
AutoAdmin “What-if Index Analysis Utility
Surajit Chaudhuri Vivek Narasayya
Microsoft Research Microsoft Research

surajitca microsoftcorn viveknar@ microsoft.com

Abstract
As databases get widely deployed, it becomes increasingly
important to reduce the overhead of database administration. An
important aspect of data administration that critically influences
performance is the ability to select indexes for a database. In order
to decide the right indexes for a database, it is crucial for the
database administrator (DBA) to be able to perform a quantitative
analysis of the existing indexes. Furthermore, the DBA should
have the ability to propose hypothetical (“what-if’) indexes and
quantitatively analyze their impact on performance of the system.
Such impact analysis may consist of analyzing workloads over the
database, estimating changes in the cost of a workload, and
studying index usage while taking into account projected changes
in the sizes of the database tables. In this paper we describe a
novel index analysis utility that we have prototyped for Microsoft
SQL Server 7.0. We describe the interfaces exposed by this utility
that can be leveraged by a variety of front-end tools and sketch
important aspects of the user interfaces enabled by the utility. We
also discuss the implementation techniques for efficiently
supporting “what-if’ indexes. Our framework can be extended to
incorporate analysis of other aspects of physical database design.

1. Introduction
Enterprise-class databases require database administrators who are
responsible for performance tuning. Database Administrators
(DBAs) need to take into account resources on the database
system, application requirements, and characteristics of the
workload and DBMS. With large-scale deployment of databases,
minimizing database administration function becomes important.
The AutoAdmin project at Microsoft Research [l] is investigating
new techniques to make it easy to tune external and internal
database system parameters to achieve competitive performance.
One important area where tuning is required is in determining
physical database design and specifically in the choice of indexes
to build for a database.

class database, there are a large number of possible single and
multi-column indexes. Moreover, since modem query processors
use indexes in several innovative ways (e.g., index intersection,
indexed-only access), it is hard to enumerate the search space
efficiently. Next, the problem of picking the right of set of indexes
cannot be simply solved by a good search algorithm. Enterprise
databases are simply too complex for the DBA to hit the “accept ”
button on the recommendations of an index selection tool until
he/she has been able to perform an impact analysis of the
suggested index recommendations. Some examples of impact
analysis are: (1) Which queries and updates that we executed in
the last 3 days will slow down because of the changes? (2) Which
queries will benefit from the index that you are proposing to add
and to what extent? To the best of our knowledge, no adequate
utility exists that allows DBAs to undertake an impact analysis
study. Indeed, even in the absence of an index selection tool, such
an index analysis utility is of great importance since it allows the
DBA to propose hypothetical (“what-if’) indexes and
quantitatively analyze their impact on performance of the system.
In this paper we use the terms hypothetical and “what-if’
interchangeably. Such a utility also provides a natural back-end
for an index selection tool to enumerate and pick an appropriate
set of indexes by using the index analysis utility as the “probe” to
determine the goodness of the set of indexes. In the context of the
AutoAdmin project, we have built an index selection tool as well
as an index analysis utility. The index selection tool has been
described in [4] and it leverages off the index analysis component.
This paper focuses on the index analysis utility. We now provide
an overview of the “what-if’ index analysis utility and the system
architecture for index selection in AutoAdmin.

1.1 Overview of Architecture

The index selection problem has been studied since the early 70’s
and the importance of this problem is well recognized. Despite a
long history of work in this area, there are two fundamental
reasons why this problem has not been addressed. First, index
selection is intrinsically a hard search problem. For an enterprise

Permission to make digital or hard copies of all or part of this work for
personal or classroom uw is granted without fee provided that

copier we not made or distributed for profit or commercial advsn-
tags and that copies bear this notice and the lull citation on the firrt page.
To copy otherwiaa, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMOD ‘98 Seattle, WA, USA

Figure 1 illustrates the related system components for the task of
index selection. We use Microsoft SQL Server 7.0 as the database
server. In this paper, we use the term configlrration to mean a set
of indexes, and the sizes of each table in the database. A
hypothetical con&uration may consist of existing (“real”)
indexes as well as hypothetical (“what-if’) indexes. We define a
workload to be a set of SQL statements. The hypothetical
configuration analysis (HCA) engine supports two sets of
interfaces for (a) simulating a hypothetical configuration (b)
summary analysis on the data resulting from the simulation. The
HCA engine can be implemented either as a library that client
tools can link to, as a middle-ware process that serves multiple
clients or directly as server extensions. In our prototype, we have
implemented the HCA engine as a dynamic linked library (DLL).

0 1998 ACM O-89791-995-5/98/008...$5.00
Using the hypothetical
interfaces, client tools can

configuration simulation
define workloads, define

367

hypothetical configurations, and evaluate a workload for a
hypothetical configuration. By evaluating a workload for a
configuration, we can estimate the cost of queries in the workload
if the configuration were made “real” (i.e. the indexes in the
configuration were materialized). In addition, we can tell for each
query, which indexes in the configuration would be used to
answer that query. The dotted line in Figure 1 shows that the
interfaces for hypothetical configuration simulation are available
directly as SQL Server extensions. However, for software
engineering reasons, the HCA engine encapsulates this
functionality and provides the complete set of interfaces for index
analysis to client tools. In this paper, we will discuss the HCA
interfaces and discuss its implementation over a SQL Database,
describing the necessary extensions to server interfaces.

The summary analysis interface makes it possible to perform
sophisticated summarization of workloads, configurations,
performance of the current configuration and projected changes
for a new configuration. Examples of such analysis are: (a)
Analyze a workload by counting each type of query - SELECT,
INSERT, UPDATE, DELETE. (b) Estimate the storage space of a
hypothetical configuration. (c) Identify queries in the workload
that are most affected by the addition (or removal) of indexes.

Index Analysis Microsoft Index
UI Selection Tool

Other Tools

Simulation
I

r-4: i Hypothetical Configuration
Analysis Engine I

I I
A

Extended Server SQL
Inte faces

v v

Microsoft SQL Server 7.0

I ’
I

F-) 6 Database

Figure 1. Architecture Overview

The rest of the paper is organized as follows. In Section 2, we
review the related work in this area. Section 3 presents the
interfaces for hypothetical configuration simulation, and describes
their implementation on Microsoft SQL Server. Section 4
describes the summary analysis interfaces and their
implementation, and provides an example “session” that illustrates
how the synergy among different summary analysis components

can assist the DBA in selecting the right indexes for a database.
We discuss future work and conclude in Section 5.

2. Related Work
There is a substantial body of literature on physical database
design dating back to the early 70’s. Nonetheless, to the best of
our knowledge, no previous work has addressed the problem of
estimating the impact of possible changes to the index
configurations and database size in a comprehensive manner.
Stonebraker [12] discusses the use of views in simulating
hypothetical databases. His approach creates a query to “simulate
the hypothetical database” and therefore relies on actual
execution. This is very computation intensive. Our approach is
based on relative estimation of the cost that enables a large class
of analysis at low cost. Furthermore, we have provided an
efficient mechanism to implement hypothetical structures using
sampling based techniques.

The index selection algorithms in [4,6] can exploit the
infrastructure presented in this paper for exploring the space of
alternatives to pick an optimal index configuration. Those papers
focus on efficiently searching the space of alternatives. In addition
to the above, there is a significant body of work in index selection,
including [2,5,7,9,11]. Most of the other work in index selection
has the serious shortcoming that the index selection tools do not
stay in step with the optimizer (see [3] for a discussion). In any
case, these papers do not discuss support for hypothetical
configurations.

3. Simulating Hypothetical Configurations
In this section we present the interfaces for hypothetical
configuration simulation and describe how these interfaces are
implemented efficiently. We first present the foundational
concepts supported by the HCA engine that set the context for the
rest of the section.

(a) Workload. A workload consists of a set of SQL statements.
Most modem databases support the ability to generate a
representative workload for the system by logging activity on the
server over a specified period of time. For example, in Microsoft
SQL Server, the SQL Server Profiler provides this functionality.

(b) Hypothetical Conjiguration. A configuration consists of a set
of indexes that are consistent with schema constraints. For
example, if a table has a uniqueness constraint on a column C,
then an index on C must be part of every configuration. Likewise,
a table can have at most one clustering index. A configuration
may also have a database scaling value associated with it. A
database scaling value is a set of multipliers that captures the size
of the database. A multiplier mj is associated with each table Tl. A
hypothetical configuration with a database scaling value
represents a database where each table Ti in the database has m,
times the number of rows in the current database. Thus, the
scaling factor can be used to represent not only a database that is
significantly larger or smaller than the current database, but also a
database where the relative sizes of the tables are different from

368

today’s database. As a result, the HCA engine makes it possible
able to project changes to the current database along two
dimensions: changes in confjguration as well as changes in
database size.

(c) Estimation of projected changes. The effect of the projected
changes to the current database is captured in two ways. First, the
HCA engine supports the ability to estimate the cost of a query in
the workload with respect to a hypothetical configuration. Second,
the HCA engine can estimate the index usage since it can project
which indexes in the hypothetical configuration would be used to
answer a query in the workload.

3.1 Interfaces for Hypothetical Configuration
Simulation
Our approach to designing the interfaces for hypothetical
configuration simulation is influenced by the observation that
simulating a hypothetical configuration consists of estimating (a)
the cost of queries in the workload and (b) usage of indexes. In
presenting these interfaces, we focus on their functionality, and
not on syntax.

A) Define Workload < workload-name > [From c&e> I As
(QI .fi). (Q2 .fd , . . . tQ,fn)l
B) Define Configuration <configuration-name> As (Tablet,
columnJistt),..,(Tablei, columnJistt)
C) Set Database Size of <configuration-name> As (Tablet,
rowcount) ,..., (Table, row-count,)
0) Estimate Configuration of <workload-name> for
<configuration-name>
E) Remove [Workload <workload-name>1 Configuration
-zonfguration-name> I Cost-Usage <workload-name>,
<configuration-name>]

For each command (A)-(E), we now describe the semantics of the
command, and the information generated when the command is
executed . We refer to this information as analysis data. For
simplicity, we present the analysis data as relations in non-first-
normal form). In our implementation, we use multiple
(normalized) tables to store analysis data.

The Create Workload command associates a name with a set of
queries. These queries can be specified from a file or can be
passed in directly through the command. The workload
information generated as a result of executing the command is
shown in Table 1. A frequency value ft, which is associated with
query Qi in the workload. The frequency is interpreted by the
HCA engine to mean that the workload consists of fi copies of
query Qi. In addition, the HCA engine uses extended server
interfaces that expose the parsed information of a query to

associate a set of properties with a query. Some examples of query
properties are: (a) The SQL Text (b) Set of tables referenced in
the query (c) Columns in the query with conditions on them.

The Define Configuration command has the effect of registering a
new configuration and associating a set of indexes with that

configuration. The indexes may be existing (“real”) indexes or
hypothetical indexes. If the index exists, then the index name can
optionally be substituted for (Table, columnJst). The Set
Database Size command sets the scaling values for each table in
the database. Table 2 shows the information associated with a
configuration by the HCA engine. The information associated
with each index is shown in Table 3. Since indexes (real and
hypothetical) are entities supported by the database, this
information is available in the system catalogs. (In Section 3.2 we
describe how a hypothetical index is created). We note that the
syntax of the Define Configuration is general enough to include
other features of physical database design (e.g. materialized
views) in addition to indexes. However, the main challenge in
adding new hypothetical features arises not from having to extend
the syntax of Define Configuration, but because the creation and
use of these hypothetical features must be supported efficiently.

Workload Query Frequency Query Properties
name ID

Wrkld-A 1 1 <SQL Text>, (Tt, T,), etc.

Table 1. Workload information

Configuration Indexes in
Name Configuration

Current-Conf lnd-A, lnd-B, lnd-D

Scaling values

CT,, I), (T2,5)

Table 2. Configuration Information

Index Table Num Num. Cols. Index
Name Name Rows Pages Statistics
lnd_A R 100,000 1865 R.a <histogram>

Table 3. Index Information

Config name
New-Config
New-Contig

Query ID Cost
1 0.02
2 0.11

Indexes Used
lnd-A, lnd-D
lnd-B

Table 4. Information generated by Estimate Confguration

The result of executing Estimate Configuration for a given
workload and configuration is a relation that has the format shown
in Table 4. Conceptually, the relation has as many rows as there
are queries in the workload. The unit of Cost is relative to the total
cost of the workload in the current configuration. The attribute
Indexes-Used for a query represents the indexes that are expected
to be used by the server to answer the query if the hypothetical
configuration existed.

The Remove command provides the ability to remove analysis
data generated by commands (A)-(D). We observe that when
Remove Workload (respectively Configuration) is invoked, all
information about the Workload (Configuration) is removed,
including any cost and usage information. However, when
Remove Cost-Usage is invoked, only the cost-usage information
for the specified workload and configuration is removed, but the
workload and configuration information is retained.

369

Finally, we note that user interfaces in the AutoAdmin index
analysis utility makes it easy to define a workload and
configuration. In Microsoft SQL Server, a representative
workload for the system can be generated by logging events at the
server over a specified period of time using the SQL Server
Profiler to a file. In addition, filters can be specified so that only
relevant events are logged. Alternatively, a workload can be
dynamically created from the Query Analyzer interface. In this
approach, a highlighted buffer of queries is used to define a
workload dynamically. While defining the contiguration, the user-
interface presents successive screens to set the indexes and the
table sizes. In each of the screens, the user (typically the DBA) is
presented with the list of objects for the current (“true”)
configuration and can create a new configuration by adding (or
removing) indexes to the current configuration.

3.2 Implementing the Hypothetical
Configuration Simulation Interface
The commands (A)-(C) are primarily definitional and do not pose
implementation challenges. Likewise command (E) involves
deleting rows from the analysis data tables corresponding to the
workload, configuration or cost-usage specified in the command.
Therefore, in this section we focus on the issue of efficiently
implementing the core functionality of the hypothetical
configuration simulation interface: the Estimate Configuration
command.

Hypothetical Configuration
Analysis Engine

Create Define
hypothetical cortjiguration

Optimize
wry Showplan

index
I

(HC mode)
I I

F‘ no-exec”
I

L I

SQL SERVER 7.0

Figure 2. Interfaces between HCA
Engine and SQL Server

The simplest option of simulating a hypothetical configuration by
physically altering the current configuration is not viable since it
incurs the serious overhead of dropping and creating indexes.
Perhaps, even more seriously, such an approach is flawed since
changing indexes affects operational queries and can seriously
degrade the performance of the system. Likewise, updating the
system tables with the database scaling value can lead to error in
optimizer’s estimates of operational queries. Therefore, we need
an alternative where indexes in the hypothetical configuration do

not need to be constructed and where changes in the database
scaling value does not affect the system tables directly.

The solution to this problem relies on the observation that the cost
metric of a query that we are interested in is the optimizer-
estimated cost and not the actual execution cost. This metric is
justified since the “consumer” of a configuration is the optimizer.
In other words, unless the optimizer finds a hypothetical index
useful, it is unlikely to make use of that index when it is made
“real” (see [4] for additional justification). An optimizer’s
decision on whether or not use an index is solely based on the
statistical information on the column(s) in the index. Such
information consists of (a) a histogram on the column values on
which the index is defined (b) density. Moreover, to gather these
statistics it is not necessary to scan all rows in the table. These
statistical measures can be efficiently gathered via sampling,
without significantly compromising accuracy [3]. Once these
statistics have been collected, it is possible for the optimizer to
consider the hypothetical index for plan generation (although
execution of that plan is not possible). We will discuss our
approach to collecting the statistics in Section 3.2.1.

The steps in executing Estimate Confzguration for a query are
illustrated in Figure 2.
1. Create all needed hypothetical indexes in the configuration.
2. Request the optimizer to: (a) Restrict its choice of indexes to

those in the given configuration. (b) Consider the table and
index sizes in the database to be as adjusted by the scaling
values.

3. Request the optimizer to produce the optimal execution plan
for the query and gather the results: (a) the cost of the query
(b) indexes (if any) used to answer the query.

These steps are repeated for each query in the workload. We now
discuss implementation details of each of these steps (1) - (3) on
SQL Server and provide an example that illustrates the operation
of the hypothetical configuration simulation module.

I. Sample-table = Sample m pages
2. New-Sample = ()
3. While not (convergence-of-measures) do
4. Sample-Table = Sample-Table Union New-Sample
5. New-sample = Sample another m pages
6. Convergence-of-measures =

check-for-convergence (Sample-Table, New-Sample)
7. End do

L

Figure 3. Adaptive page-level sampling
algorithm for histogram construction.

3.2. I Creation of Hypothetical Indexes
We extend the CREATE INDEX statement in SQL with the
qualifier WITH STATISTICS-ONLY [= <fraction>]. It is

370

optionally possible to specify the fraction of the table to be
scanned when gathering sample data on columns of the index. If
<fraction> is not specified, the system determines the appropriate
fraction of rows to be scanned. For example:
CREATE INDEX supplier-stats on ON Orders (supplier) WITH
STATISTICS-ONLY
This command creates a hypothetical index on the supplier
column of the Orders table.

TPC-D workload (1GB database)

Figure 4. Number of hypothetical indexes for
each table.

Importance of Sampling in Creating

5
Hypothetical Indexes

za r
-g .E

q Rest of
toot

%E
2 ‘E
5;

Gathering
Statistics

tl n Without Wiih
Sampling Sampling

(5%)

Figure 5. Fraction of running time spent creating
hypothetical indexes by index selection tool.

We now describe the sampling strategy used for creating
hypothetical indexes. We use an adaptive page-level sampling
algorithm to efficiently gather statistical measures relevant to
query optimization. The algorithm, shown in Figure 3, starts with
a “seed” sample of m pages. In our current implementation we set
m = & where n is the number of pages in the table. At any given
time in the algorithm, the server maintains the sorted list of values
in the Sample-Table and the set of statistical measures based on
Sample-Table. In SQL Server, these statistical measures consist of
(1) density of the data set and (2) Equi-Depth histograms
(characterized by the step boundaries). The data in New-Sample is
used for cross-validation purposes. In other words, it is checked if
the values in New-Sample are divided approximately in equal
numbers in each bin of the histogram (2). Our empirical results
indicate that when the above test is true, the density measure also
reaches convergence. If the test for the convergence fails, then the

new sample is added to Sample-Table. This addition is done via a
merge algorithm to build a new Sample-Table that is in sorted
order. In the absence of convergence, the above step is repeated.
The technical details of the algorithm and its behavior on varying
data distributions are presented elsewhere [3].

I-

Eror in Optimizer Cost Estimates

z = 25%
8 2
.gto

20%
- * E15%

tt g P “0 ,O% s ‘6 ;;i v)
c!a aA+ 5%

Sampling,

E
0 8 0%

c?2 Gw 05 Q7 Ql7 I-

TPC-DQuery

Figure 6. Effect of sampling on optimizer cost estimates.

Eror in Optimizer Cardinallty Estimation]

=
c ,12

30%

al .= 0 o = c s 20%
5 .c p 2
$2 Z(“lO%
Egg
P

8 0%

TPC-D Query

Figure 7. Effect of sampling on estimated
number of rows.

As an example of the effectiveness of this server extension, we
present the requests made by an index selection tool [4] to the
HCA engine to create hypothetical indexes. Figure 4 shows the
distribution of hypothetical indexes explored by the tool over
tables of the ‘PC-D 1GB database. Figure 5 confirms our
expectation that sampling can significantly reduce the cost of
creating a hypothetical index. In fact, the total running time was
reduced by a factor of 16. In both cases, the index selection tool
recommended the same final set of indexes.

We now present an example to show that using sampling to create
hypothetical indexes does not adversely affect the optimizer’s
estimates. We ran an index selection tool [4] on a workload
consisting of the five most expensive queries on the TPC-D 1GB
database. The adaptive sampling algorithm sampled about 5% of
the data for hypothetical indexes on largest table (lineitem). We
then ran the tool with fixed sampling rates of l%, 3%, 5% and full
table scan, and recorded the optimizer cost estimates and the
estimated number of rows in each case. Figure 6 shows that the
maximum error in cost estimation when using a 5% sample was

371

only 4% when compared to a full table scan. Figure 7 shows that
similar results hold for the maximum error in the estimated
number of rows.

3.2.2 Dejining a Hypothetical Configuration
A key issue in supporting hypothetical configurations and
database scaling value is ensuring that operational queries can run
concurrently on the real database while queries on a hypothetical
configuration are being optimized. The optimizer obtains
information on tables, indexes and their sizes from system
catalogs. Therefore, a hypothetical configuration cannot be
supported by updating system catalogs. Instead, the information
for the hypothetical configuration must be conveyed to the
optimizer in a connection-specific manner. This is achieved by
augmenting the server with a connection-specific HC mode call
using extensible interfaces in Microsoft SQL Server. The HC
mode call takes as arguments: (1) Set of indexes corresponding to
the hypothetical configuration to be used in generating a query
plan. (2) The “base index” for each table in the configuration. The
base index for a table is either the clustered index on the table or
the heap structure for the table (if no clustered index is present).
In SQL Server, the leaf node of a non-clustered B+-tree index
contains the keys of the clustered index (if any) on that table.
Since the plan chosen by the optimizer depends on the columns
available in the index, it is necessary to indicate the base index to
the optimizer. (3) Sizes of tables and indexes in the database. The
HCA engine projects the size of each index in the configuration
based on the database scaling value. In addition, it accounts for
the fact that in SQL Server, the size of a non-clustered index
depends on the clustered index (if any) on that table. For example,
if there is a clustered index is on column A, and a non-clustered
index is on column B, then the size of the index on B is
proportional to the Width(column B) + Width(column A). Thus, if
Ii and I2 are hypothetical clustered indexes, and Is is a non-
clustered index, when simulating a hypothetical configuration (Ii.
Is), the HCA engine computes a different value for the size of Is
than when simulating the configuration (12, Is).

3.2.3 Obtaining Optimizer Estimates
Once the hypothetical configuration is defined via the HC mode,
the task of obtaining the optimizer estimates uses the traditional
SQL Server API to optimize queries in the “no-execution” mode.
Such a mode is supported in Microsoft SQL Server and other
database systems. The results of query optimization are obtained
through the Showplan interface. In addition to providing the
optimizer’s cost estimate, Showplan also provides the execution
plan for the query, including the indexes used to answer the query.

Example: Consider a database whose current configuration
consists of a table T with indexes Ii and IZ, where Ii is the
clustered index for T. The table T has 1 million rows. For a given
workload W, we wish to simulate a hypothetical configuration (Ii,
Ia) when the table T has 10 million rows. To simulate the
proposed configuration for W, the HCA engine would execute the
following sequence of steps:

. Since the index on I3 does not exist, the HCA engine first
calls the CREATE INDEX command with the “WITH
STATISTICS-ONLY” clause to create the hypothetical
index Is.

. The HCA engine computes the new sizes of the indexes Ii
and Is, when the number of rows is scaled to 10,000,OOO
taking into account the fact that I, is the clustered index. Let
these sizes be Si and S3 respectively.

. HC-mode((Ii,Is), (1 ,O), (S,,S,)) This first argument indicates
that I, and I3 are to be considered by the optimizer for plan
generation. The second argument indicates that It is the “base
index” for table T in the proposed configuration. The third
argument passes the sizes of each index in the configuration.

. The HCA engine then executes each query in the W in the
“no-execute” mode and obtains the cost and index usage
information via Showplan.

3.3 Maintaining Analysis Data Tables
In Section 3.1 we described the schema of each analysis data table
and discussed how the data is generated. We now address the
issue of maintaining the analysis data tables in the system. We
observe that once the properties of entities supported by HCA
engine (queries, indexes etc.) are determined, the schema of the
analysis data tables can be assumed to be fixed. Therefore, the
important issues are: (a) How are these tables named? (b) Where
are they stored? We now propose two alternatives to this problem.

3.3.1 Analysis Data in System Catalogs
In this approach, each analysis data table is a system catalog. This
solves the naming issue since system catalog names are fixed a-
priori. When any of the server interfaces to simulate a
hypothetical configuration is invoked, the server writes the
resulting data to the appropriate system catalog. These tables can
be accessed (a) directly by the user using SQL (b) via the
summary analysis interfaces of the HCA engine.

3.3.2 Analysis Data in User Specified Tables
In this approach, the HCA engine writes the analysis data returned
by the server into temporary tables that are connection specific.
When an index analysis session with the HCA engine is complete,
the user is provided the option of saving the analysis data
generated during the session into user specified tables. This
approach requires the hypothetical configuration simulation
interfaces to be augmented with a Save command. Subsequently,
the user can name the saved tabIes to the HCA engine and
perform summary analysis on the data, or can directly post
arbitrary SQL queries against these tables. In our current
implementation, we have adopted this approach.

4. Summary Analysis
The ability to simulate hypothetical configurations provides the
foundation for summary analysis. In this section, we show how
the AutoAdmin index analysis utility builds on that infrastructure
to provide sophisticated analyses of proposed changes. Figures 8
through 10 provide some examples of summary analysis that a

372

database administrator finds useful. Figure 8 shows a breakdown
of the workload by the type of queries. Figure 9 “drills-down” on
the queries of type selection and provides a breakdown of
selection conditions in queries by table. Such summary analysis
provides the DBA with a better grasp of the workload that the
system is facing: Figure 10 is an example where the DBA can
view the relative frequencies of usage of indexes in the current
configuration. The DBA may use this information to identify
indexes that are rarely used and perhaps are good candidates for
dropping. Indeed, one can think of many useful ways to analyze
the information gathered during hypothetical configuration
simulation (Tables l-4 in Section 3.1). (We refer to this
information as analysis data).

One option for producing summary statistics on analysis data is to
allow the DBA as well as other tools to directly use the SQL
interface to query the information collected during the process of
hypothetical configuration simulation. Unfortunately, the
approach of generating SQL queries is a relatively low-level
interface for performing summary analysis, since it shifts the
burden of analysis to the consumer of the information. The other
option is to provide a set of “canned” queries that support a set of
predetermined summary analyses. However useful, the canned
queries do not provide an extensible framework for generating
new summary statistics from the available analysis data. What is
needed is an interface that retains the flexibility of formulating ad-
hoc requests for summary analysis, but without the overhead of
manually generating complex SQL queries over the analysis data.
In the next section, we describe a query-like interface that the
HCA engine supports to fulfil this need. The interface that we
describe was used in AutoAdmin for a principled design of a
powerful user interface that can invoke the HCA summary
analysis interfaces in a rich way.

We begin in Section 4.1 with a description of a generic summary
analysis interface that captures the structure of questions that can
be posed against the analysis data. In Section 4.2, we present the
summary analysis interfaces and describe the properties of query,
index and cost-usage analysis objects that are used to formulate
queries. Section 4.3 provides examples of interesting queries that
can be posed using the analysis interfaces, and gives a flavor of
user interfaces. We discuss the implementation of the summary
analysis interface in Section 4.4. In Section 4.5 we present a
sample session that a database administrator might have with the
index analysis utility.

4.1 Conceptual Model for Summary Analysis
Our model for summary analysis recognizes that the three
foundational objects for analysis are:
. Workload Analysis, which consists of queries and their

structural properties
. Configuration Analysis, which consists of indexes and their

structural properties
. Cost and Index Usage Analysis, which represent relationship

properties between a query and a configuration

Workload distribution

Figure 8. Distribution of workload by SQL l)pe.

Sslection Conditions on Tables

Figure 9. Dlstrlbution of conditiolos over tables.

Index lkage Analysk

IL 0

Figure 10. Analyzing the frequency of index usage
for a given configuration and workload.

While the specific summary questions that are of interest relate to
one of the above three objects, the HCA summary analysis
interface provides a generic querying model. Such a generic
analysis interface has the advantage that as we extend the
framework into more complex physical database design, it
exploits the common thread that runs through each kind of
analysis.

4.1.1 Objects and Properties
Any summary analysis is over a set of objects. For example, for
workload analysis, it is a set of queries. In configuration analysis,

373

the objects in question are indexes. For cost and index-usage
analysis, the objects are relationship objects that capture the
interaction between a specific configuration and queries in a
workload. In each case, the set of objects for summary analysis
can be implicitly identified. For workload analysis, the workload
name uniquely identifies the queries in the workload. Likewise the
configuration name identifies the indexes in the hypothetical
configuration being analyzed. For Cost and Index Usage Analysis,
the combination of the workload name and configuration name
uniquely identifies the set of objects to be analyzed.

Each object has properties associated with it. These properties can
be classified as follows: (a) Properties with un atomic value, e.g.
the number of tables in a query. A special case of atomic value is
Boolean (e.g., whether or not an index is clustered). (b) Properties
with a list (or set) value, e.g. the list of columns in an index or the
set of tables referenced in a query. For each of the three types of
objects we now list the properties of that object that are gathered
by the HCA engine in AutoAdmin.

4. I. 1.1 Properties of Queries
For workload analysis, the object in consideration is a query.
Below, we list properties that are currently parsed by the HCA
engine for a query. The properties with atomic value are query
type (Insert/Delete/Update/Select), whether the query has a Group
By clause (Boolean), whether the query has an Order By clause
(Boolean), whether the query has nested subqueries (Boolean).
The properties with list values are tables referenced in query,
required columns from each table, columns on which selection
conditions exist, columns on which join conditions exist, Equi-
join conditions. We note that above list of properties can be easily
extended by collecting additional interesting parsed query
information.

Example: Consider the query:
SELECT R.a, SC FROM R, S WHERE R.a = S.c AND R.b = vI
The properties are: (1) SQL Type: Select. (2) The required tables
are {R, S). (3) The required columns are: {R.a, R.b, SC)
(4) Columns on which selection conditions exist: (R.b} (5) Equi-
join conditions: [(R.a = S.c))

4.1.1.2 Properties of Indexes
For configuration analysis, the objects of interest are indexes. The
properties of indexes with atomic value are table on which index
is built, width of index (number of columns), storage space, time
of creation, whether or not the index is clustered (Boolean). The
property with list values is the list of columns in the index (in
major to minor order).

Example: Consider a clustered index Ii on columns (C,,C,) of
table T. The properties of Ii are (1) Table = T (2) Width = 2 (3)
Clustered = True (4) list of columns = (Ct, C,). The storage space
and time of creation properties would also be filled appropriately.

4.1.1.3 Properties of Relationship Object of Query
and Configuration
For the relationship object of a query and a configuration, the
property with atomic value is cost of the query for the
configuration. The property with list value is the list of indexes in
the configuration used to answer the query. We note that the
properties of the relationship object between a query and a
configuration can be augmented with other information about the
query execution plan (e.g. operators used in the plan).

4.1.2 Measures and Aggregate Measures
Objects and properties form the fundamental primitives for
summary analysis. However, derived measures are useful for
posing queries against analysis data. With each property of an
object, we can derive one or more numerical measures. For an
atomic property this measure could be the value of the property
itself (e.g. storage for an index) or a user defined function of the
value. For a list or set property, the measure may be the count of
the number of elements in the list or set, e.g., the number of tables
referenced in a query. A measure for a list/set property may be
derived also by applying one of the aggregate functions (e.g.,
SUM, AVERAGE) on the values in the list/set. For example, the
aggregate functions may be used on measures to obtain a derived
measure for a set of objects. Thus the specification of a numerical
measure consists of (a) a property name (b) an expression that
derives a numerical measure from the property value. For list/set
valued property p, the aggregate measure is f (p). where f is an
aggregation function. In our current implementation, f can be
Count, Min, Max, Sum, Average.

We lift the notion of a numerical measure to a list/set of objects to
derive an aggregate measure in the obvious way. Given a
measure m for each object, we derive a corresponding measure
f(m) over a set of objects by applying an aggregate function.& For
example, given a workload (a set of queries), we can compute the
average number of tables referenced per query in the workload.

4.2 Summary Analysis Interfaces
Although simple, the abstractions of objects, properties and
measures provide an approach to the problem of defining a
convenient and yet powerful query-like interface for summary
analysis. The generic analysis interface that we present in this
section is geared towards supporting the following paradigm of
analyzing information from hypothetical configuration simulation:
1. Determine a class of analysis (workload analysis,

configuration analysis, cost/index usage analysis)
2. Specify necessary information to uniquely identify the set of

objects of analysis. E.g., specify workload name to identify
associated queries.

3. Filter a subset of objects (based on their properties) to focus
on objects of interest, e.g., consider queries that reference a
table “Orders”. There may be successive filtering operation,
supported through “drill-down” using user interfaces, e.g.,
consider queries that reference the column “Supplier” in
“Orders”.

374

4. Partition the filtered objects in a set of classes by a measure.
For example, the queries that survive the filter in (3), maybe
partitioned by their query type (Insert/Delete/Update/Select).
The partitions need not be disjoint.

5. Rank or Summarize the objects. Ranking is achieved by
associating a measure with each object (e.g. for a query, the
number of tables referenced in the query) and using the
measure to order the objects. Thus the interface supports
picking the top k objects ranked by the measure. The
interface also supports summarizing the objects based on an
aggregate measure (e.g., average number of tables referenced
in queries). If no partitioning is mentioned, then the ranking
and summarization is done for all objects that qualify the
filter. Otherwise, it is done for each partition but all partitions
share the same ranking/summarization criteria.

The Filter and Partition steps described above are optional. Thus
the simplest form of analysis is to rank objects by a given measure
or summarize all objects through an aggregation function. We
now present the “query-like” summary analysis interface and
explain the syntax and semantics of this interface using a series of
examples to highlight each aspect. As with the interfaces for
hypothetical configuration simulation, our focus is on the
functionality enabled by this interface rather than the syntax.

ANALYZE[WORKLOADICONFIGURATIONICOST-USAGE]
WITH <parameter-list>
[TOP <number>1 SUMMARIZE USING <aggregation-
function>] BY <measure>
WHERE <jilter-expression >
(PARTITION BY <partition-parameter> IN <number>
STEPS}

4.3.1 Format of Output
The format of the results produced depends on whether ranking or
summarize output is desired. If the query uses SUMMARIZE,
then the output consists of one row for each partition. Each row
has two columns, one has the value of the partitioning parameter
and the other has the summarized value for that partition. For
example, Ql counts the number of queries in the workload of
each type (Select/Update/Insert/Delete).

Ql: ANALYZE WORKLOAD WITH Workload-A
SUMMARIZE USING Count
PARTITION BY Query-Type

If the partitioning clause is omitted, then the output is a scalar,
representing the summarized value for all objects selected. For
example, Q2 counts the total number of indexes in a
configuration.

Q2: ANALYZE CONFIGURATION WITH Current-Conjig
SUMMARIZE USING Count

When the ranking option is used (i.e., TOP is used), the output
format has three columns: the first column has the partitioning

attribute, the second column has the object itself (e.g., the query
string), and the third column specifies the rank of the object
within the partition. If no partitioning clause is present, then there
will be altogether <number> of 3-column tuples. For example, 43
returns the 20 most expensive queries in Wkld-B for the current
configuration. Each tuple in the output for Q3 is of the form
(Workload-name, Query, Rank).

Q3: ANALYZE COST-USAGE WITH Wkld-B, Current-Conjig
TOP 20 BY Cost

4.3.2 Measures
As described earlier, measures can be useful for posing interesting
queries on the analysis data. Measures can be specified in the BY
<measure> clause and the PARTITION BY <partition-
parameter> clause. A measure has one of the following two
forms: (a) an atomic property of an object. For example Q4
returns the top 3 indexes in New-Conjg ranked by storage.
(b) <aggregation-finction>(<list/set property>). QS counts the
number of queries in Wrkld-A where a given number of tables are
referenced. In our current implementation, we support Count,
Max, Min, Sum, and Average for <aggregation-jimction>. We
note that when Count is used in the SUMMARIZE USING clause,
the <measure> specification is not required (e.g. Ql, Q2, Q5).

Q4: ANALYZE CONFIGURATION New-Config
TOP 3 BY Storage

QS: ANALYZE WORKLOAD WITH Wkld-A
SUMMARIZE USING Count
PARTITION BY Count (Tables)

4.3.3 Filter Expressions
The syntax of <jilter-expression> is a Boolean expression where
base predicates are composed using Boolean connectors. For
atomic properties, the base predicates have the form: <property>
<operator> <value>. The operator can be any comparison
operator, e.g., storage > 50. However, for Boolean properties
only equality check is legal. For example, Q6 counts the number
of two-column, non-clustered indexes in Current-Config.

Q6: ANALYZE CONFIGURATION WITH Current-Config
SUMMARIZE USING Count
WHERE (Num-Columns = 2) AND (Is-Clustered = FALSE)

For set-valued properties base predicates have one of the
following three forms:

. <set property > [SUBSET-OF1 SUPERSET-OF I=] <set>.
For example, Q7 returns the 10 most expensive queries in
Wkld-A for the current configuration such that the query
references at least the tables part and supplier.

l f (<set property>) <operator> <value>, where f is an
aggregation function and <operator> is any comparison
operator, e.g., the following filter is satisfied for queries that
reference at least two tables: Count(Tables) > 1.

375

. For list valued properties, all base predicates as for set
valued predicates apply by interpreting the list as the
corresponding set. However, in addition, the following
predicate based on prefix matching is allowed:
<list property> [SUBLIST-OFI SUPERLIST-OFI=] <list
>. For example, QS counts the number of indexes in
Config-A that have partsize as their leading column. Here,
Columns is the list property of an index that contains the
columns in the index.

Q7: ANALYZE COST-USAGE WITH Wkld-A, Current-Conjig
TOP 10 BY Cost
WHERE Tables SUPERSET-OF (part, supplier}

QS: ANALYZE CONFIGURATION WITH Wrkld-A, Conjig-A
SUMMARIZE USING Count
WHERE Columns SUPERLIST-OF @art.size)

4.3.4 Partitioning the Results
The objects being analyzed may be partitioned either by a
property (need not be numeric, e.g. Ql) or by a numeric measure
(e.g. Q5). An important special case is when cparfition-
parameter7 is the name of a list or a set valued property. In such a
case, there is a separate partition for each distinct value of the list
or set. A set valued object S belongs to the partition for d if and
only d is a member of the set S. For example, in Q9, a query
belongs to the partition of each table that is referenced in that
query. Q9 computes the average number of indexes used for
queries on each table (but eliminating join queries). Finally, when
the partitioning domain is numeric, the number of steps allows
partitions to be coalesced into fewer steps.

Q9: ANALYZE COST-USAGE WITH Workload-A, Current
SUMMARIZE USING Average BY Count (Indexes-Used)
WHERE Count (Join-Columns) = 0
PARTITION BY Tables

4.3.5 Specifying Objects for Analysis
In each of the examples Ql-Q9, depending on the class of
analysis, the <parameter-lisn can contain a (a) workload name
(b) configuration name or (c) workload name and configuration
name. In general, it is possible to specify multiple workloads and
configurations in the <parameter-list>, making it possible to
compare workloads or configurations. We do not discuss details
of possible formats of <parameter-list> due to lack of space.
However, to illustrate the idea, we present QlO, which compares
the cost of two configurations for queries that reference table
Orders.

QlO: ANALYZE COST-USAGE WITH Workload-A,
(Current-Conjig, Proposed-Conjig)
SUMMARIZE USING Sum BY cost
WHERE Tables SUPERSET-OF Order

4.3 Examples of Summary Analysis and User
Interfaces
The summary analysis interface is expressive and can be used to
perform a rich set of analyses. We now provide examples of each
class of summary analysis and the user interfaces that make it
easy for a database administrator to visualize the results of
summary analysis. All examples presented below can be
expressed using the summary analysis interface.

Distribution of selection conditions on
Orders table.

6 -

Figure 11. Distribution of selection conditions on a
given table.

Distribution of Multi-Column Indexes
By Table

*&to 8
1%
3 6
OE 4
$c
2s 2
2s - 0

Figure 12. Analyzing distribution of multi-column
indexes over tables.

4.3.1 Workload Analysis
(1) An example of application of partitioning is to count the
number of queries by SQL Type (see Figure 8).
(2) List the top 5 tables on which most queries are posted.
(3) Comparing summary statistics from two workloads.
(4) Drilling-down at a table level to find which co@ns of the
table that have most conditions posted on them (see Figure 11).

4.3.2 ConJiguration Analysis
(1) An example of application of partitioning is to count the
number of indexes for each table.
(2) List the top 6 tables ranked by the count of the multi-column
indexes on those tables. (See Figure 12)

376

4.3.3 Cost- Usage Analysis
(1) Analyzing the frequency of usage of each index in the
configuration for the workload (Figure 10).
(2) Arialyzing the cost of each query in the workload for the
proposed configurations (relative to the current configuration).
(Figure 13).
(3) Comparing the cost of two configurations for a given
workload by SQL Type. (Figure 14).

Cost Comparison: Current vs. Proposed
Configuration

150 I---
-I__~~~

r 100
6 50

0
12345678910

Query ID

Figure 13. Comparing cost of the 10 most expensive
queries for two configurations.

Comparison of Configurations for a
Workload

200
150

3 100
0 50

0
Query Update insert Delete

SQLType

i

Figure 14. Comparing cost of workload for two
configurations by SQL Type of query.

4.4 Implementation of Summary Analysis
Interfaces
In this section, we briefly describe the issues involved in
implementing the summary analysis interface. As described in
Section 3.3, the data generated during hypothetical configuration
simulation are stored in tables at the server. When a query is
posed using the summary analysis interface, the HCA engine
maps the query into an equivalent SQL query over the analysis
data tables. In addition, the HCA engine may further process the
results of the SQL query before completing the analysis (e.g.
bucketizing results). The fact that the summary analysis interface
resembles SQL makes it easier for the HCA engine to map the
input into a SQL query. In addition, the implementation of the
summary analysis engine also exploits the ability to compose
operations using table expressions in the FROM clause of a SQL
query.

The kind of analysis (Workload, Configuration, or Cost-Usage)
specified in the summary analysis query determines the superset
of analysis data tables that need to be joined to answer the query.
For example, for Workload analysis, we only need to access the
workload information tables (see Table 1). The HCA engine then
generates a table expression (T,) that joins the required analysis
data tables, only retrieving objects that are specified in the
<parameter-list>. In addition, the <filter-expression> (if any)
specified in the query is included in T,. The HCA engine then
generates a table expression T2 that partitions T1 using the
<partition-parameter> (if any), using the GROUP BY construct,
and the <aggregation-finction> is applied to the attribute
specified by <measure>. If instead, the query requests the TOP
<number> of rows BY <measure>, then T2 is generated by
applying an ORDER BY clause on the <measure> attribute of T1.
A cursor is opened for T2 to return the first <number> rows.

4.5 Example of a Session
In this section we provide an example of a typical session by a
DBA using the impact analysis utility.

4.5.1. Analyzing the workload
As mentioned earlier, in AutoAdmin, evaluation of the current or
a proposed design is always done with respect to a workload.
Therefore, DBA begins by specifying a workload for the session.
This may be a log of queries that have run against the system over
the past week. The DBA tries to understand the workload mix and
asks for a breakdown of the queries by SQL Type. The result of
this analysis looks like Figure 8. The DBA may then decide to
focus on the most expensive queries in the workload for the
existing configuration, by requesting the top 25 queries ordered by
cost. To decide which tables are good candidates for indexing, the
DBA may wish to see the distribution of conditions in queries on
tables (Figure 9). Having picked a table that has many conditions
on it, the DBA may decide to further “drill-down” and look at the
distribution of conditions in queries over columns of that table
(Figure 11). This gives a good idea of which columns on the table
are likely candidates for indexes. The DBA finds that columns A
and B of table T2 look promising.

4.5.2 Analyzing the current configuration
The DBA may then wish to see if indexes on A and B of table T2
already exist in the current configuration. He does this by
requesting to see all indexes on T2 in the current configuration
ordered by their storage requirement. In this case, there is an
index on A, but no index on B. So the DBA decides to explore
hypothetical configuration scenarios that include an index on B.

4.5.3 Exploring “what-if” scenarios
The DBA then decides to explore two “what-if’ scenarios and
evaluate each relative to the current configuration. He first
proposes a hypothetical configuration consisting of the current
configuration with an additional non-clustered single-column
index on column B of T2. For this configuration he compares the
cost of the workload with the cost of the workload in the current

377

configuration. Adding a single-column index on B produces a 5%
improvement in total cost of the workload (Figure 13). By
studying index usage in the proposed configuration (Figure lo),
the DBA sees that the new index was used in three queries. Not
being impressed with the improvement in performance, the DBA
decides to explore a different hypothetical configuration. This
time he proposes a two-column index (B, A) on table T2 in
addition to the current configuration. Once again, the DBA
compares the cost of this configuration with the current
configuration and sees an 18% improvement for the workload. He
then looks at the top five queries in the workload that are affected
by adding the index and notices that two of the most expensive
queries under the current configuration were positively affected
and that there were no queries that were negatively affected. He
then decides to build the two-column index (B,A) and schedules
the index to be built at midnight.

5. Conclusion
In this paper we have shown how an index analysis utility can
help the DBA of an enterprise-class database to select indexes for
the database. We have presented the interfaces supported by a
hypothetical configuration analysis engine and shown how this
functionality can be used to conduct interesting and powerful
analysis studies. We have described the implementation of the
hypothetical configuration analysis engine for Microsoft SQL
Server 7.0, including the necessary server extensions. In the
future, we will extend our current framework to incorporate other
aspects of physical database design.

6. Acknowledgments
We would like to acknowledge Nigel Ellis from the SQL Server
relational engine group for helping incorporate our extensions into
the server.

7. References
[II

PI

r31

[41

r51

[61

t71

El

191

AutoAdmin Project, Database Group, Microsoft Research,
http://www.research.microsoft.comfdb.

Choenni S., Blanken H. M., Chang T., “Index Selection in
Relational Databases”, Proceedings of 5ih IEEE ICC1 1993.

Chaudhuri, S., Motwani, R., Narasayya, V., “Random
Sampling for Histogram Construction: How Much Is
Enough?‘. Proceedings of ACM SIGMOD ‘98.

Chaudhuri, S., Narasayya, V., “An Efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server. ‘I.
Proceedings of the 23rd VLDB Conference, Greece, 1997.
Frank M., Omiecinski E., Navathe S., “Adaptive and
Automative Index Selection in RDBMS”, Proceedings of
EDBT 92.

Finkelstein S, Schkolnick M, Tiberio P.“Physical Database
Design for Relational Databases”, ACM TODS, Mar 1988.

Gupta H., Harinarayan V., Rajaramana A., Ullman J.D.,
“Index Selection for OLAP”, Proceedings of ICDE97.

Harinarayan V., Rajaramana A., Ullman J.D., “Implementing
Data Cubes Efficiently”, Proceedings of ACM SIGMOD 96.
Labio W.J., Quass D., Adelberg B., “Physical Database
Design for Data Warehouses”, Proceedings of ICDE97.

[lo] Olken F., “Random Sampling in Databases”, Technical
Report, 1993.

[1 l] Rozen S., Shasha D. “A Framework for Automating Physical
Database Design”, Proceedings of VLDB 199 1.

[12] Stonebraker M., Hypothetical Data Bases as Views.
Proceedings of ACM SIGMOD 1981.

378

