Forecasting++ Update

Jia Qi Dong, Yingjie Ling, Wan Shen Lim

Overview

• An overview of the development status of their project as related to the goals discussed in the initial proposal.

← statistical, deep

Proposal had three components:

- B. Forecasting parameters
- C. Forecasting database state \leftarrow dropped

And proposed the following evaluation:

- 75%: have at least one component set up ← we have A and B
- 100%: have a baseline pipeline that handles numeric schemas ← WIP
- 125%: beat the baseline pipeline ← WIP

Deviations

• Due to time constraints, we have dropped forecasting future database state in favor of focusing on generating the query workload.

• If we forecast query parameters well, we can still get the future database state (by replaying the query workload). The reverse is not true.

Code coverage / testing

• A measurement of the current code coverage of the tests for your implementation.

- The current testing plan is to run our queries on PostgreSQL to synthesize a complete query log for our forecasted queries ("forecast log").
- We will then compare the forecast log with the future queries in the query log ("future log").
- For both the forecast log and the future log, we will (1) restore the initial state from a dump and (2) run pgreplay. Then compare various execution metrics and PostgreSQL statistics to see how they differ.
- Unfortunately, we are not able to robustly test for runtime beyond exposing various tqdm progress bars in the ML components.

General architecture

Forecasting query templates

Parameter Forecasting Workflow

LSTM VS. DistFit

DELETE FROM new_order WHERE **NO_O_ID = \$1** AND NO_D_ID = \$2 AND NO_W_ID = \$3

Actual Data

Can Capture Various Trends

DELETE FROM new_order WHERE NO_O_ID = \$1 AND NO_D_ID = \$2 AND NO_W_ID = \$3

Actual Data

LSTM

Challenges

• DistFit

- Cannot fit a distribution for data it has never seen.
- One model for all
 - Difficult to generalize; might require a lot of training data.
- One model for one template
 - Embed position information into to the quantile data; middle ground.
- One model for one parameter
 - Storage/computation overhead scales with the number of parameters.

Future Work

• DL model

- Online training
- Confidence interval
- Multivariate parameter prediction
- String prediction

Dataset

- Currently TPCC
- Test on real workload
- Transaction-aware parameter forecasting
 - Different parameter distribution for the same template in different sessions
 - Constraint on parameter value for different templates in the same session

Q1: SELECT * FROM warehouse WHERE w_id=x;

Q2: SELECT * FROM district WHERE **w_id=x** AND d_id=y;

