
Magic mirror in my hand, which is the best in the land?
An Experimental Evaluation of Index Selection Algorithms

Jan Kossmann1 ∗ Stefan Halfpap1 ∗ Marcel Jankrift2 Rainer Schlosser1
Hasso Plattner Institute, University of Potsdam, Germany

1firstname.lastname@hpi.de 2marcel@jankrift.de ∗contributed equally

ABSTRACT
Indexes are essential for the efficient processing of database
workloads. Proposed solutions for the relevant and chal-
lenging index selection problem range from metadata-based
simple heuristics, over sophisticated multi-step algorithms,
to approaches that yield optimal results. The main chal-
lenges are (i) to accurately determine the effect of an index
on the workload cost while considering the interaction of
indexes and (ii) a large number of possible combinations re-
sulting from workloads containing many queries and massive
schemata with possibly thousands of attributes.

In this work, we describe and analyze eight index selec-
tion algorithms that are based on different concepts and
compare them along different dimensions, such as solution
quality, runtime, multi-column support, solution granular-
ity, and complexity. In particular, we analyze the solutions
of the algorithms for the challenging analytical Join Order,
TPC-H, and TPC-DS benchmarks. Afterward, we assess
strengths and weaknesses, infer insights for index selection
in general and each approach individually, before we give
recommendations on when to use which approach.

PVLDB Reference Format:
Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer
Schlosser. Magic mirror in my hand, which is the best in the
land? An Experimental Evaluation of Index Selection Algorithms.
PVLDB, 13(11): 2382-2395, 2020.
DOI: https://doi.org/10.14778/3407790.3407832

1. INTRODUCTION
Database systems use secondary indexes for speed up.

However, the index selection problem, i.e., finding the opti-
mal set of indexes for a given workload and dataset while
considering constraints, e.g., a storage budget, is complex.

First, the solution space, i.e., the set of possible index
combinations, is enormous. It increases with the number
of indexable attributes, the number of columns per index,
and the number of considered index types, for instance, B-
trees, hash maps, or bit maps. Second, indexes interact with
each other, i.e., the benefit of an index may depend on the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407832

Further Aspects
• Runtime & What-If Calls
• Solution Granularity
• Workload Characteristics

Figure 1: Various dimensions need to be considered
for the evaluation of index selection algorithms.

existence of other indexes [45]. Third, it is challenging to
efficiently quantify the impact of an index on the workload
cost without deploying indexes and actually running queries,
because cost estimates are inherently inaccurate [15].

The importance of performance enhancements by indexes
in practice, in combination with the complexity of the prob-
lem, has led to a lot of research work in this area. Early
work dates back to the 1970s [29, 41]. Since then, many
(heuristic) algorithms, based on different approaches, have
been developed to find optimized index configurations. The
specific algorithms differ in calculation time, solution quality,
optimization criteria, and the method for cost estimation.

To the best of our knowledge, there is no comparison of
state-of-the-art algorithms in different dimensions, e.g., con-
sidering varying storage budgets, the algorithms’ runtimes,
and multiple workloads (see Figure 1). For example, Schnait-
ter and Polyzotis present a specific benchmark for online
index selection and evaluate two index selection algorithms
for changing workloads [44]. In contrast, in this paper, we
compare eight algorithms for three workloads and focus on
evaluating the algorithms’ performance across multiple di-
mensions. While existing work, which presents new selection
algorithms, usually contains comparisons, these are often
limited regarding the evaluated dimensions and choice of
compared algorithms.

In this work, we compare and evaluate eight existing al-
gorithms for the index selection problem: [4, 9, 10, 14, 26,
43, 48, 49], and interpret their results in different scenarios.
Such an investigation should (i) be reproducible, (ii) offer the
flexibility to add further algorithms, database workloads, and
database systems in the future, as well as (iii) automate the
evaluation to facilitate practical use for database researchers
and administrators. For these reasons, we developed an
extensible and publicly available evaluation platform.

2382

Contributions. With this paper, we present a comparative
evaluation of eight index selection algorithms, namely the
Drop Heuristic [49], AutoAdmin’s index selection [10], DB2
Advisor [48], Relaxation [4], CoPhy [14], Dexter [26], Ex-
tend [43], and DTA Anytime [9]. This comparison includes:

• An explanation and detailed analysis of the functional-
ity of eight diverse index selection algorithms.

• The experimental evaluation of the algorithms for three
analytical benchmarks, namely, the TPC-H, TPC-DS,
and Join Order Benchmark with regard to solution
quality and runtime for varying storage budgets.

• An experimental analysis of the influence of different
parameters of the algorithms.

• A deduction of insights and recommendations for selec-
tion algorithms depending on user needs.

• An open-source evaluation platform, which includes im-
plementations of all compared algorithms, reproducibly
automates setup, execution, and evaluation, and facili-
tates the extension by further algorithms or workloads.

In Section 2, we formalize the index selection problem
and discuss different options for determining index benefits.
Afterward, we describe, analyze, and compare the examined
algorithms in Section 3. We present our methodology in Sec-
tion 4 and Section 5 describes the implemented evaluation
platform. In Section 6, we reveal the experimental results
and examine the solutions found by the different algorithms,
before we discuss our findings and mention the insights ob-
tained from the experiments in Section 7. Section 8 concludes
the paper and mentions ideas for future work.

2. INDEX SELECTION PROBLEM
In this section, we define the index selection problem as well

as the vocabulary and notation used throughout this paper.
Afterward, we discuss different approaches for estimating
query costs, given a set of (hypothetically) existing indexes,
which is essential for index selection algorithms.

2.1 Formalization
Secondary indexes are auxiliary data structures that are

used to enhance the performance of database systems. Typi-
cally, there is a trade-off between improved performance and
elevated storage consumption. While performance is essential
for productive systems, storage is a scarce resource [51].

Index structures do not always accelerate query execution.
In fact, additional indexes can even increase the workload
processing time, e.g., because inserts or updates require ex-
pensive maintenance operations on the index structures [22].

The index selection problem is about finding the set of
indexes for a given workload that results in the best perfor-
mance while considering a set of constraints, e.g., a limited
storage budget, the kind of indexes to create, and the runtime
of the index selection. We use the following notation:

Workload. A workload is a set of Q queries, which are
defined over a set of tables with N attributes. A query j is
characterized by the subset of attributes qj ⊆ {1, ..., N} that
are accessed for its evaluation, j = 1, ..., Q.

Query and workload costs are important input parameters
for index selection algorithms. The total workload cost C is
defined as the sum of the cost of all queries, i.e., C =

∑Q
j=1 cj ,

where the costs cj depend on the selected indexes. Naturally,
also different frequencies (or occurrences) of queries within a

workload could be taken into account to differentiate their
importance during index selection.

Index. An index w with W attributes is represented by
an ordered set of attributes w = {i1, ..., iW }, where iu ∈
{1, ..., N}, u = 1, ...,W . W is also called the width of an
index. In this work, the size of an index refers to its storage
consumption. A single index cannot incorporate attributes
of multiple tables but is only created on a single table.

Index Configuration. An index configuration k is a set of
indexes. Query and workload costs can also be calculated
considering an index configuration: C(k) =

∑Q
j=1 cj(k).

Potential Index. A potential index p with W attributes is
any index that could be generated from an arbitrary combi-
nation of attributes (from the same table) that are part of the
workload, i.e., p = {i1, ..., iW }, where iu ∈

⋃
j=1,...,Q qj , u =

1, ...,W .

Index Candidates. Potential indexes that are considered
and evaluated by index selection algorithms are index candi-
dates I. Usually (because of their large number and combina-
tion possibilities), index selection algorithms cannot consider
all potential indexes, e.g., indexes with many attributes are
ignored. Choosing index candidates from all potential in-
dexes is an essential part of index selection algorithms. Many
algorithms focus on (syntactically) relevant indexes that con-
tain only columns that appear together in at least one query.
Typically, algorithms evaluate different candidate sets and
index configurations during the selection process.

Index Interaction. Indexes interact with each other, i.e.,
the benefit of one index can be affected by the presence of
another index [45]. Thus, to find effective selections, the
mutual interplay of indexes has to be taken into account. In-
dex interaction increases the complexity of choosing suitable
candidates and calculating the best selection significantly, as
the benefit of indexes cannot be considered independently.

Index Selection. An index selection S is the set of chosen
indexes out of a candidate set I. An algorithm’s goal is to
solve the problem minS⊆IC(S). Note, besides the selection
S, also the candidate set I influences the solution quality.

Hypothetical Index. Hypothetical indexes [10], also called
virtual indexes [48], do not physically exist. Their existence
is only simulated to trick the optimizer into generating query
plans and cost estimations that would also be created if the
index was actually physically present.

2.2 Determining Query Costs
Index selection algorithms are required to quantify the

benefit of an index, i.e., cost-savings when the index is uti-
lized for executing the workload at hand. Furthermore, the
index size, i.e., its storage consumption, is of interest. Both
information is necessary for assessing and comparing differ-
ent index candidates. A possibility to quantify the benefit
of an index is to create the index physically and run each
query whose costs are possibly affected by the index. Usually,
this measurement-based approach results in accurate costs.
However, this approach is prohibitively expensive for large
workloads, in particular, because quantifying benefits in case
of index interactions would require repeated recreations of
the same indexes and executions of the same queries.

Therefore, most index selection algorithms do not measure
but only estimate index benefits to avoid being thwarted too
much by determining query costs. It is common to use the

2383

database system’s optimizer and its cost model for these es-
timations, because the optimizer chooses the query plan and,
in particular, which indexes are used. Furthermore, to not
only avoid executing queries but also creating indexes, some
database systems support hypothetical indexes. Hypothetical
indexes are not physically created but only affect optimizer
cost estimations. The optimizer is instructed to imagine that
a specific index would exist and base its cost estimations on
this imagination. So-called what-if (optimizer) calls are used
to estimate query costs.

Although queries are not executed, what-if calls take a
considerable amount of time, because a query optimization
process is executed. In particular, for large workloads, where
millions of optimizer calls must be made, what-if calls can
become a significant bottleneck. Papadomanolakis et al.
show that index selection algorithms spend, on average, 90%
of their runtime in the optimizer [35]. We discuss the cost of
what-if calls in Section 6.5.

Chaudhuri and Narasayya discuss techniques to decrease
the number of optimizer calls by (i) reducing the set of
configurations to evaluate and (ii) deducing costs from sim-
pler configurations [10]. Papadomanolakis et al. present a
cache-like approach (INUM) to reduce the number of what-if
calls [35]. The authors claim to be three orders of magnitude
faster without accuracy losses. Besides, Bruno and Nehme
present with C-PQO [6] another method to speed up what-if
based cost estimation.

In general, optimizer-based cost estimations can result in
significant estimation errors due to cardinality misestima-
tions [28] or inaccurate cost models [50]. As a result, index
configurations predicted to be beneficial can, when actually
executing queries, result in performance regressions [3, 13].
The solution quality of index selection algorithms is, to some
extent, bounded by the accuracy of the cost estimations.
In their recent work, Ding et al. demonstrate how machine
learning classification approaches can be leveraged to predict
which plan (with or without index) will be more efficient [15].
The cost models based on neural networks of Marcus and
Papaemmanouil [30] could be used to mitigate the problems
arising from inaccurate cost models.

3. INDEX SELECTION ALGORITHMS
In this section, we describe the compared index selection

algorithms. Figure 2 gives a time-based overview of the
examined publications as well as milestones in the field of
index selection algorithms. The functioning and configurable
parameters of the investigated algorithms are presented in
Section 3.1 - 3.8. Section 3.9 summarizes the main char-
acteristics of the algorithms, before Section 3.10 discusses
machine-learning based approaches and Section 3.11 high-
lights specifics of commercial index selection tools.

Choice of Evaluated Algorithms. Index selection algo-
rithms have been published since 1971, and differ in their
underlying approaches and complexity. We included one of
the first (Drop), intermediate, and recent (Extend, machine
learning-based [47], DTA) algorithms (see Figure 2). Most al-
gorithms were proposed in research papers. Some are related
to commercial systems (AutoAdmin, DB2Advis, DTA). Dex-
ter is an open-source algorithm. Regarding the underlying ap-
proaches, we evaluate imperative algorithms (i) starting with
an empty index configuration and iteratively adding indexes
(AutoAdmin, DB2Advis, DTA, Extend), and (ii) starting with

a large configuration that is reduced (Drop, Relaxation), as
well as declarative approaches based on (iii) linear program-
ming (CoPhy) and (iv) machine learning [47]. Finally, the
chosen algorithms differ in their complexity, e.g., caused by
more (DTA, Relaxation) or less (Drop) sophisticated can-
didate selections and transformations to adapt the current
index configuration.

3.1 Drop
One of the early index selection algorithms is Whang’s

Drop heuristic [49]. As the name implies, this approach suc-
cessively drops index candidates. First, the initial candidate
index set, S|I| = I, comprises every potential single-column
index and the processing costs for the given workload are
determined with all index candidates in place, C(S|I|). In
each of the following drop phases n, n = |I|, |I| − 1, ..., ev-
ery remaining index candidate w ∈ Sn is removed from the
current candidate set and the workload processing cost is
re-evaluated, C(Sn \ {w}). The candidate w∗ whose removal
leads to the lowest cost is permanently removed for the next
phase, Sn−1 := Sn \ {w∗}. The original version drops index
candidates until no further cost reduction is achieved. Fur-
thermore, Whang’s work states that costs are determined by
characteristics of the data, not by the query optimizer.

Parameters. In our implementation, the maximum number
of (finally) selected indexes |I| − n can be configured.

3.2 AutoAdmin
Chaudhuri and Narasayya propose the AutoAdmin in-

dex selection algorithm for Microsoft SQL Server [10]. The
iterative algorithm identifies multi-column indexes by incre-
menting the index width in each iteration. Iterations consist
of two steps: First, candidates Sj are determined per query
j = 1, ..., Q. The union of the candidates of all queries

⋃
j Sj

serves as input for the second step, which considers all queries
while determining the best index configuration. For both
steps, the procedure only differs in the considered queries
and index candidates. The algorithm is a combination of a
complete enumeration of all subsets of index candidates with
m elements and a greedy extension to find n > m indexes.
If m = n, the enumeration evaluates all index subsets with
n elements to guarantee an optimal solution. The number
of combinations may be prohibitively large to be evaluated
in a reasonable amount of time. If m = 0, a pure greedy
approach is used to decrease the runtime.

Using the single-column (m-column) indexes of the first
(mth) iteration, two-column ((m + 1)-column) indexes are
created and evaluated in the second ((m + 1)th) iteration.
To create multi-column indexes, Chaudhuri and Narasayya
propose two different strategies, selecting more indexes for
better results or fewer indexes for faster computation times.

Parameters. While the authors mention a storage budget
or the number of indexes as possible constraints, the latter
is used throughout the original paper. Our implementation
uses the maximum number of indexes as a constraint to be as
close to the original as possible. Also, the number of naively
enumerated indexes and the index width can be configured.

3.3 (Anytime) DTA
The Anytime algorithm of the Database Engine Tuning

Advisor (DTA) for Microsoft SQL Server [9] is a continu-
ously refined [1, 11, 12, 31] version of the AutoAdmin [10]

2384

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Firs
t
m

en
tio

n
[3
3]

Firs
t
pu

bl
ic
at

io
n

[2
9]

O
pt

im
iz
ed

so
lu

tio
n

[4
1]

C
os

t
fu

nc
tio

n-
ba

se
d

[1
6]

A
dd

iti
ve

he
ur

ist
ic

[2
3]

R
ed

uc
e
to

K
na

ps
ac

k
[2
4]

Pro
of

N
P
-C

om
pl

et
e
[3
6]

D
ro

p
[4
9]

G
en

et
ic

A
lg
or

ith
m

[1
9]

O
pt

im
iz
er

-b
as

ed
[2
1]

LP-b
as

ed
G

U
F
L
P

[8
]

A
ut

oA
dm

in
[1
0]

In
de

x
m

er
gi
ng

[1
1]

D
B
2A

dv
is

[4
8]

C
on

t.
In

de
x

Tun
in

g
[4
0]

SQ
L

Se
rv

er
D
TA

[1
]

R
el
ax

at
io
n

[4
]

O
nl

in
e
Tun

in
g

[5
]

IN
U
M

[3
5]

C
oP

hy
[1
4]

D
ex

te
r

[2
6]

R
L
∗ [2

, 39
, 47

]

E
xt

en
d

[4
3]

D
T
A

[9
]

Figure 2: Timeline of milestones for index selection algorithms. Algorithms that are described, implemented,
and evaluated in this work are highlighted with bold type. ∗RL refers to Reinforcement Learning.

index selection. The core approach to first determine index
candidates per query and then identify an index configura-
tion for the entire workload, based on the original greedy
enumeration, is the same.

The approach uses the following main extensions: (i) It-
erations with increasing index widths are unnecessary since
multi-column indexes are considered from the start. (ii) Af-
ter candidate selection, candidates and configurations are
merged to determine further candidates that are beneficial
for multiple queries. (iii) Index interactions are considered
by identifying seed configurations to avoid complete enumer-
ations that may evaluate many, certainly suboptimal, config-
urations. (iv) As the name suggests, the tuning times can
be limited to guarantee solutions even for many candidates
and seeds. (v) The algorithm is capable of simultaneously
tuning indexes, materialized views, and partitioning criteria.

Parameters. The maximum width of index candidates and
a limit for the tuning time that applies – in contrast to the
original proposal – to the entire algorithm can be configured.

3.4 DB2Advis
Valentin et al. present the algorithm DB2 Advisor (short

DB2Advis) to identify beneficial indexes for IBM’s DB2 [48].
DB2Advis utilizes the optimizer’s what-if capabilities and
follows a three-step approach.

In the first step, DB2Advis determines index candidates.
For each query j, j = 1, ..., Q, of the workload, hypothetical
indexes are created on columns that, e.g., appear in equality
or range predicates or in interesting order [46] lists. In
addition, to not miss any candidate, all potential indexes
are added as hypothetical indexes until a certain number
of indexes is reached. Afterward, the optimizer is asked for
the best plan for query j. Previously created hypothetical
indexes that are utilized in the resulting plan are added to
the set of index candidates (I) that is used in the next step.

In the second step, all index candidates in I are sorted by
their benefit-per-space ratio in decreasing order. Following,
index pairs w1 and w2 are combined if w1 has a higher ratio,
and its leading columns are equal to w2’s column permutation.
In this case, the benefit of w1 is updated, w2 is removed from
the list, and I is potentially resorted corresponding to its
updated costs. Then, following the sort order, indexes are
added to the final index configuration (S) until the storage
budget (A) is exceeded.

Lastly, the current index configuration is randomly varied
to improve its benefit and account for complex effects like
index interaction: Sets of the previously calculated solution
(S) are exchanged with sets of indexes that are not part of

the solution (due to the budget constraint). If the variant
leads to lower overall costs, it becomes the new solution.

Parameters. There are two main parameters: (i) the time
for random variations and (ii) the maximum number of
hypothetical indexes that are evaluated in the first step of
the algorithm. Our implementation also allows configuring
the maximum index width and does not support limiting
the number of hypothetical indexes (ii). Such a preselection
could be easily added, also to the other algorithms. We
refrained from including it to compare the core algorithms.

3.5 Relaxation
Bruno and Chaudhuri propose to derive indexes from a

(presumably too large) optimal index set by repeatedly trans-
forming it to decrease the storage consumption [4]. First,
they obtain optimal index configurations for each query.
Therefore, they instrument the optimizer and exploit knowl-
edge about the optimizer’s index usage to avoid a brute force
approach. Second, the optimal index configuration for the
entire workload is defined as the union of all queries’ opti-
mal index sets. Afterward, this configuration is repeatedly
relaxed, i.e., transformed, to lower its storage consumption
while keeping the configuration’s benefits as high as possible.
They use five index transformations: (i) Merging two indexes
into one. (ii) Splitting two indexes, i.e., creating an index
with shared attributes and up to two (one per input index)
indexes with the residual attributes. (iii) Prefixing an index
by removing attributes from the end. (iv) Promoting an
index to a clustered index. (v) Removing an index.

Parameters. The maximum width for index candidates
can be configured as well as which of the transformations are
permitted. Our tool currently uses a brute force approach
to obtain the optimal index configuration per query. As
clustered indexes are not considered in this work, we did not
integrate this transformation.

3.6 LP-based Approaches (CoPhy)
Linear programming (LP) is a common approach to solve

optimization problems by specifying the optimization goal
and constraints with linear equations. Then, off-the-shelf
solvers are used to calculate optimal solutions. Solvers are
optimized to discard invalid and sub-optimal solutions early
and, thus, outperform brute force approaches significantly.
Commonly, index selection algorithms are formulated as in-
teger LP problems, which are not scalable. The problem
complexity of LP formulations for the index selection prob-
lem can be reduced by restricting the solution space, e.g.,
the number of index candidates by decreasing the allowed

2385

index width. Of course, limited candidate sets might lead to
suboptimal solutions for the unrestricted problem.

GUFLP. Caprara and Salazar González derive an LP for-
mulation [7, 8] for the index selection problem from a Gener-
alized Uncapacitated Facility Location Problem (GUFLP).
They reduce the complexity of the LP formulation with a re-
striction of the solution space by allowing only a single index
per query. Thus, opportunities that only arise when multiple
indexes exist simultaneously are not taken into account.

CoPhy. Dash et al. propose CoPhy, a more sophisticated LP
formulation [14] for the index selection problem. In contrast
to GUFLP, their approach considers multiple indexes per
query (see also [34]) and multiple query plans that are possi-
bly chosen by the optimizer depending on existing indexes.
Below, we describe the essence of CoPhy’s LP approach.

The costs of (a fixed query plan and) executing a query
using specific indexes have to be at hand (e.g., based on
what-if cost estimations). We consider a set K of different
index combinations. If a subset of index candidates k ⊆ I,
called option in the following, is applied to query j, the costs
are cj(k), k ∈ K ∪ {0}, where 0 describes the option that no
index is applied to j, j = 1, ..., Q.

In the LP, binary variables zjk are used to model whether
an index option k is applied to a query j. Binary variables
xi indicate whether an index i ∈ I with its corresponding
storage consumption ai is selected (as part of at least one
chosen option k). The constraints of the LP guarantee that
a unique index option is used for each query j and that the
used indexes i do not exceed the storage budget A.

The complexity of the LP problem is characterized by the
number of variables and constraints. As LP formulations
require all cost coefficients cj(k), the number of necessary
what-if calls can be estimated. In general, LP approaches do
not scale as the problem complexity sharply increases in the
number of queries Q and the number of options |K|. Hence,
solver-based approaches are (i) either not applicable for large
problems (see [43], Table I), or (ii) lead to suboptimal results
as the candidate set sizes, cf. K, need to be reduced (see [43],
Figure 3-4). To mitigate such solver-based scalability issues,
heuristic decomposition approaches can be used [42].

Parameters. The maximum width of index candidates and
the number of applicable indexes per query (1 corresponds
to GUFLP) can be specified.

3.7 Dexter
Dexter is an open-source index selection tool for Post-

greSQL [25, 26] and was developed by Andrew Kane. The
algorithm builds on hypothetical indexes and is divided into
two phases. First, the processed queries, together with in-
formation about their runtime, are gathered from the plan
cache. Queries with the same template but different parame-
ter values are grouped.

The second phase involves multiple sub-steps. (i) The
initial costs (of the current index configuration) of the gath-
ered queries are determined by using the EXPLAIN com-
mand. (ii) Hypothetical indexes are created for all potential
single- and multi-column indexes that are not yet indexed.
(iii) Again, cost estimations and query plans are retrieved
from the query optimizer. The hypothetical indexes created
in step (ii) that are part of these query plans become index
candidates for the corresponding queries. (iv) For all queries,
the index candidate with the most significant cost-savings
compared to the costs obtained in step (i) is selected.

Dexter does not consider already existing indexes for dele-
tion. Indexes are created independent of their storage con-
sumption and cannot contain more than two columns.

Parameters. The tool offers a couple of parameters. The
most important one is the minimal cost-savings percentage
(default value 50%). It defines the minimal cost-savings that
must be achieved by an index candidate to be selected.

3.8 Extend
The iterative selection algorithm for multi-column indexes

of Schlosser et al. focuses on efficiency without limiting the
set of index candidates a priori [43]. The cost inputs for
the algorithm can rely on what-if estimations or manually
crafted cost models (e.g., [27]).

The algorithm works in a greedy stepwise fashion, either
adding or extending one index per step based on the highest
benefit per storage ratio. The algorithm starts with an
empty solution set S = ∅. Initially, the single-attribute index
with the highest cost reduction per storage is added to S.
Afterward, there are generally two options: either a new
single-attribute index {i}, i ∈ {1, ..., N} with {i} ∩ S = ∅ is
added, or an existing index w ∈ S is extended by appending
attribute i ∈ {1, ..., N}. Again, the option with the best ratio
of further cost reduction and additional storage consumption
is chosen. This procedure accounts for index interaction as in
each step, the effect of already chosen indexes is considered.
The algorithm terminates if the storage budget is reached or
no further cost improvement can be realized.

Parameters. Originally, Extend does not limit the index
width. In our implementation, the index width can be limited
to make it comparable with the other approaches.

3.9 High-level Comparison
Table 1 summarizes the main characteristics of the eight

compared index selection algorithms. When selecting in-
dexes, algorithms consider either the benefit per storage
consumption (CoPhy, DB2Advis, Extend, Relaxation) or the
pure benefit (AutoAdmin, Dexter, Drop, DTA). Algorithms
also differ in the stop criterion. Some algorithms allow
specifying an arbitrary upper limit of the total index storage
consumption. All algorithms but Drop1 support the selection
of multi-column indexes. Dexter is limited to two-column
indexes. In particular, in the case of CoPhy, multi-column
indexes increase the number of what-if calls drastically. The
consideration of index interaction in DB2Advis is limited,
mainly late in the final variation phase.

3.10 Machine Learning-based Approaches
Recently, machine learning-based approaches for index se-

lection have been proposed. For example, Sharma et al. [47]
demonstrate how deep reinforcement learning (RL) can be
used for index selection with a publicly available implemen-
tation2. Sadri et al. describe the prototype of another RL-
based approach to identify beneficial indexes in a replicated
database scenario [39]. Basu et al. specify a general RL
approach for database tuning problems [2]. The framework
is applied to index selection for the TPC-C workload. Index

1Drop theoretically supports multi-column indexes. How-
ever, the configuration tests (and, thus, runtime) would
significantly increase with the number of candidates.
2Source code: https://github.com/sh-ankur/autoindex

2386

https://github.com/sh-ankur/autoindex

Table 1: Summary of the compared algorithms in chronological order.

Drop AutoAdmin DB2Advis Relaxation CoPhy Dexter Extend DTA

Minimization goal Costs Costs Costs
Storage

Costs
Storage

Costs
Storage

Costs Costs
Storage

Costs

Stop criterion # Indexes # Indexes Storage Storage Storage Savings (%) Storage Storage
Multi-column indexes No Yes Yes Yes (Yes) (Limit 2) Yes Yes
Index interaction Yes Yes (Yes) Yes Yes Yes Yes Yes

interaction is ignored to reduce the problem’s complexity.
Limitations Even though the conceptual idea of applying
machine learning to index selection is promising, we did not
include the aforementioned approaches in this evaluation be-
cause, currently, they are still limited and cannot be applied
to the benchmarks utilized for evaluation. While there are
no implementations or details for reimplementation available
for some approaches [2, 39], Sharma et al.’s work [47] lacks
support for operators different from filters, e.g., joins. Also,
the concept of RL, where an agent independently develops
a strategy to solve a problem, requires massive amounts of
training data, i.e., example queries, to develop a broadly
applicable strategy. While generating this training data is
challenging in itself, a large amount of training data results
in long training times. Even further, it is vital for RL-based
approaches to quickly evaluate the agent’s actions (index
creation/removal) to determine its reward. However, in this
case, the efficiency of the evaluation is limited by the database
system because (hypothetical) indexes must be created and
costs must be determined. This particular process cannot be
accelerated by GPUs or TPUs as often done for RL.

Nevertheless, we evaluated the implementation of Sharma
et al. [47] on the TPC-H dataset. For ten filter-only queries,
the reinforcement model was almost on par3 with the tradi-
tional approach after 8 hours of training on CPUs.

3.11 Commercial Index Selection Tools
While some of the chosen algorithms are related to tools

employed in commercial DBMS products, the re-implemented
algorithms do not fully reflect the behavior and performance
of the original tools, which may be continuously enhanced
and optimized. Such tools need to set further focus points,
such as robustness, scalability, time-bound tuning, and inte-
gration [1, 12]. Microsoft’s Database Engine Tuning Advisor
(DTA) [31] and the DB2 Design Advisor [52] are able to si-
multaneously consider multiple physical design aspects, e.g.,
indexes, partitioning, and materialized views. Further, com-
mercial tools must be able to tune dynamic workloads in a
production environment and support user interaction [12].

4. METHODOLOGY
An objective comparison of index selection algorithms is

challenging because the quality of an algorithm depends on
the input (workload and index benefits), the algorithm’s
configuration, as well as on the constraints (budget) and
optimization goals (benefit, ratio of benefit and storage), and
the granularity4 of the solutions. In other words, the best
algorithm may depend on the specific evaluation scenario.

3Results: https://git.io/EvaluationIndexSelectionRL
4Granularity refers to the ability to identify solutions whose
storage consumption exploits any provided budget.

Thus, we tried to cover a broad range of scenarios for our
comparison. In this section, we describe our evaluation setup.

First, we detail the investigated workloads in Section 4.1
and how cost estimations are realized in Section 4.2. Follow-
ing, we explain constraints, optimization goals, and discuss
our setup.

4.1 Workloads
For our comparison, we use three benchmark workloads of

different scales and characteristics, e.g., the number of poten-
tial indexes, number of queries, or whether they are based
on synthetic or real-world data, to investigate the workload’s
potential impact on the algorithms’ solution quality and
runtime. In the following, we highlight the differences of the
TPC-H [37], TPC-DS [32], and Join Order Benchmark [28].

Table 2 displays relevant metrics for index selection for
the three benchmark workloads and schemata. The TPC
benchmarks are standardized analytical benchmarks and can
be scaled with a scale factor. The JOB is based on rea-
sonable queries over the Internet Movie Data Base (IMDB).
In contrast to the synthetic datasets, the IMDB comprises
real-world data with realistic cardinalities and dependencies,
and focuses on the processing of joins.

The metrics demonstrate the different scales of the bench-
marks. The TPC-H benchmark is relatively small and can be
utilized for quick evaluations while the TPC-DS benchmark
represents more realistic scenarios and is more abundant in
every dimension. Even though the JOB’s workload consists
of the most queries, the number of potential (multi-column)
indexes is comparably low. Most JOB queries contain many
columns, but most of them belong to different tables and
indexes are only created over attributes of the same table.

4.2 Determining Query Cost
All compared algorithms require a (more or less) large

number of query cost determinations (given a fixed index con-
figuration) and/or cost evaluations with large configurations
(see Section 3.1 - 3.8). Although it is theoretically possible to
obtain query costs by physically creating/dropping indexes
and executing queries (repeatedly), it would take too much
time and restrict feasible algorithm settings, especially the
number of index candidates, by a too large degree. Therefore,
we use hypothetical indexes for cost (and size) estimations.

Although these estimates are inaccurate (see Section 2.2),
they offer a reasonable combination of speed, accuracy, and
accessibility and are consistent for all algorithms. Note, in
this work, instead of assessing cost estimation approaches,
we focus on the evaluation of index selection algorithms.

Based on the fact that many of the index selection algo-
rithms proposed in the literature require what-if calls for
practical application, it is surprising that database systems
do usually not expose (a well-documented) interface to re-
trieve cost estimates for hypothetical indexes.

2387

https://git.io/EvaluationIndexSelectionRL

Table 2: Metrics for the evaluated benchmark schemata and workloads. The number of relevant index
candidates was determined by generating all permutations of all syntactically relevant indexes.

Benchmark Dataset Relations Attributes Queries Relevant n-column candidates

n = 1 n = 2 n = 3 n = 4

JOB Real-world 21 108 113 73 218 552 1 080
TPC-H Synthetic uniform 8 61 22 53 398 3 306 29 088
TPC-DS Synthetic skewed 24 429 99 248 3 734 68 052 1 339 536

Therefore, database options for the evaluation were limited.
We chose PostgreSQL with the extension HypoPG [38]. Hy-
poPG enables creating, dropping, and size estimation of hy-
pothetical indexes. Using PostgreSQL’s EXPLAIN command,
query plans with arbitrary hypothetical index configurations
can be inspected. In doing so, we can determine which in-
dexes are used and the estimated total execution cost for the
plan. By calling ANALYZE before an index selection evaluation
process is initiated, we ensure the existence of up-to-date
statistics that are used for cost estimations and for predicting
the storage consumption of hypothetical indexes. Thereby,
single-column statistics (PostgreSQL holds histograms and
the 100 most common values by default) are built for all
attributes. EXPLAIN reports costs in arbitrary units, which
are based on and can be tuned with parameters, e.g., specify-
ing the relative performance of processing a row vs. fetching
pages sequentially from disk. We use PostgreSQL planner’s
default cost parameters and could not find significant cost
estimation differences between actual indexes and HypoPG’s
hypothetical ones5.

Write statements are not differently costed if indexes are
present, neither by HypoPG nor by PostgreSQL’s optimizer,
which is not an issue for our evaluation of purely analytical
workloads. For transactional workloads, PostgreSQL’s op-
timizer could be complemented by a manual cost model to
approximate index maintenance costs.

4.3 Constraints and Optimization Goal
The optimization goals and possible constraints of the

compared algorithms differ (see Section 3).
Optimization goal. Most of the compared algorithms

optimize the ratio of index benefit and storage consumption.
Therefore, we evaluate all algorithms concerning the storage
consumption of selected indexes and the estimated6 workload
costs. Drop, DTA, Dexter, and AutoAdmin minimize work-
load costs without considering storage consumption (General
Insights (vii) in Section 7). Although it is possible to adapt
these algorithms to consider the ratio of benefit and size, we
decided to evaluate their original implementation.

Index Selection Limit. Algorithms differ in the way
they constrain the number of the selected indexes. Drop and
AutoAdmin (also supports a budget constraint) limit the
number. Dexter limits by the minimal cost-saving percentage.
Most commonly, algorithms limit the storage budget. For
all workloads and algorithms, we report workload costs with
varying storage consumption. For Drop, AutoAdmin, and
Dexter, the number of selected indexes and the minimal

5Estimations based on actual and hypothetical indexes:
https://git.io/CostEstimationAccuracyHypoPGIndexes
6Note, we do not report actual runtimes for physically created
index selections, because they could arbitrarily differ from the
estimated costs. Thus, they are not adequate for assessing the
algorithms, which only consider estimates during selection.

cost-saving percentage allow to implicitly control the storage
consumption, which is, in general, increasing for both a
higher number of indexes and a lower minimal cost-saving
percentage. We denote the exact storage consumption, which
may be equal or lower than the provided budget, for differing
parameters in the figures of Section 6 for all algorithms.

Runtime. Only DTA originally supports to limit the
runtime of the selection process. In general, runtimes can
be indirectly controlled by limiting the investigated index
candidates, e.g., index width or naively enumerated combi-
nations (only AutoAdmin and CoPhy). The number of cost
requests and, thus, evaluated configurations is the main cost
factor for selection algorithms [35]. Further, DB2Advis al-
lows specifying the time for random substitutions after a
preliminary index selection was conducted (see Section 3.4).
We chose algorithm settings in a way that runtimes did not
become too large. We report runtime details and a detailed
cost breakdown in Section 6.

5. EVALUATION PLATFORM
To automate the comparison of index selection algorithms,

we developed an evaluation platform. Besides enabling the
reader to reproduce all results and retrace the algorithm’s
selection steps completely, the platform facilitates the in-
tegration of additional algorithms, workloads, or database
systems in the future.

5.1 Implementation
The open-source7 evaluation platform is implemented in

Python 3. The main goal of our implementation is to au-
tomate the evaluation of varying algorithms, settings, and
workloads. The automation includes the setup, i.e., data
generation and loading, query generation, the evaluation of
different parameters for the algorithms, and the collection
and summary of the results.

The centerpieces of the implementation are the compared
selection algorithms. We implemented all algorithms (ex-
cept Dexter), including unit tests, based on the original
descriptions and tried to keep them as close to the original as
possible. For Dexter (Section 3.7), we used the publicly avail-
able implementation [25] and embedded it into Python to
offer the same interfaces for all algorithms. For LP-based ap-
proaches, we implemented the input generation with Python
and the model in AMPL [20] using the Gurobi solver (v8.1.0).
Algorithms can access Query and Table objects to generate
index candidates of varying widths or for specific queries.

The CostEvaluation class implements the determination
of query/workload costs for given index configurations. This
class can be used by the algorithms transparently, i.e., algo-
rithms do not have to consider how the costs are determined,
e.g., whether hypothetical indexes are used or not. The

7https://git.io/index selection evaluation

2388

https://git.io/CostEstimationAccuracyHypoPGIndexes
https://git.io/index_selection_evaluation

CostEvaluation takes care of creating and dropping (hy-
pothetical) indexes based on the current and last specified
index configuration. The CostEvaluation also handles prun-
ing and caching of cost estimations. Section 5.2 describes
these optimizations in detail.

The DatabaseConnector builds an abstraction layer for
different database systems. It provides a consistent interface
for using what-if capabilities and hides different SQL dialects.
Currently, the platform contains connectors for PostgreSQL
and SAP HANA, while the latter does not support hypo-
thetical indexes. We have compared8 the cost estimations by
PostgreSQL and Microsoft SQL Server for different bench-
mark queries. The relative differences between the query
costs in a particular DBMS were similar. While the abstrac-
tion of the CostEvaluation facilitates adding new database
systems, hypothetical indexes are not entirely documented,
and their sizes cannot be obtained in SQL Server.

Configuration options, e.g., scale factors, the database
system, parameter values for the algorithms, and whether
and how often the workload is executed with the calculated
index selection can be controlled via a central JSON file.

5.2 What-If Call Optimizations
Obtaining cost estimates for queries given a particular

index configuration makes up a large part of the total runtime
of index selection algorithms because it requires optimizer
invocations (see Section 2.2) as well as inter-process (or
network) communication. In the literature, the reduction
of optimizer invocations is often a main focus, e.g., with
atomic configurations [18] in the AutoAdmin work [10, p. 3].
To facilitate efficient evaluations, our CostEvaluation (i)
avoids unnecessary optimizer calls, and (ii) maintains a (cost
estimation) cache. (i) If no index of a given configuration is
applicable for a query, the costs without indexes are returned.
(ii) Given a query and all possibly applicable indexes of a
requested configuration, the cost estimation cache stores
retrieved cost estimates. Note, multiple cache entries (with
different sets of possibly applicable indexes) for the same
query may exist. We do not limit the cache size and reset the
cache at the beginning of each algorithm evaluation. Besides
(i) and (ii), we did not implement any further techniques to
reduce the number of optimizer calls (see Section 2.2).

6. EVALUATION
In this section, we evaluate the selected algorithms (see

Section 3.1 - 3.8) for the TPC-H, TPC-DS, and JOB work-
loads. After the experimental setup (Section 6.1), we present
results for each of the workloads (Section 6.2 - 6.4) regarding
the quality of the identified solutions and their corresponding
runtime depending on the storage consumption.

Afterward, Section 6.5 discusses the impact of hypotheti-
cal indexes and cost requests on algorithm runtimes, before
Section 6.6 sheds light on the influence of different algorithm
parameters, i.e., the index width, DB2Advis’s time for ran-
dom variations, AutoAdmin’s number of naively enumerated
indexes, and DTA’s runtime limit.

6.1 Experimental Setup
All experiments were executed on an Intel Xeon 8180 plat-

inum CPU with PostgreSQL 12.1 and Python 3.7.5. For the

8Results: https://git.io/CostEstimatesSQLServesPSQL

vital part of what-if optimization and hypothetical indexes,
we employed HypoPG, commit 238cca5.

We used PostgreSQL’s default index type, a non-covering
B-tree, for the following experiments. However, the evalu-
ation platform is not conceptually limited to non-covering
B-tree indexes. The admissible index width was set to 2.
Thereby, also the initial index candidate set contains all
syntactically relevant candidates of width 2. The time for
DB2Advis’ TRY VARIATION step was set to 0. While this step
is part of the original algorithm, random exchanges could
be added to all algorithms, and we want to evaluate the
solution quality of the core algorithms. For AutoAdmin, the
number of indexes selected by a naive enumeration was set
to 1. The DTA algorithm is designed to be interruptible at
anytime and to still deliver acceptable solutions. We granted
a maximum runtime of 30 minutes.

Algorithms that stop after a certain number of indexes
has been selected and do not use a storage budget were
provided with an increasing maximum number of admitted
indexes. The exact budgets, admitted indexes, and further
configurations can always be obtained from the benchmark
configuration files in our repository. The relative estimated
costs of index configurations are based on a benchmark setup
without indexes, i.e., there are no indexes or primary keys.

6.2 TPC-H
The TPC-H measurements are based on a scale factor of 10.

For Figures 3(a) and 3(d) we excluded the queries 2, 17, and
20 because due to subqueries their estimated costs are orders
of magnitude higher than for TPC-H queries on average
in PostgreSQL (see Figures 4(a) and 4(b)). Without the
exclusion, these three queries dominate the costs of the entire
workload, thereby rendering the index selection problem less
complex because an index that decreases the cost of at least
one of these queries would always outperform indexes for
other queries by orders of magnitude.

Figure 3(a) depicts the performance of the identified solu-
tions for budgets from 0 to 10 GB. Each marker indicates an
index combination identified by an algorithm for a particular
storage budget. First, it becomes apparent is that most
algorithms do not fully utilize the maximum budget of 10GB
because no further indexes that reduce the workload cost
can be found. For example, Extend uses only ≈ 6 GB.

Second, there is a structural difference between the algo-
rithms that use the maximum number of indexes as a stop
criterion and the budget-based algorithms. While the latter
identify indexes for low budgets, starting with a few hundred
megabytes, Drop and AutoAdmin need roughly 2 GB to add
the first index because they first add the index with the
largest cost improvement, independent of its size.

Further looking at both, the workload cost in Figure 3(a)
and the runtimes in (d), it is not trivial to determine a win-
ner. Using the platform, we can also create a table9 that
shows which indexes are selected for which budget by the
algorithms. For many budgets, Extend and Relaxation iden-
tify the best solutions with acceptable runtimes. Due to
the employed minimization goal, AutoAdmin and Drop need
large budgets to find their first index, but this index is a
substantial improvement over all other algorithms. Note,
DTA would still identify usable, possibly the same, solu-
tions if its runtime would be limited to, e.g., 20 seconds.

9Table containing index selection steps:
https://git.io/IndexSelectionSequenceTableTPCH

2389

https://git.io/CostEstimatesSQLServesPSQL
https://git.io/IndexSelectionSequenceTableTPCH

AutoAdmin CoPhy DB2Advis DTA Dexter Drop Extend Relaxation

0 2 4 6 8 10
Index Storage Consumption (GB)

70

80

90

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(a) TPC-H (SF10): Solution quality. Cost
relative to processing without indexes.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

70

80

90

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(b) TPC-DS (SF10): Solution quality.
Cost relative to processing w/o indexes.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

20

40

60

80

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(c) JOB: Solution quality. Cost relative
to processing without indexes.

0 2 4 6 8 10
Index Storage Consumption (GB)

0

50

100

150

Al
go

rit
hm

 ru
nt

im
e

(s
ec

)

(d) TPC-H (SF 10): Observed runtime
for budgets from 0 to 10 GB.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

0

20

40

60
Al

go
rit

hm
 ru

nt
im

e
(m

in
)

(e) TPC-DS (SF 10): Observed runtime
for budgets from 0 to 12 GB.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

0

10

20

30

40

50

Al
go

rit
hm

 ru
nt

im
e

(m
in

)

(f) JOB: Observed runtime for budgets
from 0 to 12 GB.

Figure 3: (a), (b), (c): Estimated workload processing costs (relative to estimated costs without indexes); (d),
(e), (f): Algorithm runtime including cost requests and index simulations. TPC-H (queries 2, 17, 20 excluded),
TPC-DS (queries 4, 6, 9, 10, 11, 32, 35, 41, 95 excluded), and Join Order Benchmark on PostgreSQL.

DB2Advis has a constantly low runtime and still finds ac-
ceptable solutions. The low runtime is caused by its modus
operandi (see Section 3.4 and Section 6.5): Most other algo-
rithms generate many combinations and check their impact
with what-if optimization calls, while DB2Advis only issues
a fixed number of 2×Q cost requests. Drop shows an almost
constant runtime since, for each round, it starts with the
same large set of index candidates, drops them one by one,
thereby, behaving similarly for every case.

Dexter’s runtime is constant because it does not depend on
a budget but on the number and complexity of queries. While
its solution quality is close to the best, it cannot produce
fine-grained solutions and identifies only two solutions for all
evaluated budgets.

Finally, Figures 4(a) and 4(b) show the costs that are
achieved with each algorithm’s best index combination that
does not consume more than 5 GB of storage on a per-query
basis to better understand the mechanics of the different al-
gorithms. The figures indicate that most algorithms, except
for Dexter and Drop, manage to identify important indexes
for queries where indexes are applicable, in particular for the
expensive queries shown in (b). DTA and Extend achieve
the lowest costs for all of the displayed queries while Relax-
ation performs only for the queries 9, 12, and 21 slightly
worse. The platform allows generating the corresponding
charts for other benchmarks and budgets.

6.3 TPC-DS
The TPC-DS measurements are based on a scale factor of

10. For all TPC-DS experiments, we excluded the queries

4, 6, 9, 10, 11, 32, 35, 41, and 95 because again, these
queries have the potential to distort a fair assessment of
index selection algorithms. The higher complexity of the
TPC-DS benchmark compared to TPC-H (cf. Section 4.1) can
be used to further emphasize the strengths and weaknesses
of the algorithms.

Figure 3(b) shows the solution quality of the investigated
index selection algorithms for memory budgets from 0 to
12 GB. In contrast to the TPC-H measurements, the differ-
ences, especially for realistic budget sizes, between 2 and
10 GB, are larger. The solutions identified by the algorithms
vary to a larger degree because there are more (indexable)
columns and more queries that benefit from indexes.

For the TPC-H experiments, Drop, and AutoAdmin found
the first indexes for relatively large budgets, around 2 GB.
For TPC-DS, they identify beneficial solutions much earlier
because there is no single dominating table, such as the
lineitem table for TPC-H, in the TPC-DS dataset. Thus,
impactful indexes do not have to be that large.

For budgets of 2 GB and above, differences start to become
apparent. Extend and DTA take the lead and generate the
best solutions. In contrast to other approaches, they keep
adding relatively small indexes to the solution for a larger
budget range. For instance, Extend ’s modus operandi causes
this behavior (see Section 3.8): For each step, the index
with the largest overall benefit-per-space ratio is added. For
large budgets, the solution quality of all approaches is more
homogeneous, and Relaxation identifies the best solution.

DB2Advis achieves again an almost constant runtime
caused by its functioning and offers a good tradeoff between

2390

4 5 8 9 11 12 18 19 21 22
Query ID

0

2

4

6
Qu

er
y

co
st

 (m
illi

on
)

Algorithm (|S|)
AutoAdmin (3)
DB2Advis (16)
DTA (10)
Dexter (6)

Drop (5)
Extend (7)
Relaxation (10)
w/o Indexes (0)

2 17 20
Query ID

108

1011

Qu
er

y
co

st

Figure 4: Estimated query processing costs for TPC-H (scale factor 10) on PostgreSQL. Queries 1, 3, 6, 7,
10, 13, 14, 15, and 16 are omitted as their costs were not affected by indexes for a budget of 5 GB. Expensive
queries (2, 17, 20) depicted with log (right), others (left) with linear scale. S is the final index configuration.

runtime and solution quality. While there is quite some
difference to DTA and Extend for medium-sized budgets,
the solution quality of DB2Advis is comparable for small
and large budgets. The runtime is in the range of seconds
compared to minutes for Drop, Extend, DTA, AutoAdmin,
and Relaxation, which shows the longest runtime caused by
its functioning that requires many transformations to push
the storage consumption below the given budget.

The solution quality of the ready-to-use approach Dexter is
again not particularly bad if a solution is identified. However,
the effect caused by its lack of fine-grained solution becomes
more pronounced for the TPC-DS workload for which many,
comparably small, indexes can have a substantial impact.

6.4 Join Order Benchmark
The Join Order Benchmark (JOB) measurements are de-

picted in Figures 3(c) and 3(f). For TPC-H and TPC-DS,
DTA and Extend find the solutions with the lowest work-
load costs for most of the examined budgets. Medium-sized
budgets (from 2 to 3.5 GB) are not handled well for this exper-
iment because fine-grained solutions are missing. Drop iden-
tifies many small indexes that decrease the workload cost
significantly for medium-sized budgets while it completely
lacks solutions for small budgets similar to AutoAdmin. Co-
Phy, DB2Advis, DTA, and Extend find the best solutions
for small budgets. However, for larger budgets, the lack of
multi-column indexes and the limit of two indexes per query
(both limitations due to complexity) become apparent for
CoPhy. At ≈ 3.5 GB Relaxation and Extend start identifying
the best solutions up to the largest evaluated budget. As for
TPC-H and TPC-DS, Dexter ’s solutions are coarse-grained.

Figure 3(f) shows similar results compared to the algorithm
runtimes for TPC-DS. However, there are a few interesting
aspects to note here. While AutoAdmin multiplies its run-
time, Drop almost halves, and the runtime of Extend slightly
decreases. The lower number of attributes can explain the
last two observations. Thereby, fewer index candidates are
generated by Drop and Extend resulting in fewer what-if
optimizer calls per step. The increase in algorithm runtime
for AutoAdmin can be explained by a higher number of
beneficial single-column indexes compared to TPC-DS.

6.5 Cost Breakdown and Cost Requests
Most of the runtime of what-if based index selection al-

gorithms is usually not spent on the algorithm logic, but
on cost estimation calls to the what-if optimizer [14, 35].
Usually, algorithms request a cost estimate for a particular
query and a given index combination from the (what-if) opti-
mizer. These requests are expensive, but the estimated costs
remain the same if neither the query and index combination

nor the underlying data change. Therefore, most algorithms
cache cost estimation calls. As mentioned in Section 4.2 and
Section 5.1, with the developed framework, all algorithms
use the same cost estimation implementation, and hence, the
same caching mechanisms. However, the different strategies
of the investigated algorithms result in varying cost request
patterns and different cache opportunities, which is demon-
strated in Table 3 for a budget of 5 GB for the TPC-DS
benchmark. The platform allows generating this table for
further budgets, configurations, and benchmarks.

The runtimes vary significantly, ranging from seconds to
more than an hour, caused by different underlying approaches.
Factors – besides the modus operandi of the algorithm – that
influence the runtime include the number of evaluated con-
figurations, simulated (hypothetical) indexes, cost requests,
and cache rates. Table 3 indicates that the interplay of these
factors is responsible for the resulting runtime.

Generally, for all algorithms, most of the runtime is spent
on cost requests (what-if optimization calls), Drop being the
only exception. However, most algorithms achieve high cache
rates caused by the fact that they repeatedly evaluate similar
configurations. The similarity of the evaluated configurations
influences the cache rate. Note, retrieving costs from the
cache does not come for free since the configuration must be
looked up in the cache, and its cost must be obtained.

DB2Advis and Dexter evaluate only two configurations.
This behavior leads to few cost requests and low runtimes.
For wider indexes, runtimes can increase dramatically as
later discussed in this section and demonstrated in Table 4.

Drop and Relaxation diverge in the number of evaluated
configurations but generate the largest number of cost re-
quests. They are the two slowest approaches and follow – in
contrast to all other approaches – the same general concept:
they start with an extensive configuration and reduce it until
it fits the given budget. For realistically sized budgets, this
behavior leads to long runtimes.

Besides, according to Table 3, the impact of index simula-
tion is almost negligible. Naive-2 simulates more than 70 000
indexes, which is only responsible for 2% of its runtime.

Furthermore, it is essential to note that not all cost re-
quests are equally expensive. Query planning time depends
on the query complexity and the number of available (what-
if) indexes. Few available indexes lead to planning times
in the range of milliseconds for our implementation. Au-
toAdmin, CoPhy, DTA, Drop, and Extend usually request
costs for small index sets of a few dozen indexes at maximum.
However, the modi operandi of DB2Advis and Relaxation can
lead to large index sets for the cost requests, because costs
are evaluated for all possibly applicable indexes per query

2391

Table 3: Algorithm cost breakdown for the TPC-DS (SF 10) benchmark. Storage consumption ≈ 5 GB.
Configurations are the number of uniquely evaluated configurations. Index simulations refer to the number
of non-unique created hypothetical indexes. Simulation and Costing refer to the share of runtime that was
consumed by index simulations or cost requests. Naive-2 relates to AutoAdmin with two indexes selected by
a naive enumeration. Dexter’s original implementation does not provide all runtime details.

Algorithm Configurations Index simulations Cost requests Runtime

Total Non-cached Cache rate Total Simulation Costing

AutoAdmin 129 10 991 33 851 11 676 65.5% 2.1m 2.0% 95.9%
Naive-2 816 73 504 240 441 73 440 69.4% 15.3m 2.0% 66.5%
CoPhy 3 983 3 982 394 317 52 177 86.8% 10.1m 0.6% 94.9%
DB2Advis 2 7 179 180 180 0.0% 0.1m 24.0% 58.7%
DTA 1 442 25 812 1 650 510 129 811 92.1% 32.2m 0.4% 87.2%
Dexter 2 3 982 180 180 0.0% 0.4m n/a n/a
Drop 203 29 144 2 601 450 18 348 99.3% 35.0m 0.6% 19.7%
Extend 594 11 295 812 430 53 472 93.4% 12.8m 0.5% 84.1%
Relaxation 1 898 51 680 2 982 690 170 863 94.3% 60.7m 0.4% 66.6%

(see Sections 3.4 and 3.5). Table 4 shows the cost request
time for two complex queries of the TPC-DS benchmark.
Cost estimations for large index combinations can take pro-
hibitively long, which becomes especially pronounced when
wide indexes are searched.

6.6 Parameter Influence
In this subsection, we investigate the influence of the index

width, the time for DB2Advis’ TRY VARIATION step, AutoAd-
min’s number of indexes that are selected by naive enumera-
tion, and DTA’s runtime limits on the solution quality and
runtime. The experiments were conducted with TPC-DS
(scale factor 10) for budgets between 4 and 8 GB. Other
benchmarks did not yield substantially different results.

Index Width. In our evaluations, the maximum number
of columns per index does not have a huge influence for the
investigated workloads on PostgreSQL. The impact could
be higher for real-world workloads, e.g., enterprise systems
utilize wide primary keys of up to 16 columns [17] and more
sophisticated query processors might use wide indexes more
efficiently. The maximum index width selected by algorithms
during our experiments was 6. AutoAdmin and Extend show
performance improvements of 1 to 3% when the index width
is increased from 1 to 2 or 3. Improvements by wider indexes
are below 1%. For DB2Advis, we found an anomaly: the
performance improved by about 1% when the index width is
increased from 1 to 3, but dropped by ≈ 5% when set to 2.

For Extend, runtimes did not significantly increase due to
its functioning (Section 3.8). DB2Advis’ runtime is compara-
ble for index widths of 1 and 2 but grows by more than 10×
when increased to 3 and is not feasible for larger numbers due
to expensive cost requests for large index combinations (see

Table 4: Cost request timings including index simu-
lation for two TPC-DS queries; DNF exceeds 30min.

Index width Relevant indexes Time

Query 13 Query 64 Query 13 Query 64

1 column 22 49 13ms 12ms
2 columns 132 287 97ms 44ms
3 columns 870 1 889 33s 5s
4 columns 5 910 14 393 DNF 231s

Section 6.5). The runtimes of AutoAdmin and DTA increase
with wider indexes, e.g., by a factor of 2 - 3 from single- to
two-column indexes, because for each admissible index width,
the enumeration steps are executed for all queries. As the
candidate volume decreases per round because candidates are
only drawn from previously beneficial indexes (Section 3.2),
the increase in runtime declines over time.

DB2Advis - Try Variations. The measurable impact of
DB2Advis’ TRY VARIATION step is often small. According to
our experiments, variation achieves improvements of about
1% in workload cost, even when the core algorithm ran in ≈ 1
and the variation in 30 seconds. For massive candidate sets,
variations can only be effective with a long runtime because
chances, that beneficial candidates are becoming part of the
final combination, decrease with a larger population.

AutoAdmin - Naive Enumerations. In our experiments,
the number of indexes selected by naive enumeration affects
the approach’s solution quality only marginally. Sometimes,
we even observed better results for smaller numbers. However,
the runtime is significantly affected. For the conducted
benchmarks, the runtime increased by factors between 3 and
10 when the indexes selected by naive enumeration were
increased from 1 to 2. More indexes could not be selected
via naive enumeration in an acceptable time.

DTA - Runtime Limits. We observed both aspects of
the anytime ability of the approach: (i) returning acceptable
solutions when interrupted and (ii) identifying improved so-
lutions with longer runtime. For the TPC-DS benchmark
(budget: 5 GB, maximum index width: 2), our DTA imple-
mentation generates ≈ 300 seeds. The first seed’s calculation
finishes after 9 minutes and identifies a solution that is within
3% of the best solution found after 14 hours.

7. LEARNINGS
In this section, we summarize general and algorithm-

specific properties to explain the performance differences
observed in the experimental evaluation. We give final rec-
ommendations on when to use which approach in Section 8.
The following insights are only generalizable to a certain
degree. They might not be transferable to other systems
that rely on different optimizers and execution engines.

2392

General Insights. (i) For different workloads or budget
restrictions, different algorithms can perform best. (ii) The
algorithm should be chosen based on the user’s needs. Differ-
ences in runtime, solution quality, solution granularity, and
multi-column index support are significant. (iii) There are
two kinds of approaches: query-based (DB2Advis, Dexter)
ones, which evaluate the benefit of all possible indexes at
once, and index combination-based (Extend, AutoAdmin,
Drop, CoPhy, DTA) approaches, which evaluate the benefit
of comparably small index sets. Generally, the latter consider
index interaction to a higher degree while query-based ones
are orders of magnitude faster as long as the set of evaluated
indexes per query is not too large (see Section 6.6). Relax-
ation combines both approaches. (iv) The cost of what-if
calls or cost requests are not fixed, they depend on the query
and evaluated index combination (see Section 6.5).

(v) The granularity of identified solutions is fundamental.
Otherwise, the performance between identified solutions is
suboptimal (cf. Figure 3(c)). (vi) Stop criteria are essential.
Algorithms that halt after a maximum number of indexes,
usually start with large indexes and do not find small indexes
with a significant relative impact (cf. Figure 3(a)).

(vii) Ordering index candidates by benefit per space instead
of purely by benefit showed to be efficient, especially for
medium-sized budgets (see Section 6.3). This advantage
could vanish for transactional workloads. Usually, benefit
per space approaches favor configurations with many small
indexes, which could lead to elevated maintenance costs and
lock contention. Therefore, choosing the minimization goal
accordingly might be beneficial (see Table 1).

(viii) Reduction-based approaches, i.e., Drop and Relax-
ation, become faster with larger budgets. However, for real-
istic budgets, their runtimes are rather long.

Drop. (i) The repetitive functioning causes a large num-
ber of cost requests, while it shows the highest cache rates
(see Section 6.5). (ii) An extension to support multi-column
indexes would result in an infeasible number of index candi-
dates requiring some kind of pre-selection.

AutoAdmin. The approach finds reasonable solutions, but
two properties weakened the algorithm in our evaluation.
(i) The number of indexes selected by naive enumeration
only had a minor influence on the solution quality. However,
the runtime impact was enormous (3-10×, see Section 6.6).
(ii) By ignoring the size of indexes, a multi-column index with
an only slightly higher benefit than a single-column index but
significantly higher memory consumption is favored, which
acts in opposition to storage efficiency.

DB2Advis. (i) DB2Advis’ solutions are reasonable for high
budgets, while the runtime is low. In such cases, the index
combination is optimized for every query. (ii) For wider
indexes, e.g., W ≥ 3, the runtime increases while the solution
quality is not among the best. (iii) Random exchanges
by TRY VARIATION do not prove to be very effective (see
Section 6.6). (iv) The approach may miss a locally inferior
but globally superior index, e.g., indexes that are beneficial
for many queries but never the best for an individual query.

Relaxation. (i) Large candidate sets and its transformation
rules lead to an enormous number of evaluated configurations
and, thereby, to the best consideration of index interaction.
(ii) Thus, for large budgets, Relaxation performed best in
the evaluated benchmarks. (iii) The reductive functioning of
the approach causes long runtimes for realistic budgets.

CoPhy. (i) The solution quality depends on well-chosen
initial candidates and suitable choices of index combinations
per query. TPC-H and TPC-DS selections improved with
more candidates (wider indexes), whereas JOB improved
with a higher number of indexes per query. (ii) With more
candidates, cost requests dominate the runtime while the
number of indexes per query impacts the solver runtime.

Dexter. Dexter identifies suitable index combinations and
offers low, constant runtimes. However, the granularity of
solutions is generally too coarse (cf. Figure 3(b)).

Extend. (i) Extend is the only algorithm that identified
wide indexes (W ≥ 4) in an acceptable amount of time. Due
to its mechanics, the index width does not have a significant
impact on the runtime (see Section 6.6). (ii) The runtime can
decrease for larger budgets because fewer but larger indexes
are identified. (iii) The tradeoff between solution quality and
runtime is among the best for various budgets.

DTA. (i) The large number of seed configurations guarantees
suitable configurations: Anytime’s solutions, especially for
small to medium-sized budgets, are usually among the best.
(ii) Its runtime can be on par with most other approaches
when the ability to interrupt the algorithm at anytime is
considered. As shown in Section 6.6, the first seeds enable
competitive solutions, while later improvements are often
insignificant for the evaluated scenarios.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we compared eight different index selection

algorithms. We evaluated the approaches regarding solution
quality, runtime, solution granularity, and complexity with an
extensible evaluation platform that promotes reproducibility.

Our recommendations for different scenarios and user needs
are as follows. These conclusions are based on our evaluation
on PostgreSQL. Their transferability to other engines might
be limited. If fast solutions for large budgets are desired,
and the index width is limited, AutoAdmin and particularly
DB2Advis are advisable. If a higher runtime is feasible, we
recommend Relaxation. For small problem sizes where all
relevant candidate combinations can be exhaustively enu-
merated, CoPhy ’s LP guarantees optimal solutions for any
budget. Dexter is a simple, ready-to-use open-source option
with low overhead. Compared to other algorithms, Drop is
the easiest to implement. Overall, the recent approaches
Extend and DTA provide the best combination of runtime
and solution quality in a wide range of scenarios.

Our experiments showed that an efficient index selection
remains challenging as, due to the problem’s nature and the
functioning of the approaches, different weaknesses surface
in specific scenarios, which leaves room for improvement
in future work. The revealed strengths and weaknesses of
the algorithms make it possible to derive improved solution
concepts, e.g., hybrid approaches and robust adaptions. Our
platform facilitates such improvement work. For example, in
the future, machine learning-based approaches that showed to
be not competitive yet could be integrated into our extensible
platform after becoming more mature.

Acknowledgments
We thank S. Chaudhuri, V. Narasayya, J. Rouhaud, A.
Sharma, and D. Zilio for their support and detailed answers.

2393

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe,

V. R. Narasayya, and M. Syamala. Database tuning
advisor for microsoft SQL server 2005. In Proceedings
of the International Conference on Very Large
Databases (VLDB), pages 1110–1121, 2004.

[2] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan,
P. Senellart, and S. Bressan. Cost-model oblivious
database tuning with reinforcement learning. In
Proceedings of the International Conference on
Database and Expert Systems Applications (DEXA),
pages 253–268, 2015.

[3] R. Borovica, I. Alagiannis, and A. Ailamaki.
Automated physical designers: what you see is (not)
what you get. In Proceedings of the International
Workshop on Testing Database Systems (DBTEST),
2012.

[4] N. Bruno and S. Chaudhuri. Automatic physical
database tuning: A relaxation-based approach. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 227–238, 2005.

[5] N. Bruno and S. Chaudhuri. An online approach to
physical design tuning. In Proceedings of the
International Conference on Data Engineering (ICDE),
pages 826–835, 2007.

[6] N. Bruno and R. V. Nehme. Configuration-parametric
query optimization for physical design tuning. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 941–952, 2008.

[7] A. Caprara, M. Fischetti, and D. Maio. Exact and
approximate algorithms for the index selection problem
in physical database design. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
7(6):955–967, 1995.

[8] A. Caprara and J. J. Salazar González. A
branch-and-cut algorithm for a generalization of the
uncapacitated facility location problem. TOP,
4:135–163, 1996.

[9] S. Chaudhuri and V. Narasayya. Anytime Algorithm of
Database Tuning Advisor for Microsoft SQL Server.
https://www.microsoft.com/en-us/research/
publication/anytime-algorithm-of-database-

tuning-advisor-for-microsoft-sql-server, visited
2020-06-04, June 2020.

[10] S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for microsoft SQL
server. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 146–155, 1997.

[11] S. Chaudhuri and V. R. Narasayya. Index merging. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 296–303, 1999.

[12] S. Chaudhuri and V. R. Narasayya. Self-tuning
database systems: A decade of progress. In Proceedings
of the International Conference on Very Large
Databases (VLDB), pages 3–14, 2007.

[13] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic,
V. R. Narasayya, M. Radulovic, M. Stikic, G. Xu, and
S. Chaudhuri. Automatically indexing millions of
databases in microsoft azure SQL database. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 666–679, 2019.

[14] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A

scalable, portable, and interactive index advisor for
large workloads. PVLDB, 4(6):362–372, 2011.

[15] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and
V. R. Narasayya. AI meets AI: leveraging query
executions to improve index recommendations. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1241–1258,
2019.

[16] G. Farley and S. A. Schuster. Query execution and
index selection for relational data bases. In Proceedings
of the International Conference on Very Large
Databases (VLDB), page 519, 1975.

[17] M. Faust, M. Boissier, M. Keller, D. Schwalb,
H. Bischoff, K. Eisenreich, F. Färber, and H. Plattner.
Footprint reduction and uniqueness enforcement with
hash indices in SAP HANA. In Proceedings of the
International Conference on Database and Expert
Systems Applications (DEXA), pages 137–151, 2016.

[18] S. J. Finkelstein, M. Schkolnick, and P. Tiberio.
Physical database design for relational databases. ACM
Transactions on Database Systems (TODS),
13(1):91–128, 1988.

[19] F. Fotouhi and C. E. Galarce. Genetic algorithms and
the search for optimal database index selection. In
Proceedings of the First Great Lakes Computer Science
Conference, pages 249–255, 1989.

[20] R. Fourer, D. Gay, and B. Kernighan. AMPL: A
Modeling Language for Mathematical Programming.
Thomson/Brooks/Cole, 2003.

[21] M. R. Frank, E. Omiecinski, and S. B. Navathe.
Adaptive and automated index selection in RDBMS. In
Proceedings of the International Conference on
Extending Database Technology (EDBT), pages
277–292, 1992.

[22] G. Graefe. B-tree indexes for high update rates.
SIGMOD Record, 35(1):39–44, 2006.

[23] M. Hammer and A. Chan. Index selection in a
self-adaptive data base management system. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1–8, 1976.

[24] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the
selection of an optimal set of indexes. IEEE
Transactions on Software Engineering, 9(2):135–143,
1983.

[25] A. Kane. Dexter - The automatic indexer for Postgres,
June 2017. https://github.com/ankane/dexter,
visited 2020-06-04.

[26] A. Kane. Introducing Dexter, the Automatic Indexer
for Postgres, June 2017. https:
//medium.com/@ankane/introducing-dexter-the-
automatic-indexer-for-postgres-5f8fa8b28f27,
visited 2020-06-04.

[27] M. S. Kester, M. Athanassoulis, and S. Idreos. Access
path selection in main-memory optimized data systems:
Should I scan or should I probe? In Proceedings of the
International Conference on Management of Data
(SIGMOD), pages 715–730, 2017.

[28] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[29] V. Y. Lum and H. Ling. An optimization problem on
the selection of secondary keys. In Proceedings of the

2394

https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://github.com/ankane/dexter
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27

1971 26th Annual Conference (ACM ’71), pages
349––356, 1971.

[30] R. C. Marcus and O. Papaemmanouil. Plan-structured
deep neural network models for query performance
prediction. PVLDB, 12(11):1733–1746, 2019.

[31] Microsoft. SQL Server 2019 - Database Engine Tuning
Advisor, January 2017.
https://docs.microsoft.com/en-us/sql/
relational-databases/performance/database-

engine-tuning-advisor?view=sql-server-ver15,
visited 2020-06-04.

[32] R. O. Nambiar and M. Poess. The making of TPC-DS.
In Proceedings of the International Conference on Very
Large Databases (VLDB), pages 1049–1058, 2006.

[33] F. P. Palermo. A quantitative approach to the selection
of secondary indexes. In IBM Research RJ 730, 1970.

[34] S. Papadomanolakis and A. Ailamaki. An integer linear
programming approach to database design. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 442–449, 2007.

[35] S. Papadomanolakis, D. Dash, and A. Ailamaki.
Efficient use of the query optimizer for automated
database design. In Proceedings of the International
Conference on Very Large Databases (VLDB), pages
1093–1104, 2007.

[36] G. Piatetsky-Shapiro. The optimal selection of
secondary indices is NP-complete. SIGMOD Record,
13(2):72–75, 1983.

[37] M. Pöss and C. Floyd. New TPC benchmarks for
decision support and web commerce. SIGMOD Record,
29(4):64–71, 2000.

[38] J. Rouhaud. HypoPG - Hypothetical Indexes for
PostgreSQL, March 2015.
https://github.com/HypoPG/hypopg, visited
2020-06-04.

[39] Z. Sadri, L. Gruenwald, and E. Leal. Online index
selection using deep reinforcement learning for a cluster
database. In Proceedings of the International
Conference on Data Engineering Workshops (ICDEW),
pages 158–161, 2020.

[40] K. Sattler, I. Geist, and E. Schallehn. QUIET:
continuous query-driven index tuning. In Proceedings of
the International Conference on Very Large Databases
(VLDB), pages 1129–1132, 2003.

[41] M. Schkolnick. The optimal selection of secondary
indices for files. Information Systems (IS),
1(4):141–146, 1975.

[42] R. Schlosser and S. Halfpap. A decomposition approach
for risk-averse index selection. In Proceedings of the

32th International Conference on Scientific and
Statistical Database Management (SSDBM),
forthcoming, 2020.

[43] R. Schlosser, J. Kossmann, and M. Boissier. Efficient
scalable multi-attribute index selection using recursive
strategies. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
1238–1249, 2019.

[44] K. Schnaitter and N. Polyzotis. A benchmark for online
index selection. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
1701–1708, 2009.

[45] K. Schnaitter, N. Polyzotis, and L. Getoor. Index
interactions in physical design tuning: Modeling,
analysis, and applications. PVLDB, 2(1):1234–1245,
2009.

[46] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in a
relational database management system. In Proceedings
of the International Conference on Management of
Data (SIGMOD), pages 23–34, 1979.

[47] A. Sharma, F. M. Schuhknecht, and J. Dittrich. The
case for automatic database administration using deep
reinforcement learning. CoRR, abs/1801.05643, 2018.

[48] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman,
and A. Skelley. DB2 advisor: An optimizer smart
enough to recommend its own indexes. In Proceedings
of the International Conference on Data Engineering
(ICDE), pages 101–110, 2000.

[49] K. Whang. Index selection in relational databases. In
Proceedings of the International Conference on
Foundations of Data Organization (FoDO), pages
487–500, 1985.

[50] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs,
and J. F. Naughton. Predicting query execution time:
Are optimizer cost models really unusable? In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 1081–1092, 2013.

[51] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky,
L. Ma, and R. Shen. Reducing the storage overhead of
main-memory OLTP databases with hybrid indexes. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1567–1581,
2016.

[52] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J.
Storm, C. Garcia-Arellano, and S. Fadden. DB2 design
advisor: Integrated automatic physical database design.
In Proceedings of the International Conference on Very
Large Databases (VLDB), pages 1087–1097, 2004.

2395

https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://github.com/HypoPG/hypopg

	Introduction
	Index Selection Problem
	Formalization
	Determining Query Costs

	Index Selection Algorithms
	Drop
	AutoAdmin
	(Anytime) DTA
	DB2Advis
	Relaxation
	LP-based Approaches (CoPhy)
	Dexter
	Extend
	High-level Comparison
	Machine Learning-based Approaches
	Commercial Index Selection Tools

	Methodology
	Workloads
	Determining Query Cost
	Constraints and Optimization Goal

	Evaluation Platform
	Implementation
	What-If Call Optimizations

	Evaluation
	Experimental Setup
	TPC-H
	TPC-DS
	Join Order Benchmark
	Cost Breakdown and Cost Requests
	Parameter Influence

	Learnings
	Conclusions and Future Work
	References

