB;

end
while True do

get previous data from KB: 𝐷𝑖 = {(𝑥 𝑗 , 𝑤⃗ 𝑗 , 𝑦 𝑗)}𝑖−1
𝑗=0;

foreach oberseved workload 𝑤⃗ ∈ 𝐾𝐵 do
𝑥+𝑤⃗ = arg max𝑦 𝑗 , (𝑥 𝑗 , 𝑤⃗, 𝑦 𝑗) ∈ 𝐾𝐵 ;

end

normalize previous data: 𝑁𝑃𝐼˜ 𝑗 =
𝑓 (𝑥0,𝑤⃗ 𝑗)−𝑓 (𝑥 𝑗 ,𝑤⃗ 𝑗)
𝑓 (𝑥0,𝑤⃗ 𝑗)−𝑓 (𝑥+𝑤⃗ 𝑗

,𝑤⃗ 𝑗) ;

update the CGP with 𝐷̃𝑖 = {𝑥 𝑗 , 𝑤⃗ 𝑗 , 𝑁𝑃𝐼˜ 𝑗 };
measure current workload 𝑤⃗𝑖 ;
optimise acquisition function: 𝑥𝑖⃗ = max𝑥 𝑎(𝑥, 𝑤⃗𝑖);
apply 𝑥𝑖 to the system under test;
measure performance score 𝑦𝑖 ;
store 𝑥𝑖 , 𝑤⃗𝑖 , 𝑦𝑖 in the KB;
𝑖 + +;

end

Table 1: MongoDB parameters.

Layer Parameter

MongoDB wiredTigerCacheSizeGB
MongoDB eviction_dirty_target
MongoDB eviction_dirty_trigger
MongoDB syncdelay
OS sched_latency_ns
OS sched_migration_cost_ns
OS vm.dirty_background_ratio
OS vm.dirty_ratio
OS vm.min_free_kbytes
OS vm.vfs_cache_pressure
OS Network RFS
OS Storage noatime
OS Storage nr_requests
OS Storage scheduler
OS Storage read_ahead_kb

use YCSB to create 30 000 000 records, roughly obtaining a 30GB
database.

We select a common efficiency problem as tuning goal: minimise
memory consumption𝑀 with a soft constraint on response time 𝑅.
Since CGP, and all the considered tuners, are suited to optimise a
scalar value, we use a common trick in constrained optimisation
and treat the constraint with a penalty term [22].

For both the DBMSs, we thus minimise the following function:

𝑀 [MiB] + 𝜎 · 𝑅 [ms] (4)

Table 2: Cassandra parameters.

Layer Parameter

Cassandra commitlog_compression
Cassandra commitlog_segment_size_in_mb
Cassandra commitlog_sync_period_in_ms
Cassandra Compaction Strategy
Cassandra compaction_throughput_mb_per_sec
Cassandra concurrent_compactors
Cassandra concurrent_reads
Cassandra concurrent_writes
Cassandra file_cache_size_in_mb
Cassandra memtable_cleanup_threshold
JVM CMSInitiatingOccupancyFraction
JVM ConcGCThreads
JVM GC Type
JVM Xmx (max heap size)
JVM MaxTenuringThreshold
JVM NewRatio
JVM ParallelGCThreads
JVM SurvivorRatio
OS CPUSchedNrMigrate
OS MemoryTransparentHugepageEnabled
OS MemoryVmDirtyExpire
OS NetworkNetIpv4TcpMaxSynBacklog
OS Storage scheduler
OS Storage read_ahead_kb

where the term 𝜎 is the penalty coefficient. The choice of 𝜎 depends
both on the employed measurement units and on the importance of
the constraint. As we measure 𝑅 in ms and𝑀 in MiB, we run most
of the experiments using 𝜎 = 103, essentially saying that each addi-
tional millisecond costs as much as 1 GiB of memory. We find this
function to be reasonably balanced, and the resulting optimisation
problem is a difficult one, where the suggested configurations must
be adapted to the different workloads. For completeness, we also
run the experiments using 𝜎 = 101, 𝜎 = 104 and 𝜎 = 105, where
each millisecond cost 10 MiB, 10 GiB or 100 GiB respectively. The
resulting problems are much more unbalanced toward decreasing
either the memory or the response time.

We measure the average response time in milliseconds, as re-
ported by YCSB. ForMongoDB,we use the wiredTigerCacheSizeGB
parameter to measure 𝑀 , multiplied by 1024 so to measure it in
MiB. On Cassandra, we use the sum of file_cache_size_in_mb
and JVM max heap size (Xmx), both measured in MiB.

Notice that the memory parameter is one of the tunable parame-
ters, but the considered tuners have no access to the metric formula
and, thus, they need to discover this link. Whichever goal function
we select (even a much simpler minimise 𝑅) we would still be using
a function of the applied parameters, which, however, would be
unknown to both us and the tuners. Conversely, by using the actual
memory parameters we can implement a sanity check on the tuning
results by checking their values.

We compare the performance of our CGPTuner against Random,
BestConfig [30], OpenTuner [3] and GP. GP is a Bayesian Optimiser
based on Gaussian Processes which is workload agnostic, and thus
is similar to OtterTune [27] without a knowledge base.

1406

Table 3: Dimensions of datasets and number of collected
samples. Each sample represents a 45 minutes experiment.
The workload parameters represent the YCSBworkloadmix
and the number of run threads.

Dataset Tunable params Workload params Samples
MongoDB 15 2 4219
Cassandra 24 2 3728

4.1 Data Collection and DBMS Models
We start by running an extensive set of experiments exploring the
configuration spaces of the DBMSs and collecting a wide variety
of performance metrics. We then use the collected data to build
a random forest regressor to predict the performance of all the
possible configurations in the search space.

By doing this, we build a model of the IT system performance,
which is then used as the target of the tuning process for the algo-
rithm evaluation. In this way, we make sure that our experiments
are easily reproducible. Moreover, we can be sure that different
tuning algorithms work precisely on the same system and exclude
the noise from the evaluation. Furthermore, we can evaluate the
variability of the tuning algorithms by repeating multiple times the
tuning process without having to run the experiments.

Notice that this step is not a requirement of the tuning algorithm,
but instead is just an additional step that we perform to conduct a
reproducible evaluation.

Before testing a configuration, we restart the DBMS and re-
store the database to its original version so to avoid any cross-
contamination between the experiments of different configurations.
We let the experiment run for 45 minutes, discard the initial 15 min-
utes and the last minute and then compute the average throughput
and response time across the measurement period.

We select the test configurations using Sobol sequences [25],
which are quasi-random sequences with a low discrepancy and fill
the search domain quickly and evenly.

We report in Table 3 the number of parameters and collected
points for all the datasets.

4.2 Models Accuracy
The DBMS models are useful for the evaluation of the tuning algo-
rithms. However, if they were very different from the real systems,
they would lead us to incorrect results.

To evaluate how close the prediction models are to the real sys-
tem we use a simple holdout validation approach and split the
measurements into two sets: the first one contains 25% of the col-
lected data and is used as a test set, the second one contains the
remaining data and is used as a train set. Then, we consider progres-
sively bigger subsets of the training set and use them for training
several regressors, which we evaluate on the test set.

In this way, we can see how the accuracy of the regressors evolves
as more data are considered. The results are in Figure 4, and we
can see that the regressors reach convergence. This indicates that
the amount of data we have is enough to create a good DBMS
model. The remaining variability, which the models cannot explain,
is probably due to the noise of the measurement, since adding more

100 200 300 400 500 600
Num train points

0.0

0.5

1.0

𝑅
2
sc
or
e

Workload a
Workload b
Workload c

(a) Cassandra

100 200 300 400 500 600 700
Num train points

0.0

0.5

1.0

𝑅
2
sc
or
e

Workload a
Workload b
Workload c

(b) MongoDB

Figure 4: Evolution of the 𝑅2 score of the regressors as more
training points are considered.

training points does not help to increase the score of the models.
Without using these regressor models, we would have no way of
discarding the measurement noise, which would severely affect the
algorithm evaluation.

4.3 Evaluation Metrics
We now define the metrics that we use to compare different tuners.
Without considering technological constraints, we have two ways
to run an autotuner. We can either let it work directly on the produc-
tion system (online) or replicate the system in a testing environment
(offline). If we run the autotuner offline, we want it to explore the
search space as quickly as possible, finding good configurations that
we can then move in the production environment. Conversely, in
the online setup, we want the tuner to find good configurations and
avoid bad ones: the trade-off between exploration and exploitation
is subtler. We use two metrics to measure the tuner quality in the
two setups: Cumulative Reward for online tuning and Iterative Best
for offline tuning.

Using DBMS models gives us a significant advantage: for each
workload condition we know the optimal configuration and thus we
can see how close the tuners are to the real optimum. We use this
information to derive the Normalized Performance Improvement
(NPI) metric[4, 7]. The NPI at tuning iteration 𝑖 is defined as:

𝑁𝑃𝐼 (𝑖) = achieved PI
potential PI =

𝑦0 − 𝑦𝑖
𝑦0 − 𝑦∗ =

𝑓 (𝑥0, 𝑤⃗𝑖) − 𝑓 (𝑥𝑖 , 𝑤⃗𝑖)
𝑓 (𝑥0, 𝑤⃗𝑖) − 𝑓 (𝑥∗𝑤⃗𝑖

, 𝑤⃗𝑖)
(5)

where 𝑥0 is the vendor default configuration, 𝑥𝑖 is the configuration
that we are evaluating at iteration 𝑖 and 𝑥∗𝑤⃗𝑖

is the optimal config-
uration for the workload observed at iteration 𝑖 , which we know
from the collected dataset. This metric measures the ratio of the
achieved performance improvement over the potential performance
improvement. For any workload, an NPI of 0 means that we have
the same performance obtained by the vendor default configuration,
while a unitary NPI means that we have found the global optimum.
Differently from the 𝑁𝑃𝐼˜ metric that we used in CGPTuner, here

1407

we are using the true optimal configuration (according to the col-
lected dataset) instead of the best one observed during the tuning.
This metric can thus be computed only to evaluate tuners, and not
during the tuning as it requires to know all the 𝑥∗, which are not
available at tuning time.

Starting from NPI, we define the two metrics that we use to
compare tuners: the Cumulative Reward and the Iterative Best. The
Cumulative Reward (CR) is a standard metric in Reinforcement
Learning and is simply defined as the sum of the obtained NPI
scores:

𝐶𝑅(𝑖) =
𝑖∑︂
𝑗=0

𝑁𝑃𝐼 (𝑗) (6)

As the optimal configuration has an NPI of 1, a perfect tuner has
a CR with a constant unitary slope. On the other hand, keeping
the baseline configuration leads to a zero reward, while testing bad
configurations gives a negative (unbounded) reward. This metric is
thus a useful indicator of tuner ability to understand the problem
and adapt to workload variations, trading off exploration with
exploitation.

The Iterative Best (IB) is defined as:

𝐼𝐵(𝑖) = max
𝑗 :𝑗≤𝑖,𝑤⃗ 𝑗=𝑤⃗𝑖

𝑁𝑃𝐼 (𝑗) (7)

In simpler terms, we keep a separate counter for each possible
workload and, at each iteration, compute an iterated maximum on
the appropriate counter. The IB thus measures the ability of a tuner
to quickly explore the search space and find good configurations.

We repeat the tuning 16 times and then compute NPI, CR and IB
for each repetition. Then, we take themedian over the 16 repetitions
to produce the plots.

As we normalize all the performance metrics in terms of NPI,
they will be more challenging to interpret for the performance ex-
pert. However, we use them to quantitatively compare the tuners’
efficacy from an optimisation viewpoint and, thus, we must take
into account the different workloads. If we used the non-normalized
performance measurement, we could conclude that a tuner is per-
forming well when, in reality, we just tested an easily tunable
workload. Moreover, comparing the non-normalized performance
of the best configurations found would not take into account two
other important aspects: the number of tuning iterations required
to find the best configurations, and how many bad configurations
the tuner has tested. As an example, even a random tuner finds
the optimal configuration if given infinite time. The IB and CR
metrics, instead, takes these aspects into consideration. Some non-
normalized results, which are useful to assess the quality of the
tuners from a performance perspective, are available in Section 4.7.

4.4 Workload Patterns
We select three workload patterns for the evaluation of MongoDB
and Cassandra. We report the patterns in Figure 5, using the colours
to indicate the read/write mix and the y-axes for the number of
YCSB threads. The first pattern (Figure 5a) is the simplest one and
is used only for the tuning of the hyperparameters, we vary the
number of connected threads, simulating a gradual ramp in the
load. In the second one (Figure 5b), named Ramp, we gradually vary
both the number of connected threads and the read/write mix. In

0 50 100 150 200 250 300
Iterations

20

40

60

80

YC
SB

.ru
nT

hr
ea
ds

a

(a) Intensity pattern: fixed mix, variable intensity.

0 50 100 150 200 250 300
Iterations

20

40

60

80

YC
SB

.ru
nT

hr
ea
ds

c
a
b

(b) Ramp pattern: variable mix and intensity, one peak.

0 50 100 150 200 250 300
Iterations

40

60

80

YC
SB

.ru
nT

hr
ea
ds

c
a
b

(c) Peaks pattern: variable mix and intensity, two peaks.

Figure 5:Workload patterns. Vertical lines represent pattern
repetitions and corresponds to an entire day of tuning.

the third one (Figure 5c), named Peaks, we try to mimic a typical
day-based workload, with the majority of the load concentrated
in working hours and a decrease during lunchtime. The three pat-
terns are repeated identically over time, but none of the tuners can
exploit this, what matters is just the current workload. Each repe-
tition of the pattern lasts for 30 iterations, and, since each of our
measurement takes 45 minutes, each repetition roughly represents
a day.

4.5 Selection of Hyperparameters
All the considered tuners have some hyperparameters to select: in
OpenTuner we have several tuning techniques that we can use,
in BestConfig we need to decide the number of tuning rounds
(i.e., partial restarts of the search algorithm) and for CGPTuner
we need to select whether the workload and configuration kernels
should be combined with a sum or a multiplication. We use a cross-
validation approach: we select a simple workload pattern (Figure 5a)
on Cassandra and compute the final median cumulated reward of
all the considered tuners. This validation pattern is then excluded
from other evaluations, and it is very different from the patterns
that we use to compare the tuners.

For OpenTunerwe select the “AUCBanditMetaTechniqueA”which,
according to OpenTuner description, is a Meta Technique composed
by:

• a Differential Evolution technique with a crossover rate of
20%

1408

0 50 100 150 200 250 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

IB

OpenTuner
BestConfig
CGP
Optimum

(a) Iterative Best

0 50 100 150 200 250 300
Iterations

−200

−150

−100

− − 50

0

50

C
R

OpenTuner
BestConfig
CGP
Optimum

(b) Cumulative reward

Figure 6: Results on Cassandra - Ramp pattern.

• a Uniform Greedy Mutation technique
• a Normal Greedy Mutation technique with a mutation rate

of 30%
• a Random Nelder-Mead technique.

OpenTuner uses a multi-armed bandit to decide which technique
to use at each iteration.

For BestConfig, we use a number of rounds equal to the number
of times that we repeat the entire workload pattern. As we imagine
that the entire workload pattern captures an entire day, we are
basically starting a new BestConfig round each day.

Finally, for CGPTuner we decide to combine the kernels with a
multiplication, thus considering two points similar when both the
configuration and the workload are similar.

4.6 Experimental Results
The results of the experimental evaluation are reported in detail
in Figures 6 to 9, whereas Tables 4 and 5 give a summary. Since
random and GP obtain very bad results, we exclude them from the
figures and report them only in the summary tables.

In all the figures, the x-axis represents tuning iterations, and
the y-axes represent either the CR or the IB metric. We mark the
start of each repetition of the workload pattern with a vertical line.
Each vertical line can thus be seen as the start of a new tuning day.
The different colours represent different tuners. As we repeat each
tuning 16 times, the lines represent the median result, whereas the
shaded areas represent the standard deviation.

We start by looking at the results of Cassandra’s tuning on the
Ramp pattern, reported in Figure 6. Looking at the IB, we see that
CGP finds, for all the workloads, configurations which are better
than the baseline. Thus, if we use CGP in an offline way, we start

0 50 100 150 200 250 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

IB

OpenTuner
BestConfig
CGP
Optimum

(a) Iterative Best

0 50 100 150 200 250 300
Iterations

−150

−100

−50

0

50

C
R

OpenTuner
BestConfig
CGP
Optimum

(b) Cumulative reward

Figure 7: Results on Cassandra - Peaks pattern.

0 50 100 150 200 250 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

IB

OpenTuner
BestConfig
CGP
Optimum

(a) Iterative Best

0 50 100 150 200 250 300
Iterations

−80

−60

−40

−20

0

20

40

60

80

C
R

OpenTuner
BestConfig
CGP
Optimum

(b) Cumulative reward

Figure 8: Results on MongoDB - Ramp pattern.

to see the benefits already at the second day of tuning. Comparing
CGP with the other tuners at the end of the tuning period, we see
that CGP has found substantially better configurations on all the
workloads. By looking at the CR, we first observe that OpenTuner

1409

0 50 100 150 200 250 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

IB

OpenTuner
BestConfig
CGP
Optimum

(a) Iterative Best

0 50 100 150 200 250 300
Iterations

−80

−60

−40

−20

0

20

40

60

C
R

OpenTuner
BestConfig
CGP
Optimum

(b) Cumulative reward

Figure 9: Results on MongoDB - Peaks pattern.

and BestConfig remain negative, and get worse over time, meaning
that they cannot be used in an online way, as keeping the baseline
would lead to better overall results. Conversely, CGP uses the first
two days to explore the space (negative slope), on the third it starts
to compensate for the exploration (positive slope), and on the sixth
day we have the break-even point (positive CR): from this point on,
we are gaining from using CGP and have recovered from the cost
of exploration.

The results on Cassandra Peaks, reported in Figure 7, are sub-
stantially similar: CGP reaches higher IB scores sooner and the CR
break-even is located at the end of the sixth day.

The tuning of MongoDB (Figures 8 and 9) is simpler, as testified
by the CR break-even reached on the fifth day and by the generally
higher IB scores, albeit CGP finds them sooner than the competitors.
Interestingly, all the tuners have difficulties in tuning the central
section of the workload pattern, which corresponds to workload a.
All the tuners are able to find good configurations (positive IB), but
they are all still far from the optimum and fail to converge.

In Tables 4 and 5 we report the results in terms of the average IB
and NPI score. In offline tuning we want the IB curve to reach 1 as
soon as possible, we thus measure the average IB score which can
be seen as the area under the IB curve normalized by the number
of iterations:

𝐼 𝐵̄(𝑖) =
∑︁𝑖

𝑗=0 𝐼𝐵(𝑗)
𝑖

, 𝑖 = 300 (8)

In online tuning we want the NPI curve to have a costant unitary
slope, we thus measure the average NPI score which can be seen as
the overall slope of the CR curve:

𝑁𝑃𝐼¯ (𝑖) =
∑︁𝑖

𝑗=0 𝑁𝑃𝐼 (𝑗)
𝑖

=
𝐶𝑅(𝑖)
𝑖

, 𝑖 = 300 (9)

For both the metrics, a perfect tuner would receive a score of 1, and
thus they can be seen as offline/online optimalities.

We report the results for different values of 𝜎 , which is the
response time penalty coefficient as per Equation (4). For the results
in Figures 6 to 9 we used 𝜎 = 103.

In the majority of the considered scenarios, CGP is the best
tuner. Only GP and BestConfig reach similar average IB scores in
the simplest scenarios. As we anticipated, in fact, 𝜎 = 103 produces
themost difficult problem, as testified by the lower CR reached by all
the tuners. Finally, notice that even Random has a positive average
IB score onmost of the scenarios, confirming that, if we can afford to
run many iterations and testing bad configurations is not a problem,
a simple Random approach finds interesting configurations.

4.7 Suggested Configurations
So far we have compared the algorithms from an optimisation per-
spective, checking how good they are at optimising a black-box
function. That function, however, should represent the performance
of a DBMS. To give a useful insight, we report in Figure 10 the non-
normalised values of the throughput and memory consumption
used as a score for the optimisation. More specifically, we consider
the Cassandra Ramp scenario and report the median value obtained
by each tuner. We take the median over the repetitions in order to
take into account the tuner variability. We do not use the value of
the best configurations found as they would be misleading: with a
proper number of iterations even a Random tuner can find good con-
figurations (as testified by Table 4) and taking a single configuration
over 50 tested ones would produce very noisy results.

After the two first tuning days CGP substantially stops exploring:
it settles on a low value for the Cassandra cache and varies the
JVM heap’s size depending on the incoming workload, increasing
it only when necessary. Both the parameters are very similar to
the best configuration available in the dataset. Both OpenTuner
and BestConfig are not converging, and, in general, they are ex-
ploring higher values for both the memory parameters. As for the
throughput, CGP achieves better results on most of the workloads.
Notice that, under some workloads, the throughput of CGPTuner is
higher than the best one. Under the same workloads, however, CGP
selects more memory than necessary. According to the selected
goal function, the increase in throughput is not enough to justify
the increased memory consumption. The close match between CGP
and Best confirms the high IB score in Figure 6a, whereas the nearly-
random behaviour of BestConfig finds a match in its decreasing
reward of Figure 6b.

In Figure 12 we show the maximum throughput achieved by the
various tuners in Cassandra Ramp 𝜎 = 105, where reducing the
response time is most important. CGP finds a higher throughput in
almost all the considered workloads.

In Figure 11 we report the best settings for the three most rele-
vant parameters after the memory ones. We select the parameters
according to the feature importance computed by the Random For-
est (RF) used in Section 4.1 (excluding the parameters used in the
score). As the RF is used to predict the response time, these param-
eters are the ones which affect response time the most. The best
configuration found largely varies with the workload, confirming

1410

Table 4: Offline tuner optimality with average IB score (i.e., area under IB curve normalized w.r.t. an optimal tuner, optimal
value is 1). 𝜎 is the response time penalty coefficient. Best tuners per scenario in bold usingWelch’s t-test with 1% p-value over
16 repetitions.

Average IB score
𝜎 [MiB

ms] Scenario Random GP OpenTuner BestConfig CGP

101

Cassandra Ramp 0.00 ± 0.02 0.45 ± 0.20 0.72 ± 0.18 0.70 ± 0.20 0.89 ± 0.03
Cassandra Peaks 0.01 ± 0.03 0.33 ± 0.15 0.68 ± 0.13 0.72 ± 0.16 0.81 ± 0.09
MongoDB Ramp 0.33 ± 0.10 0.95 ± 0.08 0.78 ± 0.14 0.92 ± 0.01 0.94 ± 0.05
MongoDB Peaks 0.31 ± 0.06 0.93 ± 0.06 0.77 ± 0.06 0.92 ± 0.02 0.94 ± 0.02

103

Cassandra Ramp 0.02 ± 0.03 0.14 ± 0.09 0.36 ± 0.12 0.19 ± 0.08 0.63 ± 0.04
Cassandra Peaks 0.04 ± 0.04 0.15 ± 0.09 0.36 ± 0.12 0.24 ± 0.08 0.57 ± 0.08
MongoDB Ramp 0.30 ± 0.07 0.30 ± 0.17 0.58 ± 0.10 0.69 ± 0.10 0.73 ± 0.05
MongoDB Peaks 0.27 ± 0.07 0.44 ± 0.19 0.60 ± 0.07 0.60 ± 0.08 0.75 ± 0.04

104

Cassandra Ramp 0.42 ± 0.03 0.41 ± 0.06 0.60 ± 0.05 0.53 ± 0.03 0.66 ± 0.03
Cassandra Peaks 0.44 ± 0.04 0.41 ± 0.04 0.59 ± 0.05 0.53 ± 0.03 0.65 ± 0.04
MongoDB Ramp 0.51 ± 0.04 0.57 ± 0.07 0.63 ± 0.06 0.64 ± 0.05 0.71 ± 0.05
MongoDB Peaks 0.59 ± 0.04 0.63 ± 0.07 0.65 ± 0.06 0.66 ± 0.05 0.75 ± 0.03

105

Cassandra Ramp 0.54 ± 0.02 0.52 ± 0.03 0.63 ± 0.05 0.58 ± 0.03 0.70 ± 0.03
Cassandra Peaks 0.54 ± 0.03 0.53 ± 0.03 0.65 ± 0.05 0.58 ± 0.03 0.68 ± 0.03
MongoDB Ramp 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.03 0.75 ± 0.04 0.86 ± 0.02
MongoDB Peaks 0.83 ± 0.01 0.83 ± 0.02 0.83 ± 0.02 0.77 ± 0.04 0.88 ± 0.02

Table 5: Online tuner optimality with average NPI score (i.e., slope of CR curve, optimal value is 1). 𝜎 is the response time
penalty coefficient. Best tuners per scenario in bold using Welch’s t-test with 1% p-value over 16 repetitions.

Average NPI score
𝜎 [MiB

ms] Scenario Random GP OpenTuner BestConfig CGP

101

Cassandra Ramp −0.99 ± 0.00 −0.90 ± 0.05 −0.01 ± 0.12 0.01 ± 0.17 0.70 ± 0.07
Cassandra Peaks −0.99 ± 0.01 −0.94 ± 0.03 0.01 ± 0.09 −0.38 ± 0.16 0.47 ± 0.15
MongoDB Ramp −0.92 ± 0.02 0.13 ± 0.37 0.18 ± 0.13 0.07 ± 0.21 0.74 ± 0.11
MongoDB Peaks −0.92 ± 0.01 −0.14 ± 0.26 0.21 ± 0.10 −0.04 ± 0.18 0.76 ± 0.04

103

Cassandra Ramp −0.98 ± 0.01 −0.96 ± 0.02 −0.47 ± 0.13 −0.57 ± 0.10 0.14 ± 0.10
Cassandra Peaks −0.98 ± 0.01 −0.95 ± 0.02 −0.44 ± 0.13 −0.52 ± 0.10 0.08 ± 0.11
MongoDB Ramp −0.91 ± 0.02 −0.91 ± 0.06 −0.09 ± 0.13 −0.07 ± 0.15 0.16 ± 0.06
MongoDB Peaks −0.91 ± 0.02 −0.87 ± 0.13 −0.16 ± 0.12 −0.12 ± 0.10 0.15 ± 0.07

104

Cassandra Ramp −0.69 ± 0.03 −0.73 ± 0.05 −0.25 ± 0.15 −0.28 ± 0.11 0.32 ± 0.04
Cassandra Peaks −0.68 ± 0.03 −0.73 ± 0.03 −0.20 ± 0.24 −0.27 ± 0.07 0.34 ± 0.04
MongoDB Ramp −0.43 ± 0.03 −0.37 ± 0.05 0.01 ± 0.08 0.04 ± 0.08 0.35 ± 0.07
MongoDB Peaks −0.42 ± 0.02 −0.33 ± 0.07 0.05 ± 0.09 0.10 ± 0.10 0.34 ± 0.05

105

Cassandra Ramp −0.53 ± 0.04 −0.57 ± 0.07 0.23 ± 0.25 0.07 ± 0.13 0.48 ± 0.06
Cassandra Peaks −0.52 ± 0.04 −0.58 ± 0.05 0.24 ± 0.20 0.18 ± 0.11 0.44 ± 0.03
MongoDB Ramp 0.46 ± 0.02 0.46 ± 0.05 0.58 ± 0.03 0.58 ± 0.09 0.63 ± 0.02
MongoDB Peaks 0.49 ± 0.02 0.47 ± 0.04 0.61 ± 0.03 0.61 ± 0.04 0.66 ± 0.02

our initial supposition that the configuration should vary with the
incoming workload.

Interestingly, the two most important parameters come from the
OS layer, and thus can be changed dynamically, without having
to restart the DBMS. Considering the non-portability of the best
configuration, we should prefer using software that allows to dy-
namically change its configuration, so to continuously adapt it to
the incoming workload.

If looking for a single configuration that works over all the
observed workloads, one should focus on the GP tuner, which has

no access to the workload dimensions and thus is forced to look for
a configuration with good overall performance. From the results of
Table 4, we see that such an approach still outperforms the baseline
configuration.

4.8 CGP complexity
In Figure 13 we report the time (in seconds) required by CGP at
each iteration to suggest the next configuration, when run on a
laptop equipped with an Intel i5-8250U CPU.

1411

0 50 100 150 200 250 300
Iterations

0

500

1000

1500

2000

M
iB

OpenTuner
BestConfig
CGP
Best

(a) Cassandra file_cache_size_in_mb

0 50 100 150 200 250 300
Iterations

0

2500

5000

7500

10000

12500

15000

17500

M
iB

OpenTuner
BestConfig
CGP
Best

(b) JVM max heap size (Xmx)

0 50 100 150 200 250 300
Iterations

0

2500

5000

7500

10000

12500

15000

op
s/
se
c

OpenTuner
BestConfig
CGP
Best

(c) Throughput

Figure 10: Unnormalised Memory and Throughput for the Cassandra Ramp tuning, Best refers to the best configuration avail-
able in the collected dataset according to the goal function.

c-20 b-30 c-40 b-50 a-60 a-80

Mix-Intensity

0

250

500

750

ki
B

Best

(a) OS Storage read_ahead_kb

c-20 b-30 c-40 b-50 a-60 a-80

Mix-Intensity

0

100

200
Best

(b) OS CPUSchedNrMigrate

c-20 b-30 c-40 b-50 a-60 a-80

Mix-Intensity

0

50

100
Best

(c) Cassandra concurrent_reads

Figure 11: Value of most relevant parameters in the best configuration found in the dataset for the workloads of Cassandra
Ramp. Optimal settings are not portable across workloads.

c-20 b-30 c-40 b-50 a-60 a-80

Workload

13000

14000

15000

16000

17000

op
s/
se
c

OpenTuner
BestConfig
CGP

Figure 12: Best throughput in Cassandra Ramp 𝜎 = 105.

0 50 100 150 200 250 300
Iterations

0

20

40

se
co
nd

s

CGP

Figure 13: Configuration suggestion time on MongoDB
Peaks.

From a theoretical perspective, since CGP uses Gaussian Pro-
cesses, the time complexity scales cubically with the number of
iterations and quadratically with the number of parameters [29].

Form a practical viewpoint, our very inefficient, single core imple-
mentation takes, at most, less than a minute to find a configuration
that is evaluated over the next hour, resulting in an acceptable
overhead given the superior performance reached by CGP.

5 CONCLUSION
In this work, we have presented CGPTuner, a contextual gaussian
process bayesian optimiser which successfully tunes the configu-
ration of an IT system while adapting to the incoming workload
and without relying on a previously collected knowledge base.
We have evaluated CGPTuner on two DBMSs, demonstrating the
portability across different database systems. We have evaluated
sixteen tuning scenarios, showing that the proposed algorithm
quickly understands the configuration space and beats the ven-
dor default configuration. CGPTuner was able to consistently pick
well-performing configurations on every workload already after
30 iterations, which is a substantially smaller amount of informa-
tion than the massive knowledge bases usually employed in the
state of the art. CGPTuner adapted the suggested configuration
to the observed workload, trading off an increase in the memory
consumption only when needed to reduce the response time, and
decreasing again the memory when the load decreased.

CGPTuner proved to be a viable solution both to the offline
and online tuning problems. As future extensions, we plan to im-
prove CGPTuner to work with more tuning iterations and bigger
search spaces. The number of iterations poses a limit on the com-
putational complexity, which scales cubically with the number of
iterations. However, several techniques already exists to reduce the
temporal complexity of Gaussian Processes, and their application
to CGPTuner would be trivial [20, 21, 23, 24]. As for the number
of tunable parameters, some approaches are already available in
the Bayesian Optimisation literature [21, 28]. However, the main
challenge here is to conduct reproducible evaluations as collecting
a dataset becomes more and more complex as we introduce more
parameters.

1412

REFERENCES
[1] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin,

Michael FP O’Boyle, John Thomson, Marc Toussaint, and Christopher KI
Williams. 2006. Using machine learning to focus iterative optimization. In
International Symposium on Code Generation and Optimization (CGO’06). IEEE,
11–pp.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adaptively unearthing the best
cloud configurations for big data analytics. In 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17). 469–482.

[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[4] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John
Cavazos, and Cristina Silvano. 2016. Cobayn: Compiler autotuning framework us-
ing bayesian networks. ACM Transactions on Architecture and Code Optimization
(TACO) 13, 2 (2016), 1–25.

[5] Pooja B Bindal, Devesh Singhal, AV Subramanyam, Vivek Kumar, et al. 2020. On-
eStopTuner: An End to End Architecture for JVM Tuning of Spark Applications.
arXiv preprint arXiv:2009.06374 (2020).

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP O’Boyle,
and Olivier Temam. 2007. Rapidly selecting good compiler optimizations us-
ing performance counters. In International Symposium on Code Generation and
Optimization (CGO’07). IEEE, 185–197.

[7] Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, and Stefano Doni. 2020. A
Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimi-
sations. In The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems. 15–25.

[8] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin,
Olivier Temam, and ChengyongWu. 2012. Deconstructing iterative optimization.
ACMTransactions on Architecture and Code Optimization (TACO) 9, 3 (2012), 1–30.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[10] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017. BOAT: Build-
ing auto-tuners with structured Bayesian optimization. In Proceedings of the 26th
International Conference on World Wide Web. 479–488.

[11] Biplob KDebnath, David J Lilja, andMohamed FMokbel. 2008. SARD: A statistical
approach for ranking database tuning parameters. In 2008 IEEE 24th International
Conference on Data Engineering Workshop. IEEE, 11–18.

[12] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with iTuned. Proceedings of the VLDB Endowment 2, 1
(2009), 1246–1257.

[13] Matthew D Hoffman, Eric Brochu, and Nando de Freitas. 2011. Portfolio Alloca-
tion for Bayesian Optimization.. In UAI. Citeseer, 327–336.

[14] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. 2018. Arrow:
Low-level augmented bayesian optimization for finding the best cloud vm. In 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 660–670.

[15] Toru Kisuki, Peter MW Knijnenburg, and Michael FP O’Boyle. 2000. Combined
selection of tile sizes and unroll factors using iterative compilation. In Proceedings
2000 International Conference on Parallel Architectures and Compilation Techniques
(Cat. No. PR00622). IEEE, 237–246.

[16] Andreas Krause and Cheng S Ong. 2011. Contextual gaussian process bandit
optimization. In Advances in neural information processing systems. 2447–2455.

[17] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[18] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[19] Carl Edward Rasmussen. 2003. Gaussian processes in machine learning. In
Summer School on Machine Learning. Springer, 63–71.

[20] Matthias Seeger, Christopher Williams, and Neil Lawrence. 2003. Fast forward
selection to speed up sparse Gaussian process regression. Technical Report.

[21] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148–175.

[22] Alice E Smith and David W Coit. 1997. Penalty functions. Handbook of evolu-
tionary computation 97, 1 (1997), C5.

[23] Edward Snelson and Zoubin Ghahramani. 2006. Sparse Gaussian processes using
pseudo-inputs. Advances in Neural Information Processing Systems 18 (2006),
1259–1266.

[24] Edward Snelson and Zoubin Ghahramani. 2007. Local and global sparse Gaussian
process approximations. In Artificial Intelligence and Statistics. PMLR, 524–531.

[25] Il’ya Meerovich Sobol’. 1967. On the distribution of points in a cube and the
approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki 7, 4 (1967), 784–802.

[26] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.
Gaussian process optimization in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995 (2009).

[27] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1009–1024.

[28] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. 2013. Bayesian Optimization in High Dimensions via Random Embeddings..
In IJCAI. 1778–1784.

[29] Christopher KI Williams and Carl Edward Rasmussen. 2006. Gaussian processes
for machine learning. Vol. 2. MIT press Cambridge, MA.

[30] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings of
the 2017 Symposium on Cloud Computing. 338–350.

1413

